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2 Outline

PART I:

● Formal framework of TDDFT

● Time-dependent Kohn-Sham formalism

PART II:

● TDDFT in the linear-response regime

● Calculation of excitation energies
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3 Time-dependent Schrödinger equation
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The TDSE describes the time evolution of a many-body state      

starting from an initial state                 under the influence of an

external time-dependent  potential
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Start from nonequilibrium initial state, evolve in static potential:

t=0 t>0

Charge-density oscillations in metallic 

clusters or nanoparticles (plasmonics)

New J. Chem. 30, 1121 (2006)

Nature Mat. Vol. 2 No. 4 (2003)

Real-time electron dynamics: first scenario
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Start from ground state, evolve in time-dependent driving field:

t=0 t>0

Nonlinear response and ionization of atoms 

and molecules in strong laser fields

Real-time electron dynamics: second scenario

6

High-energy proton hitting ethene

T. Burnus, M.A.L. Marques, E.K.U. Gross,

Phys. Rev. A 71, 010501(R) (2005)

● Dissociation of molecules (laser or collision induced)

● Coulomb explosion of clusters

● Chemical reactions

Nuclear dynamics

treated classically

Coupled electron-nuclear dynamics
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7 Density and current density
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Heisenberg equation of motion for the density:
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Similar equation of motion for the current density (we need it later):
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8 The Runge-Gross Theorem (1984)

The time evolution and dynamics of a system is determined

by the time-dependent external potential, via the TDSE.

The TDSE formally defines a map from potentials to densities:
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0fixed
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To construct a time-dependent DFT, we need to show that

the dynamics of the system is completely determined by

the time-dependent density. We need to prove the correspondence

),( tV r ),( tn r
unique 1:1

0for a given
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9 Proof of the Runge-Gross Theorem (I)

0

The two potential differ by more than 

just a time-dependent constant.
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Consider two systems of N interacting

electrons, both starting in the same

ground state      , but evolving under

different potentials:

The two different potentials can 

never give the same density!

What happens for potentials differing only by c(t)? They give same density! 
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10 Proof of the Runge-Gross Theorem (II)

We assume that the potentials can be expanded in a Taylor series

about the initial time:
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Two different potentials: 

there exists a smallest k so that constVV kk  )()( rr

Step 1: show that the current densities must be different!

We start from the equation of motion for the current density.
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If the two potentials are different at the initial time, then

the two current densities will be different infinitesimally later than t0
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11 Proof of the Runge-Gross Theorem (III)

If the potentials are not different at the initial time, they will become

different later. This shows up in higher terms in the Taylor expansion.

Use the equation of motion k times:
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This proves the first step of the Runge-Gross theorem:
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Step 2: show that if the current densities are different,

then the densities must be different as well!

12 Proof of the Runge-Gross Theorem (IV)

Calculate the (k+1)st time derivative of the continuity equation:
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We must show that right-hand side cannot vanish identically!

Use Green’s integral theorem:
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= 0

= 0
positive, cannot

vanish

so, this term

cannot vanish!
Therefore, the densities 

must be different 

infinitesimally after t0. 

This completes the proof.
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13 The Runge-Gross Theorem

),( tV r ),( tn r
unique 1:1

0for a given

E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

The potential can therefore be written as a functional of the density

and initial state, which determines the Hamiltonian:

)](,[)()](,[ˆ)(ˆ),](,[),( 000 tnttnHtHtnVtV  rr

All physical observables become functionals of the density:
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14 The van Leeuwen Theorem

In practice, we want to work with a noninteracting (Kohn-Sham)

system that reproduces the density of the interacting system.

But how do we know that such a noninteracting system exists?

(this is called the “noninteracting V-representability problem”)

R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999)

● Can find a system with a different interaction that reproduces the

same density. In particular, w=0 is a noninteracting system.

● This provides formal justification of the Kohn-Sham approach

● Proof requires densities and potentials to be analytic at initial time.

Recently, examples of nonanalytic densities were discovered:

Z.-H. Yang, N.T. Maitra, and K. Burke, Phys. Rev. Lett. 108, 063003 (2012)



8/29/2015

8

15 Situations not covered by the RG theorem

1

2

TDDFT does not apply for time-dependent magnetic fields or for

electromagnetic waves. These require vector potentials.

The original RG proof is for finite systems with potentials that

vanish at infinity (step 2). Extended/periodic systems can be tricky: 

● TDDFT works for periodic systems if the time-dependent 

potential is also periodic in space.

● The RG theorem does not apply when a homogeneous electric 

field (a linear potential) acts on a periodic system.

Solution: upgrade to time-dependent current-DFT

N.T. Maitra, I. Souza, and K. Burke,PRB 68, 045109 (2003)
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Consider an N-electron system, starting from a stationary state. 

Solve a set of static KS equations to get a set of N ground-state orbitals:
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The N static KS orbitals are taken as initial orbitals and will be 

propagated in time: 
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Time-dependent Kohn-Sham scheme
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17 The time-dependent xc potental

  tnV KSxc ,)0(),0(, r

Dependence on initial states, 

except when starting from the ground state 

Dependence on densities:

(nonlocal in space and time)
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Static DFT: TDDFT: more complicated!

(stationary action principle)

18 Time-dependent self-consistency

Time propagation requires keeping the density at previous times

stored in memory! (But this is almost never done in practice….)
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But we know the density only for times

 use “predictor-corrector scheme”
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Numerical time propagation
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1

2

3

Prepare the initial state, usually the ground state, by 

a static DFT calculation. This gives the initial orbitals: )0,()0(
rj

Solve TDKS equations selfconsistently, using an approximate

time-dependent xc potential which matches the static one used

in step 1. This gives the TDKS orbitals: ),(),( tntj r   r 

Calculate the relevant observable(s) as a functional of ),( tn r

Summary of TDKS scheme: 3 steps

22 Observables: the time-dependent density

The simplest observable is the time-dependent density itself: ),( tn r

Electron density map of the myoglobin

molecules, obtained using time-resolved

X-ray scattering. A short-lived CO group

appears  during the photolysis process.

Schotte et al., Science 300, 1944 (2003)
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23 Observables: the particle number

Unitary time propagation:  
space
all Ntnrd ),(3 r

During an ionization

process, charge

moves away from

the system. 

Numerically, we can

describe this on a 

finite grid with an

absorbing boundary.

The number of bound/escaped particles at time t is approximately given by
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24 Observables: moments of the density

dipole moment: zyxtnrrdtd ,,,),()( 3    r

sometimes one wants higher moments, e.g. quadrupole moment:
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25 Example: Na9
+ cluster in a strong laser pulse

off resonance on resonance

not much

ionization

a lot of

ionization

Intensity: I=1011 W/cm2

26 Example: dipole power spectrum of Na9
+ cluster
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27 Implicit density functionals

We have learned that in TDDFT all quantum mechanical observables

become density functionals:
)]([ˆ)]([)]([ tntntn  

Some observables (e.g., the dipole moment), can easily be

expressed as density functionals. But there are also difficult cases!

► Probability to find the system in a k-fold ionized state
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28 Implicit density functionals

►Photoelectron kinetic-energy spectrum
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►State-to-state transition amplitude (S-matrix)
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All of the above observables are easy to express in terms of the

wave function, but very difficult to write down as explicit density functionals.

Not knowing any better, people often calculate them approximately using

the KS Slater determinant instead of the exact wave function. This is

an uncontrolled approximation, and should only be done with great care.
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29 Ionization of a Na9
+ cluster in a strong laser pulse

25 fs laser pulses

0.87 eV photon energy

I=4x1013 W/cm2

For implicit observables

such as ion probabilities

one needs to make two

approximations:

(1) for the xc potential 

in the TDKS calculation

(2) for calculating the 

observable from the 

TDKS orbitals.

30
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CO2 molecule in a strong laser pulse

Calculation done
with octopus
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31 Outline

PART I:

● Formal framework of TDDFT

● Time-dependent Kohn-Sham formalism

PART II:

● TDDFT in the linear-response regime

● Calculation of excitation energies

32

● Uses weak laser as Probe

● System Response has peaks at 

electronic excitation energies

Marques et al., PRL 90, 258101 (2003)

Green

fluorescent

protein

Vasiliev et al., PRB 65, 115416 (2002)

Theory
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Na2 Na4

Optical spectroscopy
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tickle the system
observe how the

system responds

at a later time

Linear response

The formal framework to describe the behavior of a system

under weak perturbations is called Linear Response Theory. 

34 Linear response theory (I)

Consider a quantum mechanical observable       with    

ground-state expectation value

̂

000
ˆ  

Time-dependent perturbation:
01 ,ˆ)()(ˆ tttFtH  

The expectation value of the observable        now becomes

time-dependent:
̂

0,)(ˆ)()( ttttt  

The response of the system can be expanded in powers of 

the field F(t):
...)()()()( 3210  tttt 

=  linear + quadratic + third-order + ...
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35 Linear response theory (II)

For us, the density-density response will be most important.

The perturbation is a scalar potential V1, 
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36 Linear response theory (III)

Fourier transformation with respect to               gives:
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where                                 is the nth excitation energy. 0EEnn 

)( tt 

►The linear response function has poles at the excitation

energies of the system.

► Whenever there is a perturbation at such a frequency, 

the response will  diverge (peak in the spectrum)
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37 Spectroscopic observables

First-order induced dipole polarization:

In dipole approximation, one defines a scalar potential associated with

a monochromatic electric field, linearly polarized along the z direction:  
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And the dynamic

dipole polarization

becomes

From this we obtain the

photoabsorption cross section: )(Im
4

)(  zzzz
c



38 Spectrum of a cyclometallated complex

F. De Angelis, L. Belpassi, S. Fantacci, J. Mol. Struct. THEOCHEM 914, 74 (2009)
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39 TDDFT for linear response
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Gross and Kohn, 1985:

Exact density response can be calculated as the response of a

noninteracting system to an effective perturbation:
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40 Frequency-dependent linear response
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41 The xc kernel: approximations

Random Phase Approximation (RPA): 0RPA

xcf

Adiabatic approximation:

frequency-independent

and real )()(
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Formally, the xc kernel is frequency-dependent and complex.

42 Analogy: molecular vibrations

Molecular vibrations are characterized

by the eigenmodes of the system.

Using classical mechanics we can find

the eigenmodes and their frequencies

by solving an equation of the form

  
j

jrjkrjk mA 02 

dynamical coupling

matrix (contains

the spring constants)

mass tensor

frequency of

rth eigenmode

eigenvector

gives the

mode profile

So, to find the molecular eigenmodes and vibrational frequencies

we have to solve an eigenvalue equation whose size depends

on the size of the molecule.
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43 Electronic excitations

An electronic excitation can be viewed as an eigenmode of

the electronic many-body system.

This means that the electronic density of the system (atom,

molecule, or solid) can carry out oscillations, at certain

special frequencies, which are self-sustained, and do not 

need any external driving force.

),(),,(),( 1
3

1  rrrr   Vrdn

set to zero

(no extenal

perturbation)

diverges when ω 

equals one of the 

excitation energies

finite density 

response: the

eigenmode of

an excitation

44 Electronic excitations with TDDFT

  ),(),,(
||

1
,,),( 1

33
1  rrr

rr
rrr 







 


  nfrdrdn xcs

Find those frequencies ω where the response equation,

without external perturbation, has a solution with finite n1.

M. Petersilka, U.J. Gossmann, E.K.U. Gross, PRL 76, 1212 (1996)

H. Appel, E.K.U. Gross, K. Burke, PRL 90, 043005 (2003)

We define the following abbreviation:

),,(
||

1
),,(  rr

rr
rr 




xcHxc ff
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45 Warm-up exercise: 2-level system

Noninteracting response function, where

    




kj jk

kjjk

jks
i

ff
,

** )()()()(
,,





rrrr

rr

We consider the case of a system with 2 real orbitals, the first

one occupied and the second one empty. Then,

 

2
21

2
21

1221

21

1221

21

1221

2
)()()()(

)()()()()()()()(
,,






















rrrr

rrrrrrrr
rrs

:kjjk  

46 2-level system

 

),(),()()()()(
2

),(),(,,),(

1
3

2121
3

2
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2
21

1
33

1








rrrrrrr

rrrrrr











n,frdrd

n,frdrdn

Hxc

Hxcs

Multiply both sides with

and integrate over r. Then we can cancel terms left and right, and

),,()()( 21  rrrr 
Hxcf

)()(),()()(
2

1 2121
33

2
21

2
21 rrrrrr 


  




,frdrd Hxc

)()(),()()(2 2121
33

21
2
21

2
rrrrrr    ,frdrd Hxc

12122 21
2
21

2
Hxcf  TDDFT correction to

Kohn-Sham excitation
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47 The Casida formalism for excitation energies


































Y

X

10

01

Y

X

AK

KA
**

Excitation energies follow 

from eigenvalue problem

(Casida 1995):

 

         rrrr
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rr 



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
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

  







aixcaiaiia

aiiaiaaaiiaiia
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,,
1

,
*33
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,,

For real orbitals and frequency-independent xc kernel, can rewrite this as

 


 


 
ai

aiaiaiiaiaaiaiaaii ZZK 2
,

2 2

48 The Casida formalism for excitation energies

The Casida formalism gives, in principle, the exact excitation energies

and oscillator strengths. In practice, three approximations are required:

► KS ground state with approximate xc potential

► The inifinite-dimensional matrix needs to be truncated

► Approximate xc kernel (usually adiabatic):

 
)(

)(
,

r

r
rr




n

V
f

stat

xcadia

xc 


advantage: can use any xc functional from static DFT (“plug and play”)

disadvantage: no frequency dependence, no memory 

→ missing physics (see later)
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49

Exp. SPASMA

LDA + ALDA lowest excitations

Vasiliev, Ogut, Chelikowsky, PRL 82, 1919 (1999)

full matrix

How it works: atomic excitation energies

50

Study of various functionals 

over a set of ~ 500 organic 

compounds, 700 excited 

singlet states

Mean Absolute Error (eV)

A comparison of xc functionals

D. Jacquemin et al.,

J. Chem. Theor. Comput.

5, 2420 (2009)
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51

Energies typically accurate within 0.3-0.4 eV

Bonds to within about 1%

Dipoles good to about 5%

Vibrational frequencies good to 5%

Cost scales as N2-N3, vs N5 for wavefunction methods of 

comparable accuracy (eg CCSD, CASSCF)

Available now in many electronic structure codes

Excited states with TDDFT: general trends

challenges/open issues:

● complex excitations (multiple, charge-transfer)

● optical response/excitons in bulk insulators

52

  ),(),,(
||

1
,,),( 1

33
1  rrr

rr
rrr 







 


  nfrdrdn xcs

Single versus double excitations

Has poles at KS single 

excitations. The exact 

response function has

more poles (single, double

and multiple excitations).

Gives dynamical corrections to

the KS excitation spectrum. 

Shifts the single KS poles to the

correct positions, and creates

new poles at double and

multiple excitations.

► Adiabatic approximation (fxc does not depend on ω): only

single excitations!

► ω-dependence of fxc will generate additional solutions of the

Casida equations, which corresponds to double/multiple excitations.

► Unfortunately, nonadiabatic approximations are not easy to find.
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53 Charge-transfer excitations

Zincbacteriochlorin-

Bacteriochlorin complex

(light-harvesting in plants

and purple bacteria)

TDDFT error: 1.4 eV

TDDFT predicts CT states energetically well below local fluorescing 

states. Predicts CT quenching of the fluorescence. Not observed!
Dreuw and Head-Gordon, JACS (2004)

54 Charge-transfer excitations: large separation

R
AI ad

exact

ct

1


(ionization potential of donor minus

electron affinity of acceptor plus 

Coulomb energy of the charged fragments)

What do we get in TDDFT? Let’s try the single-pole approximation:

)()(),,()()(2 32
rrrrrr 



  d

H

a

LHxc

d

H

a

L

d

H

a

L

SPA

ct

frdrd 



The highest occupied orbital of the donor and the lowest unoccupied

orbital of the acceptor have exponentially vanishing overlap!

d

H

a

L

TDDFT

ct  
For all (semi)local xc approximations,

TDDFT significantly underestimates

charge-transfer energies!
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55 Charge-transfer excitations: exchange

R

rdrd

HFd

H

HFa

L

d

H

d

H

a

L

a

LHFd

H

HFa

L

TDHF

ct

1

||

)()()()(
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32,,






  




rr

rrrr

and use Koopmans theorem!

TDHF reproduces charge-transfer energies correctly. Therefore,

hybrid functionals (such as B3LYP) will give some improvement

over LDA and GGA. 

Even better are the so-called range-separated hybrids:
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56

 
   

 
















 

j j
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iEE
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
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
..

ˆˆ
lim,,

0

00

0

rr
rr

j
The full many-body response function has poles at the exact excitation

energies:

x xxx x

Im

Re

Im

Re

finite extended

► Discrete single-particle excitations merge into a continuum

(branch cut in frequency plane)

► New types of collective excitations appear off the real axis

(finite lifetimes)

Excitations in finite and extended systems
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57 Metals: particle-hole continuum and plasmons

In ideal metals, all single-particle states inside the Fermi sphere

are filled. A particle-hole excitation connects an occupied single-

particle state inside the sphere with an empty state outside.

From linear response theory, one can show that the plasmon dispersion

goes as
...)( 2  qq pl 

m

ne
pl

24 

pl

58 Plasmon excitations in bulk metals

Quong and Eguiluz,

PRL 70, 3955 (1993)

● In general, excitations in (simple) metals very well described by ALDA. 

●Time-dependent Hartree (=RPA) already gives the dominant contribution

● fxc typically gives some (minor) corrections (damping!)

●This is also the case for 2DEGs in doped semiconductor heterostructures

Al

Gurtubay et al., PRB 72, 125114 (2005)

Sc
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59 Plasmon excitations in metal clusters

Yabana and Bertsch (1996)                         Calvayrac et al. (2000)

Surface plasmons (“Mie plasmon”) in metal clusters are very well reproduced

within ALDA. 

Plasmonics: mainly using classical electrodynamics, not quantum response

60 Insulators: three different gaps

Band gap: xcKSgg EE  ,

Optical gap:
exciton

g

optical

g EEE 0

The Kohn-Sham gap 

approximates the optical

gap (neutral excitation),

not the band gap!
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61 Elementary view of Excitons

Mott-Wannier exciton:

weakly bound, delocalized

over many lattice constants

An exciton is a collective 

interband excitation:

single-particle excitations are

coupled by Coulomb interaction 

Real space: Reciprocal space:

62 Excitonic features in the absorption spectrum

● Sharp peaks below the onset of the single-particle optical gap

● Redistribution of oscillator strength: enhanced absorption

close to the onset of the continuum
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63

G. Onida, L. Reining, A. Rubio, RMP 74, 601 (2002)

S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)

RPA and ALDA both bad!

►absorption edge red shifted

(electron self-interaction)

►first excitonic peak missing

(electron-hole interaction)

Silicon

Why does ALDA fail?

Optical absorption of insulators

64 Linear response in periodic systems
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Optical properties are determined by the macroscopic dielectric function:

2~)( nmac  (Complex index of refraction)

For cubic symmetry, 

one can prove that

1

0
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
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 
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k
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),()(),(1  kkk GGGGGGG 


  VTherefore, one needs the

inverse dielectric matrix:



8/29/2015

33

65 The xc kernel for periodic systems

rGq
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




  i

FBZ

Hxc

i

Hxc efef 

TDDFT requires the following matrix elements as input:
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Most important: long-range                  limit of “head” :)0(  GG)0( q

qkk
0q

qr  a

i

i aei
20,

1
),(

q
f exact

xc  q00 q 

but .const),(
0,  q00 q ALDA

xcf Therefore, no excitons

in ALDA!

66

● LRC (long-range corrected) kernel

(with fitting parameter α):
  GGGG

Gq
q  

 
2,
||

LRC

xcf

Long-range xc kernels for solids

● “bootstrap” kernel (S. Sharma et al., PRL 107, 186401 (2011)

)0,(

)0,(
),(

00

1

,
q

q
q GG

GG

s

boot

xcf





 

● Functionals from many-body theory: (requires matrix inversion)

exact exchange
excitonic xc kernel from 

Bethe-Salpeter equation
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67 Excitons with TDDFT: “bootstrap” xc kernel

S. Sharma et al., PRL 107, 186401 (2011)

68 Excitons with TDDFT: which xc functionals to use?

► Local functionals (ALDA/GGA) don’t work

► Nanoquanta kernel: accurate but expensive

Reining, Olevano, Rubio, Onida, PRL 88, 066404 (2002)

► Long-range corrected (LRC) kernel: simple but ad-hoc

Botti et al., PRB 69, 155112 (2004)

► Bootstrap kernel: mixed success 

Sharma, Dewhurst, Sanna and Gross, PRL 107, 186401 (2011)

► Jellium with a gap: mixed success

Trevisanutto et al., PRB 87, 205143 (2013)

► Hybrid functionals, meta-GGAs: few results for optical properties

B3LYP: Bernasconi et al. PRB 83, 195325 (2011)

HSE: Paier, Marsman and Kresse, PRB 78, 121201 (2008)

VS98/TPSS: Nazarov and Vignale, PRL 107, 216401 (2011) 

Range separated: Refaely-Abramson et al., arXiv:1505.01602v1   
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69 Optical spectra with range-separated hybrid

pentacene

S. Refaely-Abramson, M. Jain,

S. Sharifzadeh, J.B. Neaton,

and L. Kronik, arXiv1505.01602v1

(2015)

70 Direct calculation of exciton binding energies
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screened Coulomb interaction
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71 Screened exact exchange (SXX)

BSE: 2
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full dielectric

matrix
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 

2||

1
4)(g unscreened

SXX: GGGG
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 

2||
4)(g

)0,0(1
00
 

simple screening

parameter

Calculated with RPA

Z.-h. Yang, F. Sottile, and C.A. Ullrich, PRB 92, 035202 (2015)

72 Exciton binding energies
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73 Absorption spectrum of LiF

►good oscillator strength

►second excitonic peak

Z.-h. Yang, Y. Li,  and C.A. Ullrich, JCP 137, 014513 (2012) 

74

► TDDFT works well for metallic and quasi-metallic systems already

at the level of the ALDA. Successful applications for plasmon modes

in bulk metals and low-dimensional semiconductor heterostructures.

► TDDFT for insulators is a much more complicated story:

● ALDA works well for EELS (electron energy loss spectra), but

not for optical absorption spectra

● Excitonic binding due to attractive electron-hole interactions,

which require long-range contribution to fxc

● At present, the full (but expensive) Bethe-Salpeter equation gives 

most accurate optical spectra in inorganic and organic materials

(extended or nanoscale), but TDDFT is catching up.

● Several long-range XC kernels have become available.

Hybrid functionals seem most promising for excitons.

C.A. Ullrich and Z.-h. Yang, Topics in Current Chem. 368 (2015)

Extended systems - summary
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75 The future of TDDFT: biological applications

N. Spallanzani, C. A. Rozzi, D. Varsano, T. Baruah, M. R. Pederson, F. Manghi, and 

A. Rubio, J. Phys. Chem. (2009)

(TD)DFT can handle big systems (103—106 atoms). 

Many applications to large organic systems (DNA, light-harvesting

complexes, organic solar cells) will become possible.

Charge-transfer excitations and van der Waals interactions can

be treated from first principles.

76 The future of TDDFT: materials science

K. Yabana, S. Sugiyama, Y. Shinohara, T. Otobe, and G.F. Bertsch, PRB 85, 045134 (2012)

● Combined solution of TDKS and Maxwell’s equations

● Strong fields acting on crystalline solids: dielectric breakdown,

coherent phonons, hot carrier generation

● Coupling of electron and nuclear dynamics allows description

of relaxation and dissipation (TDDFT + Molecular Dynamics)

Si

Vacuum        Si
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77 The future of TDDFT: open formal problems

► Development of nonadabatic xc functionals

(needed for double excitations, dissipation, etc.)

► TDDFT for open systems: nanoscale transport in

dissipative environments. Some theory exists, but

applications so far restricted to simple model systems

► Strongly correlated systems. Mott-Hubbard insulators,

Kondo effect, Coulomb blockade. Requires subtle xc

effects (discontinuity upon change of particle number)

► Formal extensions: finite temperature, relativistic effects…

TDDFT will remain an exciting field of research 

for many years to come! 

78 Literature

Time-dependent Density-Functional

Theory: Concepts and Applications

(Oxford University Press 2012)

“A brief compendium of TDDFT” 

Carsten A. Ullrich and Zeng-hui Yang

arXiv:1305.1388

(Brazilian Journal of Physics 44, 154 (2014)

C.A. Ullrich homepage:

http://web.missouri.edu/~ullrichc

ullrichc@missouri.edu


