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Time-dependent (current) density functional theory for many-electron systems strongly coupled to

quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave

function is a unique functional of the electronic (current) density and the expectation values of photonic

coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables

by solving self-consistent equations for noninteracting particles. We suggest possible approximations for

the exchange-correlation potentials and discuss implications of this approach for the theory of open

quantum systems. In particular we show that it naturally leads to time-dependent density functional theory

for systems coupled to the Caldeira-Leggett bath.
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Time-dependent density functional theory (TDDFT) is a
theoretical framework which, similarly to the ground state
DFT [1], relies on the one-to-one mapping of the density of
particles to the external potential [2]. The unique density-
potential correspondence implies a possibility to calculate
the exact time-dependent density by solving Hartree-like
equations for fictitious noninteracting Kohn-Sham (KS)
particles. This tremendous simplification of the problem
makes TDDFT one of the most popular ab initio
approaches for describing quantum dynamics of realistic
many-body systems [3,4].

Standard TDDFT is formulated for systems of quantum
particles driven by classical electromagnetic fields [2–4],
which covers most traditional problems in physics and
chemistry. However, nowadays the experimental situation
is rapidly changing. Progress in the fields of cavity and
circuit quantum electrodynamics (QED) opens a possibil-
ity to study many-electron systems strongly interacting
with quantum light. Notable examples are atoms in optical
cavities in cavity-QED [5–7], or mesoscopic systems such
as superconducting qubits [8–10] and quantum dots [8–10]
in circuit-QED. Recently a strong coupling of molecular
states to microcavity photons and the modification of
chemical landscapes by cavity vacuum fields have been
reported [11–13]. Obviously, the classical treatment of
external fields prevents application of TDDFT to this
new interesting class of problems. On the other hand, a
recent relativistic formulation of the theory [14] hints at the
existence of the electron-photon TDDFT.

This Letter presents TDDFT for systems of electrons
strongly coupled to (or driven by) a quantized electromag-
netic field. We prove the generalized mapping theorems for
TDDFT and for time-dependent current density functional
theory (TDCDFT). In both cases we analyze the structure
and properties of the exchange correlation (xc) potentials
and discuss possible approximation strategies. Finally we

make a connection of the present theory to TDDFT for
open quantum systems [15–19].
Consider a system of N electrons, e.g., an atom or a

molecule, placed inside a cavity hosting M photon modes.
In the Schrödinger picture the configuration of the system
is specified by the positions fxjgNj¼1 of the electrons and the

set fq�gM�¼1 of photonic coordinates. The full system is
described by the wave function �ðfxjg; fq�g; tÞ. Assuming

as usual [20] that the wavelength of relevant photon modes
is much larger than the size of the electronic system, we
adopt the dipole approximation for the electron-photon
coupling. The Hamiltonian of the system takes the follow-
ing form:

Ĥ ¼ XN
j¼1
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where Wxi�xj
is the electron-electron interaction, !� are

the frequencies of the photon modes, and �� describes
coupling to the � mode. The electron and photon subsys-
tems can be driven externally by the classical vector
potential Aextðx; tÞ and the external ‘‘currents’’ J�extðtÞ.
The vector potential describes (in a temporal gauge) forces
from the ions in atoms and molecules and all other possible
classical fields. The currents J�extðtÞ allow for an external
excitation of the cavity modes. The time evolution from a
given initial state �0ðfxjg; fq�gÞ is governed by the

Schrödinger equation

i@t�ðfxjg; fq�g; tÞ ¼ Ĥ�ðfxjg; fq�g; tÞ: (2)

Solution of this equation gives a complete description of
the system for a fixed configuration of the external fields.
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All DFT-like approaches assume that the state of the
system is also uniquely determined by a small set of basic
observables, such as the density in TDDFT, the current in
TDCDFT, and possibly something else in other general-
izations of the theory. Below we construct two general-
izations of TDDFT for electron-photon systems described
by the Hamiltonian of Eq. (1).

Let us start with a technically simpler current-based
theory. Consider the electronic current jðx; tÞ and expec-
tation values Q�ðtÞ of photon coordinates as the basic
variables. These variables are defined as follows:

Q� ¼ h�jq�j�i; (3)

j ¼ h�jĵpðxÞj�i � n

m
Aext �

X
�

��

m
h�jq�n̂ðxÞj�i; (4)

where nðx; tÞ ¼ h�jn̂ðxÞj�i is the electronic density, and

n̂ðxÞ¼P
j�ðx�xjÞ and ĵpðxÞ¼ð�i=2mÞPjfrj;�ðx�xjÞg

are the density and paramagnetic current operators.
Equations of motion for Q� follow Eqs. (2) and (3),

€Q� þ!2
�Q� ¼ ��JðtÞ þ J�extðtÞ; (5)

where JðtÞ ¼ R
jðx; tÞdx is the space-averaged electronic

current. Equation (5) is simply the Maxwell equation for
the cavity vector potential projected on the � mode.

Equations (1)–(4) determine the wave function �ðtÞ,
the basic variables j and Q� as functionals of the initial
state�0, and the external fieldsAext and J

�
ext. This defines a

unique map f�0;Aext;J
�
extg� f�;j;Q�g. TDCDFTassumes

the existence of a unique ‘‘inverse map’’ f�0; j; Q�g �
f�;Aext; J

�
extg. That is, given the initial state and the basic

observables one can uniquely recover the full wave func-
tion and the external fields that generate the prescribed
dynamics of the basic variables.

To show the uniqueness of the inverse map we follow the
nonlinear Schrödinger equation (NLSE) approach [21,22].
Assume that jðx; tÞ and Q�ðtÞ are given, and express the
external fields from Eqs. (4) and (5) as follows,

Aext ¼ m

n
h�jĵpðxÞ � jj�i �X

�

��

n
h�jq�n̂ðxÞj�i; (6)

J�ext ¼ €Q� þ!2
�Q� � ��J: (7)

This defines the external fields as explicit functionals of the
observables jðx; tÞ and Q�ðtÞ, and the instantaneous state
�ðtÞ. Substitution of Eqs. (6) and (7) into the Hamiltonian
(1) turns Eq. (2) into the many-body NLSE

i@t�ðtÞ ¼ Ĥ½j; Q�;���ðtÞ; (8)

where Ĥ½j; Q�;�� is an instantaneous functional of �ðtÞ,
which depends parametrically on jðx; tÞ and Q�ðtÞ. The
uniqueness of a solution to Eq. (8) can be proved easily
under the usual in TD(C)DFT assumption of t-analyticity
[2,23,24]. Assuming that jðx; tÞ and Q�ðtÞ are analytic

functions in time, we represent them and unknown �ðtÞ,
by the Taylor series

jðtÞ¼X1
k¼0

jðkÞtk; Q�ðtÞ¼
X1
k¼0

QðkÞ
� tk; �ðtÞ¼X1

k¼0

�ðkÞtk:

After inserting these series into Eq. (8) one observes that

all coefficients �ðkÞ with k > 0 can be expressed recur-

sively in terms of jðkÞ, QðkÞ
� , and �ð0Þ � �0. The simple

reason for this is that the right hand side in Eq. (8) is an
instantaneous functional of �ðtÞ, while the left hand side
�@t�ðtÞ. As the recursion produces the unique Taylor
series for �ðtÞ, the many-body wave function is a unique
functional of the initial state and the basic variables,
�½�0; j; Q��. By substituting this wave function into
Eq. (6) we find the functional Aext½�0; j; Q��, which com-
pletes the demonstration of the TDCDFT mapping.
The KS system for this theory is constructed as follows.

Consider a system of N noninteracting particles coupled to
the photon modes at the mean field level. This system is
described by a set of N one-particle KS orbitals ’jðx; tÞ
which satisfy the following equations

i@t’j ¼ 1

2m

�
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X
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�
2
’j; (9)

where Q�ðtÞ is the solution to Eq. (5) with JðtÞ being
replaced by the space-average of the KS current density,

jS ¼ 1

m

X
j
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�
: (10)

Using the above NLSE argumentation (or the standard
TDCDFT mapping [24]), we find that ’jðx; tÞ are unique

functionals of the KS current jSðx; tÞ and the KS initial
state�S

0 . A comparison of Eqs. (4) and (10) shows that the

KS current reproduces the physical current jS ¼ j if AS in
Eq. (9) is defined as AS ¼ Aext þAHxc, where

AHxc ¼ 1

n

�X
j

Imð’�
jr’jÞ �mh�jĵpðxÞj�i

þX
�

��h�j�q��n̂ðxÞj�i
�
: (11)

Here �q� ¼ q� �Q�ðtÞ and �n̂ðxÞ ¼ n̂ðxÞ � nðx; tÞ are
the fluctuation operators for the photonic coordinates and
the electronic density, respectively. By construction, for
given initial states�0 and�

S
0 , the potentialAHxc is a gauge

invariant universal functional of j and Q�.
Therefore the current and the photonic coordinates can

be calculated from a system of Eqs. (5) and (9) describing
noninteracting fermions driven by a self-consistent field
and coupled to a set of classical harmonic oscillators.
There is a deep reason for explicitly separating the
‘‘mean-field’’ part Amf ¼ P

���Q� of the self-consistent
potential in Eq. (9). This part accounts for the net force
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exerted on electrons from the photons. The remaining
Hxc-part, AHxc, does not produce a global force,Z

½j� ðr�AHxcÞ � n@tAHxc�dx ¼ 0; (12)

which can be checked directly using Eqs. (2), (9), and (11).
Apparently both Hartree and xc contributions to AHxc ¼
AH þAxc satisfy the identity of Eq. (12) independently.
Equation (12) is a generalization of the zero-force theorem
[25] for the considered electron-photon system. In this
regard Axc is similar to the xc potential in the usual
TDCDFT for closed purely electronic systems.

If the electrons are driven by a scalar external potential
Vextðx; tÞ, one can choose the density nðx; tÞ as the basic
variable for electronic degrees of freedom. Let us identify
the photonic basic observables for the electron-photon
TDDFT. First, we transform of the photon field in Eq. (1)
from the velocity to the length gauge [20]. Then we per-
form the canonical transformation of photon variables,
i@q� � !�p�, q� � �i!�1

� @p�
, which ‘‘exchanges’’ the

photon coordinates and momenta while preserving their
commutation relations. The system is now described by the
wave function�ðfxjg; fp�g; tÞ that is the Fourier transform
of �ðfxjg; fq�g; tÞ. The final transformed Hamiltonian

takes the form

Ĥ ¼ X
j

�
�r2
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�
;

(13)

where X̂ ¼ P
N
j¼1 xj. The structure of Eq. (13) suggests

that the proper basic variables are the density nðx; tÞ and
the expectation values P�ðtÞ of the photon momenta,

nðx; tÞ ¼ h�jn̂ðxÞj�i; P�ðtÞ ¼ h�jp�j�i: (14)

Equations of motion for the basic variables read

€P� þ!2
�P� �!���R ¼ � _J�ext=!�; (15)

m €nþrFstr þ
X
�

rf� ¼ rðnrVextÞ; (16)

where RðtÞ ¼ h�jX̂j�i ¼ R
xnðx; tÞdx is the expecta-

tion value of the center of mass coordinate, and

Fstr¼ imh�j½T̂þŴ; ĵp�j�i¼�r�
$
is the usual electronic

stress force which is equal to the divergence of the elec-
tronic stress tensor. The force f�ðx; tÞ exerted from the
�-photon mode on electrons is given by the expression

f�ðx; tÞ ¼ ��h�jð!�p� � ��X̂Þn̂ðxÞj�i: (17)

Now we are ready to prove the uniqueness of the map
f�0; n; P�g � f�; Vext; J

�
extg from the initial state and the

observables to the time-dependent wave function and the
external fields. The corresponding many-body NLSE is
constructed using Eqs. (15) and (16).
By solving Eqs. (15) and (16) for _J�ext and Vext, we get

the external fields as functionals of the basic variables and
the instantaneous wave function �ðtÞ, Vext½�; n�, and
_J�ext½n; P��. Inserting these functionals into Eq. (13), we

obtain a �-dependent Hamiltonian Ĥ½n; P�;�� of the
many-body NLSE that determines the wave function for
a given initial state �0, the density nðtÞ, and photon mo-
menta P�ðtÞ. The uniqueness of a solution to this NLSE is
demonstrated in exactly the same way as for the above
TDCDFT case, provided the standard t-analyticity condi-
tions are fulfilled. Thus we arrive at the generalized
TDDFT mapping theorem: the many-body wave function
and the external fields are the unique functionals of the
basic variables, n and P�, and the initial state.
It is worth noting that the level of mathematical rigor

and the conditions of the present mapping theorems are the
same as for the standard purely electronic theory [26].
The KS system can be again constructed explicitly.

Consider a system of noninteracting particles described
by N KS orbitals, which satisfy the equations

i@t�j ¼ �r2

2m
�j þ

�
VS þ

X
�

ð!�P� � ��RÞ��x

�
�j;

(18)

where the second term in the square brackets is the mean-
field analog of the electron-photon interaction term in
Eq. (13). The force balance equation for this system takes
the form

m €nþrFS
strþrX

�

��ð!�P����RÞn¼rðnrVSÞ; (19)

where FS
str ¼ imh�Sj½T̂; ĵp�j�Si ¼ �r�

$
S is the kinetic

stress force of noninteracting fermions [�SðtÞ is the KS
Slater determinant]. By applying the NLSE arguments to
Eqs. (18) and (19), we conclude that ’j and VS are unique

functionals of nðx; tÞ, P�ðtÞ, and the KS initial state �S
0 .

Then, from Eqs. (16) and (19) one finds that the KS density
reproduces the exact density if VS is of the form

VS ¼ Vext þ Vel
Hxc þ

X
�

V�
xc; (20)

where the universal functionals Vel
Hxc½n; P� and V�

xc½n; P�
are defined via the following Sturm-Liouville problems:

rðnrVel
HxcÞ ¼ rðFS

str � FstrÞ ¼ rðr�
$

HxcÞ; (21)

rðnrV�
xcÞ ¼ r��h�jð���X̂�!��p�Þ�n̂j�i; (22)

with �p� ¼ p� � P�ðtÞ and �X̂ ¼ X̂�RðtÞ being the
fluctuation operators for the photon momenta and the
center of mass coordinate of the electrons.
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Interestingly, in TDDFT the total xc potential is natu-
rally separated into the usual electronic stress contribution
and the contributions assigned to each photon mode. It is
obvious from Eqs. (21) and (22) that each contribution to
the total xc potential satisfies the zero-force theorem,R
nrVel

Hxcdx ¼ R
nrV�

xcdx ¼ 0. The net photon force

exerted on electrons is fully captured by the mean field
electron-photon potential in Eq. (18). The zero force theo-
rem is a consequence of the harmonic potential theorem
(HPT) [25,31], which also holds true here as photons form
a set of harmonic oscillators coupled bilinearly to the
electronic center of mass.

In practice any DFT-type approach requires approxima-
tions for xc potentials. In the present generalization of the
theory, we succeeded to define the xc potential in such a
way that it has the same general properties and obeys the
same set of constraints as the xc potential in the usual
purely electronic TDDFT. This suggests the following
natural strategies for constructing approximations:
(i) The first possibility is a velocity gradient expansion.
At zero level we set V�

xc ¼ 0 and take Vel
xc ¼ VALDA

xc , the xc
potential in the standard adiabatic local density approxi-
mation. This seemingly naive approximation exactly
reproduces the correct HPT-type dynamics as for the rigid
motion with a uniform velocity v ¼ j=n; the effect of
photons on the density dynamics is exhausted by the
mean-field contribution. The zero level approximation
can be viewed as a generalization of adiabatic local density
approximation. The dynamical corrections should be pro-
portional to velocity gradients. It should be possible to
derive them perturbatively in the TDCDFT scheme along
the lines of the Vignale-Kohn approximation [32,33].
(ii) Probably a more promising strategy is to make a
connection of the effective KS potential to the many-
body theory [34]. Beyond the mean-field level the
electron-photon coupling generates a retarded photon-
mediated interaction between the electrons. The corre-
sponding photon propagators will enter the diagrams for
the electronic self-energy as additional interaction lines.
The new contribution to the self-energy can then be con-
nected to the xc potential via the Sham-Schlütter equation
[35,36]. In principle the corresponding xc potential can be
constructed perturbatively to any desired order in the
coupling constant [37]. However, already the simplest
approximation, generated by the exchangelike diagram,
is expected to capture the important physics. Formally
this approximation for V�

xc is an analog of the x-only
optimized effective potential [36,38]. Physically it should
be responsible for the Lamb shift effects and for the
spontaneous photon emission in nonequilibrium situations.

Exploring the practical performance of these approxi-
mations is an interesting direction for future research.

If the functionals VHxc½n; P�� and V�
xc½n; P�� are known,

the basic variables, nðx; tÞ and P�ðtÞ, can be calculated by
solving Eqs. (15) and (18). In general the KS Eq. (18)

should be solved numerically, while Eq. (15) always
admits an analytic solution. For example, for the equilib-
rium initial state and J�ext ¼ 0 this solution reads

P�ðtÞ ¼
Z t

0
sin½!�ðt� t0Þ���Rðt0Þdt0: (23)

By substituting Eq. (23) into Eq. (18) we eliminate the
photon variables and get the KS equation involving only
the electronic density. Thus we obtain TDDFT for an open
quantum system—now the KS equation describes in a
closed form only the electronic part of the full electron-
photon system.
Formally Eq. (13) is a version of the Caldeira-Leggett

model [39,40]. Therefore, as a byproduct we obtained
TDDFT for open systems coupled to the Caldeira-Leggett
bath of harmonic oscillators. Let us assume Ohmic spectral
density of the bath, �

P
��

�
���

��ð!�!�Þ ¼ 2����,
where � is the friction constant. In this case the self-
consistent potential in Eq. (18) reduces to the form Veff ¼
VHxc þ �N _Rx. The last, mean field term is exactly the
potential in the phenomenological dissipative NLSE pro-
posed by Albrecht [41,42]. Hence already at zero level we
recover one of the heuristic theories of quantum dissipation.
Deficiencies of the Albrecht equation should be corrected
by going beyond the zero level approximation.
Currently there are several formulations of TDDFT for

open systems, based on the master equation for the density
matrix [15–17], or on the stochastic Schrödinger equation
[18,19]. At the level of the final KS equations our theory is
similar to the formulation of Refs. [16,17] which also allows
for the unitary propagation of KS orbitals. The conceptual
difference is that in the present case both the TDDFT map-
ping and the approximation strategies are universally valid
for the cavity situation with a few discrete photon modes and
for the bath with a continuous spectral density. The bath in
traced out at the very last step after setting up the TDDFT
framework together with approximations.
In conclusion, TD(C)DFT for systems strongly coupled

to the cavity photon fields is proposed. We proved the
corresponding generalizations of the mapping theorems,
established the existence of the KS system, and suggested a
few technically feasible approximation strategies. In the
limit of dense spectrum of photon modes this approach
naturally leads to TD(C)DFT for open quantum systems.
This work is a step towards an ab initio theory of various
cavity or circuit QED experiments and practical TDDFT
for dissipative systems.
This work was supported by the Spanish MEC

(FIS2010-21282-C02-01).
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