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We present a self-interaction-free time-dependent density-functional theory ~TDDFT! for nonperturbative

treatment of multiphoton processes of many-electron atomic systems in intense laser fields. The theory is based

on the extension of the time-dependent Kohn-Sham formalism. The time-dependent exchange-correlation

potential with proper short- and long-range behavior is constructed by means of the time-dependent optimized

effective potential ~TDOEP! method and the incorporation of an explicit self-interaction correction ~SIC! term.

The resulting TDOEP-SIC equations are structurally similar to the time-dependent Hartree-Fock equations, but

include the many-body effects through an orbital-independent single-particle local time-dependent exchange-

correlation potential. We also introduce a generalized pseudospectral time-propagation method, allowing

optimal spatial grid discretization, for accurate and efficient numerical solution of the TDOEP-SIC equations.

The theory is applied to the study of the role of dynamical electron correlation on the multiple high-order

harmonic generation ~HHG! processes of He atoms in intense laser fields. We also perform a detailed study of

the mechanisms responsible for the production of the higher harmonics in He atoms observed in a recent

experiment that cannot be explained by the single-active-electron model. We found that both the dynamical

electron correlation and the He 1 ion are important to the generation of the observed higher harmonics. The

present TDDFT is thus capable of providing a unified and self-consistent dynamical picture of the HHG

processes. @S1050-2947~98!04601-0#

PACS number~s!: 42.50.Hz, 32.80.Wr, 32.80.Qk, 71.15.Mb

I. INTRODUCTION

The study of the nonlinear response of atoms and mol-

ecules in intense laser fields is a subject of much current

interest in atomic, molecular, and optical physics. To de-

scribe such strong-field multiphoton processes using an ab

initio wave-function approach, it is necessary to solve the

time-dependent Schrödinger equation of many-electron sys-

tems, which is far beyond the capability of current computa-

tional technology. Even for the two-electron systems in

strong fields, time-dependent ab initio wave-function studies

are only at the beginning stage @1# and much remains to be

explored. For multielectron systems ~mainly rare-gas atoms!,
a time-dependent method being successfully used is the so-

called single-active-electron ~SAE! approximation with a

frozen core @2,3#, involving the numerical solution of the

single-electron time-dependent Schrödinger equation. The

SAE method has been shown to be valuable in providing
insights on atomic multiphoton dynamics such as multiple
high-order harmonic generation ~HHG! @2,3#. Within the
SAE model, however, the electron correlation, the excited-
state resonances, and the core excitation cannot be explicitly
treated. It is desirable to explore more complete formalisms
for detailed treatment of strong-field processes, taking into
account both the dynamical electron correlation and the
structure of the excited states and at the same time allowing
for the core excitation of many-electron systems.

In this paper we address such a nonperturbative formalism
based on the extension of the time-dependent density-
functional theory ~TDDFT!. The TDDFT is a nontrivial ex-
tension of the steady-state DFT of Hohenberg, Kohn, and
Sham @4,5# to the time domain @6–9#. The central result of
the TDDFT is a set of time-dependent Kohn-Sham equations
that are structurally similar to the time-dependent Hartree-
Fock equations but include in principle all the many-body
effects through a local time-dependent exchange-correlation
~XC! potential. With the exception of the recent pioneering
work of Ullrich, Grossmann, and Gross @9#, most applica-
tions of the TDDFT fall into the regime of linear or nonlinear
response in weak fields for which the perturbation theory is
applicable. Recently, Telnov and Chu @10# have presented an
alternative nonperturbative formulation of TDDFT based on
the extension of the generalized Floquet formalism @11#, al-
lowing exact transformation of the time-dependent Kohn-
Sham equations into an equivalent time-independent Floquet
matrix eigenvalue problem. Such a TDDFT-Floquet formal-
ism provides a time-independent approach for nonperturba-
tive treatment of multiphoton processes of many-electron
systems in the presence of intense periodic or multicolor la-
ser fields. In this paper, we focus on the time-dependent ap-
proach for the numerical solution of time-dependent Kohn-
Sham-like equations in arbitrarily time-dependent fields.

In the context of DFT, it is well known @12# that the XC
energy functionals commonly used, such as the local spin-

density approximation ~LSDA! @13# or the more refined gen-

eralized gradient-correction approximation ~GGA! @14–16#,
suffer a severe deficiency, namely, the XC potential decays
exponentially and does not possess the correct long-range
(21/r) behavior. As a result, while the total energies of the
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ground-state atoms predicted by the GGA energy functionals
are rather accurate, the ionization potentials obtained from
the highest occupied orbital energies are not satisfactory
@12,17#. Such a problem can be attributed to the existence of
self-interaction energy in the conventional XC energy func-
tionals used in the DFT formalisms. For quantitative treat-
ment of ionization and multiphoton ionization processes, it is
necessary to extend the DFT to properly account for the
long-range XC potential such that both the ionization poten-
tial and the excited-state properties can be described more
accurately. In a recent paper we addressed such a problem
and presented an extension of the steady-state DFT for accu-
rate treatment of the ionization potentials and the photoab-
sorption spectrum of autoionizing resonances @18#. The re-
sults are in good agreement with available experimental data
as well as configuration-interaction calculations @18#. The
method is based on the extension of the recent Krieger-Li-
Iafrate ~KLI! @19# semianalytic treatment of the optimized
effective potential formalism @20,21# along with the use of an
explicit self-interaction-correction ~SIC! term @22#. A similar
KLI-SIC procedure has been recently proposed indepen-
dently by Chen et al. @23#, but it has been applied to the
study of ground-state energies and ionization potentials only.
In the present paper, we extend such a KLI-SIC technique to
the time-dependent domain. We note that a related time-
dependent KLI theory has been recently proposed by Ullrich,
Grossmann, and Gross @9#. In the latter work @9#, the
Hartree-Fock ~nonlocal! exchange energy functional form
~instead of the explicit SIC form in our work! is used in the
construction of time-dependent optimized effective potential.
As shown in the recent steady-state DFT works @18,23#, the
use of the SIC form in the KLI calculations involves only
orbital-independent single-particle local potentials and is
thus computationally more efficient and yet maintains high
accuracy. The extension of such a KLI-SIC procedure to the
time domain is described in Sec. II.

The motivation of this paper is thus threefold. First, we
present a TDDFT with optimized effective potential and self-
interaction correction in Sec. II for the general nonperturba-

tive treatment of the multiphoton dynamics of many-electron
atomic systems in the presence of intense laser fields, taking
into account proper long-range behavior of the XC potential.
Second, we outline a generalized pseudospectral time-

dependent method recently introduced @24# for efficient and
accurate treatment of the time-dependent KLI-SIC equations
in Sec. III. Such a time propagation procedure has been
shown to be capable of providing significant improvement of
the quality of the wave functions over those obtained by the
conventional equal-spacing spatial discretization techniques
and thereby giving rise to more accurate HHG spectra calcu-
lated @24#. Finally, we apply the TDDFT in Sec. IV to the
nonperturbative study of HHG of He atoms in intense laser
fields. A comparison with experimental data is made and the
role of the dynamical electron correlation in the production
of higher harmonics is explored in depth.

II. TIME-DEPENDENT DFT

WITH OPTIMIZED EFFECTIVE POTENTIAL

AND SELF-INTERACTION CORRECTION

A. Time-dependent density-functional theory

We first outline below the basic equations of TDDFT
@6,8#. The central theme of the TDDFT involves a set of

time-dependent one-electron Schrödinger-like Kohn-Sham
~KS! equations for N-electron atomic systems ~in atomic
units!,

i
]

]t
c is~r,t !5Ĥ~r,t !c is~r,t !
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1
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¹2
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where ve f f ,s(r,t) is the time-dependent effective potential
depending upon the total electron density and s is the spin
index. The total number of electrons in the system is
N5(sNs , where Ns (5N

↑
or N

↓
) is the total number of

electrons for a given spin s . Within the single determinant
approximation, the total N-electron wave function can be
expressed as

C~ t !5

1

AN!
det@c1c2•••cN# ~2!

and the total electron density at time t is determined by the
single-electron orbital wave functions $c is% as

r~r,t !5(
s

(
i51

Ns

r is~r,t !5r
↑
~r,t !1r

↓
~r,t !, ~3!

where r is(r,t)5c is* (r,t)c is(r,t). The effective potential

ve f f(r,t) in Eq. ~1! can be written in the general form

ve f f ,s~r,t !5vext~r,t !1

dJ@r#

drs~r,t !
1vxc ,s~r,t !, ~4!

where J@r#5

1

2
**r(r,t)r(r8,t)/ur2r8udr dr8 is the

electron-electron Coulomb interaction energy, vext(r,t) is
the ‘‘external’’ potential due to the interaction of the electron
with the external electromagnetic field and the nucleus, and

vxc ,s(r,t) is the time-dependent exchange-correlation poten-
tial.

The set of equations ~1! is an initial-value problem. In
performing these TDDFT calculations, the crucial element is
the input of reliable time-dependent exchange-correlation
potential and the development of an efficient and accurate
numerical procedure for the time propagation of the set of
equations ~1!. In Sec. II B below we discuss a time-

dependent optimized effective potential formalism with KLI-
SIC for constructing ve f f(r,t). The time-propagation method
used in this work is described separately in Sec. III.

B. Time-dependent optimized effective potential formalism

with self-interaction correction

As is well known @12#, the effective potential ve f f in Eq.
~4! for the steady-state case, obtained by the functional de-
rivative of the commonly used explicit energy functional Exc

such as the LSDA or GGA, contains the spurious self-
interaction part and does not possess the correct long-range
Coulomb tail behavior. This imposes severe limitations on
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the applicability of DFT to excited-state and ionization prob-
lems. In the time-independent DFT, several approaches have
been suggested to remove the self-interaction problem @12#.
Perdew and Zunger @22# proposed the SIC version of a given
approximate exchange-correlation energy functional
Exc@r

↑
,r

↓
#:

Exc
SIC@r

↑
,r

↓
#5Exc@r

↑
,r

↓
#2(

s
(
i51

Ns

$J@r is#1Exc@r is,0#%,

~5!

where r is is the single-electron density of the ith KS spin
orbital. In the limit that exact Exc@r

↑
,r

↓
# is used, the SIC

term $J@r is#1Exc@r is,0#% vanishes. Thus this SIC correc-
tion term can be also considered as a measure of the devia-
tion of a given approximate Exc@r

↑
,r

↓
# from the exact result.

The use of the SIC energy functional Exc
SIC@r

↑
,r

↓
# @Eq. ~5!#,

however, leads to different potentials for different orbitals.
Such an orbital dependence of the one-electron potentials
causes the orbitals to be nonorthogonal. Additional effort
must be taken to achieve orthogonal SIC spin orbitals.

Another promising approach for improving Exc@r
↑
,r

↓
# is

provided by the so-called optimized effective potential ~OEP!
method @20,21#. In this approach, one solves a set of one-
electron equations, similar to the KS equations,

ĤOEPf is~r!5F2

1

2
¹2

1Vs
OEP~r!Gf is~r!5« isf is~r!,

i51,2, . . . ,Ns . ~6!

~To distinguish from the time-dependent wave functions

$c is%, the time-independent wave functions will be denoted

by $f is%.! The optimized effective potential Vs
OEP(r) is ob-

tained by the requirement that the spin orbitals $f is% in Eq.
~6! are those that minimize the total energy functional
E@$f i↑ ,f j↓%#:

dEOEP@$f i↑ ,f j↓%#

dVs
OEP~r!

50, ~7!

with

EOEP@$f i↑ ,f j↓%#5Ts@$f i↑ ,f j↓%#1J@$f i↑ ,f j↓%#

1Exc@$f i↑ ,f j↓%#1E vext~r!r~r!d3r,

~8!

where Ts is the kinetic-energy functional of the noninteract-
ing electrons. Equation ~8! for the energy functional
EOEP@$f i↑ ,f j↓%# has the same form as that of the
Hohenberg-Kohn energy functional since the total energy is
a functional of the density r and the density is determined by
the spin orbitals $f i↑ ,f j↓%.

While the physical idea of the OEP method is simple and
appealing, Eq. ~7! leads to an integral equation that is com-
putationally impractical to solve. Recently, Krieger, Li, and
Iafrate @19# have worked out an accurate semianalytic proce-
dure to circumvent this difficulty, reducing the determination

of Vs
OEP to the solution of simple linear equations. Ullrich,

Grossmann, and Gross @9# have further extended the OEP-

KLI procedure to the time-dependent problems. In these

steady-state @17,19# or time-dependent @9# KLI calculations,

the Hartree-Fock ~nonlocal! exchange energy functional is

used in the construction of the optimized effective potentials.

In a recent work @18#, we showed that the KLI procedure can

be further simplified considerably by the use of the SIC

form, Eq. ~5!, without the need of using the nonlocal

Hartree-Fock energy functional, in the construction of the

optimized effective potential. Such an OEP–KLI-SIC proce-

dure uses only orbital-independent single-particle local po-

tential and is thus computationally more efficient and yet

maintains high accuracy in the calculation of the ground-

state energies, ionization potentials as well as the singly ex-

cited autoionizing resonances @18#. In the following, we ex-

tend the time-independent OEP–KLI-SIC procedure @18,23#
to the time domain. The advantage of using the explicit SIC

form is particularly evident in the time-dependent problems

since the effective single-particle potential is to be calculated

for each small time step and an efficient procedure for gen-

erating the time-dependent OEP is very desirable.

First we consider the adiabatic approximation for the

construction of the time-dependent XC potential vxc ,s(r,t)

in Eq. ~4!. Within such a framework, vxc ,s(r,t) can be writ-

ten as the functional derivative of the xc energy Exc with

respect to the density:

vxc ,s~r,t !5

dExc@r
↑
,r

↓
#

drs
U

rs5rs~r,t !

. ~9!

The simplest possible form is the adiabatic local spin-density

approximation ~ALSDA!, in the x-only limit,

vx ,s~r,t !52F 6

p
rs~r,t !G1/3

. ~10!

A more refined GGA energy functional such as that of Becke

@14# and Lee, Yang, and Parr @15# can be used in Eq. ~9!. In

the adiabatic approximation, the XC potential is local in

time, i.e., no memory effect. Such an approximation is ex-

pected to be valid if the time dependence of rs is sufficiently

slow. In practice, it still gives quite good results even for the

rapid time-dependent case. Similar to the steady-state case,

however, the time-dependent XC potentials obtained by ei-

ther ALSDA or the adiabatic GGA, etc., do not have the

correct long-range Coulombic (21/r) behavior. Thus the

electrons are too weakly bound and the ionization potentials
are significantly lower than those of the corresponding real
atoms. In the following, we extend the time-independent
OEP–KLI-SIC method @18# to the time-dependent problem,
allowing the elimination of these problems.

The time-dependent Kohn-Sham-like equations with the
OEP and SIC can be expressed as

454 57XIAO-MIN TONG AND SHIH-I CHU



i
]

]t
c is~r,t !5Ĥ~r,t !c is~r,t !

5F2

1

2
¹2

1VSIC ,s
OEP ~r,t !Gc is~r,t !,

i51,2, . . . ,Ns , ~11!

where VSIC ,s
OEP (r,t) is the time-dependent OEP with SIC,

which can be written ~similarly to the time-independent case!
in the general form

VSIC ,s
OEP ~r,t !5vext~r,t !1E r~r8,t !

ur2r8u
d3r81Vxc ,s

SIC ~r,t !.

~12!

We now consider two different routes for the determination

of VSIC ,s
OEP (r,t); both lead to the same final expressions. The

first route is to start from the adiabatic approximation and the

time-dependent effective potential VSIC ,s
OEP in Eq. ~11! is to be

determined in such a way that the time-dependent orbital
wave functions $c is(r,t)% are those that minimize the total
energy functional EOEP at any given time t:

dEOEP@$c is%#

dVSIC ,s
OEP U

c is5c is~r,t !,r is5r is~r,t !

50. ~13!

Here EOEP is given by an expression similar to Eq. ~8! ex-
cept that the orbital wave functions and the density are now
explicit functions of both r and t . The time-dependent OEP
with SIC can now be written as

Vxc ,s
SIC ~r,t !5(

i

r is~r,t !

rs~r,t !
$v is~r,t !1@ V̄ xc ,is

SIC ~ t !2 v̄ is~ t !#%,

~14!

v is~r,t !5

dExc
SIC@r

↑
,r

↓
#

dr is
5

dExc@r
↑
,r

↓
#

drs
2E r is~r8,t !

ur2r8u
d3r8

2

dExc@r is ,0#

dr is~r,t !
, ~15!

and

V̄ xc ,is
SIC ~ t !5^c isuVxc ,s

SIC ~r,t !uc is&, ~16!

v̄ is~ t !5^c isuv is~r,t !uc is&. ~17!

In deriving Eq. ~15!, use has been made of the explicit SIC
expression in Eq. ~5! with the density now depending on
time.

An alternative route for deriving the time-dependent opti-
mized effective potential with SIC is to implement the ex-
plicit SIC expression into the time-dependent OEP formal-
ism recently developed by Ullrich, Grossmann, and Gross
@9#. This formulation is more general and does not need to
make the adiabatic approximation, and it also allows for the
inclusion of the memory effect in principle. However, as will
be shown below, when the commonly used explicit XC en-
ergy functionals such as those of the LDA, GGA, or Hartree-

Fock approximation are used, the final expressions reduce to
those derived by the adiabatic approximation given above,
namely, Eqs. ~14!–~17!.

In the time-dependent OEP formulation, the time-
dependent OEP with SIC is to be determined in such a way
that the time-dependent orbital wave functions $c is(r,t)%
render the total actional functional A@$c is(r,t)%# stationary,
i.e.,

dA@$c is~r,t !%#

dVSIC ,s
OEP ~r,t !

50. ~18!

Following a procedure similar to the time-dependent OEP-
KLI scheme @9#, one obtains the general expression for the
time-dependent XC potential,

Vxc ,s~r,t !5(
i

r is~r,t !

rs~r,t !

1

2
$v is~r,t !1v is* ~r,t !%

1(
i

r is~r,t !

rs~r,t !
$ V̄ xc ,is2

1
2 @ v̄ is1 v̄ is* #%

1

i

4rs~r,t !(i
¹2r is~r,t !

3E
2`

t

dt8@ v̄ is~ t8!2 v̄ is* ~ t8!# , ~19!

where the last term contains the memory effect. Here

v is~r,t !5

dAxc

c is* dc is

, v is* ~r,t !5

dAxc

c isdc is*
, ~20!

and Axc is the XC action functional. In the present work, we
shall use the following SIC expression for Axc :

Axc
SIC

5E
2`

t8
dt Exc

SIC@$r is~r,t !%# , ~21!

from which we obtain

v is~r,t !5v is* ~r,t !5

dExc
SIC

dr is
. ~22!

Note that v is is now a real function of r and t . Thus the
memory term in Eq. ~19! vanishes identically. The final ex-

pression for Vxc ,s
SIC (r,t) in Eq. ~19! now reduces to the same

form of Eq. ~14!. Thus both derivations lead to the same final
results when the KLI procedure and explicit XC energy func-
tional forms are used.

Note that in Eq. ~14!, the last two terms V̄ SIC ,s
i (t) and

v̄ is(t) are constants, although the values of V̄ SIC ,s
i are un-

known. The KLI method suggests a way to calculate

V̄ SIC ,s
i (t)2 v̄ is(t) through a solution of the linear equations

(
i51

Ns

@d j i ,s2M j i ,s~ t !#@ V̄ SIC ,s
i ~ t !2 v̄ is~ t !#5 V̄ js

s ~ t !2 v̄ js~ t !,

j51,2, . . . ,Ns , ~23!
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where

M j i ,s~ t !5E r js~r,t !r is~r,t !

rs~r,t !
d3r ~24!

and

V̄ is
s ~ t !5^c isu(

j51

Ns r js~r,t !•v js~r,t !

rs~r,t !
uc is&. ~25!

We can now solve Eq. ~11! and construct the optimized ef-
fective potential through Eqs. ~12!–~17! and ~23!–~25!. We
shall call this time-dependent procedure the TD–KLI-SIC
method below.

III. GENERALIZED PSEUDOSPECTRAL

TIME-PROPAGATION METHOD

FOR NUMERICAL SOLUTION OF TIME-DEPENDENT

KOHN-SHAM-LIKE EQUATIONS

In this section we discuss the numerical procedure for the
solution of the set of time-dependent Kohn-Sham-like OEP–
KLI-SIC equations ~11!. The commonly used procedures for
the time-dependent propagation of the Schrödinger equation
employ equal-spacing spatial grid discretization @2,3,25–28#.
For processes such as high-order harmonic generation, very
accurate time-dependent wave functions are required to
achieve convergence, since the intensity of various harmonic
peaks can span a range of many orders of magnitude. High-
precision accuracy is generally more difficult to achieve by
the equal-spacing spatial-grid-discretization time-dependent
techniques. Due to the Coulomb singularity at the origin, the
equal-spacing spatial-grid methods require a large number of
grid points to achieve converged results. To achieve higher
accuracy for the time-dependent wave-function propagation,
we have recently introduced a numerical procedure @24# that
consists of the following two basic elements. ~i! A general-

ized pseudospectral technique @29,30# is used for optimal
grid discretization of the radial coordinates: denser mesh
near the origin and short distances. The number of grid
points required is generally considerably smaller than those
used by the equal-spacing discretization methods. Yet higher
accuracy in wave functions and therefore HHG spectra can
be achieved, since the physically more important short-range
regime is more accurately treated by this method @24#. The
generalized pseudospectral method @29,30# also has been re-
cently applied successfully to the time-independent non-
Hermitian Floquet studies of atomic @29,31# and molecular
@32# processes in strong fields. It was found that the method
is capable of providing high accuracy for both low-lying and
highly excited complex quasienergy resonance states. ~ii! A
split-operator technique in the energy representation is intro-
duced for efficient time propagation of the wave functions.
In this work, we extend this procedure to the numerical so-
lution of the time-dependent KLI-SIC equations. In the fol-
lowing we outline the basic procedure involved. A detailed
description of the method can be found in Ref. @24#.

Consider the solution of the time-dependent one-electron
Kohn-Sham-like equation with OEP and SIC for N-electron
systems in linearly polarized fields (Fiz),

i
]

]t
c is~r,t !5Ĥc is~r,t !5@Ĥ01V̂#c is~r,t !,

i51,2, . . . ,Ns . ~26!

Here Ĥ0 is the unperturbed Hamiltonian with an optimized

effective potential and SIC at t50, and V̂ is the electron-
field interaction and the residual time-dependent optimized
effective potential with SIC:

Ĥ0~r!52

1

2

d2

dr2
1

L 2̂

2r2
1VSIC ,s

OEP ~r,0!, ~27!

V̂~r,t !52F•rg~ t !1VSIC ,s
OEP ~r,t !2VSIC ,s

OEP ~r,0!, ~28!

where F is the electric-field amplitude and g(t) the total
time-dependent part of the laser field. For the one-color field,
g(t)5 f (t)sin(vt), where f (t) is the envelope function. We
shall extend the second-order split-operator technique in
spherical coordinates @25,26# for the time propagation of the
Kohn-Sham-like equations:

c is~r,t1Dt !.e2iĤoDt/2e2iV̂~r ,u ,t1Dt/2!Dte2iĤ0Dt/2c is~r,t !

1O~Dt3!. ~29!

Note that such an expression is different from the previous

split-operator techniques @25,26,33#, where Ĥ0 is usually

chosen to be the radial kinetic-energy operator and V̂ the
remaining Hamiltonian depending on the spatial coordinates
only. The use of the energy representation in Eq. ~29! allows
the explicit elimination of the undesirable fast-oscillating
high-energy components and speeds up considerably the
time propagation @24#.

To pursue the time propagation, we expand the single-
electron wave function c is(r,t) in Legendre polynomials
@24–26#,

c is~r i ,u j ,t !5(
l50

lmax

g l~r i!P l~cosu j!, ~30!

where the P l’s are the normalized Legendre polynomials.
g l(r ,t) can be determined accurately by the Gauss-Legendre
quadrature

g l~r i!5 (
k51

L11

wkP l~cosuk!c is~r i ,uk ,t !, ~31!

where $cosuk% are the L11 zeros of the Legendre polyno-
mial PL11(cosuk) and $wk% are the corresponding quadrature

weights. The propagation in Ĥ0 energy space can now be
expressed as

e2iĤ0Dt/2c is~r i ,u j ,t !5(
l50

lmax

@e2iH
l
0
Dt/2g l~r i ,t !#P l~cosu j!,

~32!

with
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H l
0
52

1

2

d2

dr2
1

l~ l11 !

2r2
1VSIC ,s

OEP ~r,0!.

Note that in Eq. ~32!, each partial-wave component g l is

propagated independently under individual Ĥ l
0 energy space,

leading to efficient propagation of the total wave function.
The key step in the time propagation of Eq. ~32! is to

construct the evolution operator

e2iH
l
0
Dt/2[S~ l !, ~33!

through an accurate representation of Ĥ l
0 . Here the general-

ized pseudospectral method @24,29,30# is used for an optimal
grid discretization and for accurate and efficient solution of
the eigenproblem:

Ĥ l
0~r !x l~r !5«x l~r !. ~34!

The first step is to map the semi-infinite domain @0,`# or

@0,rmax# onto the finite domain @21,1# using a nonlinear
mapping r5r(x), followed by the Legendre or Chebyshev
pseudospectral discretization @29,30,34#. This allows for
denser grids near the origin, leading to more accurate eigen-
values and eigenfunctions and the use of a considerably
smaller number of grid points than those of the equal-spacing
grid methods. A suitable algebraic mapping for atomic struc-
ture calculations is provided by the form @29,30,34#

r5r~x !5L
11x

12x1a
, ~35!

where L and a52L/rmax are mapping parameters. The in-
troduction of the nonlinear mapping, however, usually leads
to either an asymmetric or a generalized eigenvalue problem.
Such undesirable features may be removed by the use of a
symmetrization procedure recently introduced @29,30#. Thus,
by defining

f l~r !5Ar8~x !x l„r~x !…, ~36!

one finds that the transformed Hamiltonian possesses the
symmetrized form

Ĥ l
0~x !52

1

2

1

r8~x !

d2

dx2

1

r8~x !
1V l„r~x !…, ~37!

where V l5l(l11)/2r2
1VSIC ,s

OEP (r), reducing Eq. ~37! to a

symmetric eigenvalue problem. For example, in the Leg-
endre pseudospectral method, the collocation points $x i% are

the roots of the polynomials PN118 (x), where N is the total

number of grid points used in the discretization.
After the time-dependent single-electron wave functions

$c is% are obtained, the total electron density r(t) can be
determined. The induced dipole moment can now be ex-
pressed as

d~ t !5E r~r,t !z d3r5(
i s

^c is~r,t !uzuc is~r,t !& , ~38!

dA~ t !5E r~r,t !
d2z

dt2 d3r

5(
i ,s

^c is~r,t !U2 ]VSIC ,s
OEP ~r,t !

]z
1Fg~ t !U

3c is~r,t !& ~39!

in length form and acceleration form, respectively, where the
second equality in Eq. ~38! or ~39! is valid within the single
determinant approximation. The corresponding power spec-
trum can now be obtained by the Fourier transformation of
the respective time-dependent dipole moment

P~v !5U 1

t f2t i
E

t i

t f

d~ t !e2ivtU2

5ud~v !u2 ~40!

and

PA~v !5U 1

t f2t i

1

v2E
t i

t f

dA~ t !e2ivtU2

5udA~v !u2. ~41!

IV. EFFECT OF DYNAMICAL ELECTRON

CORRELATION ON MULTIPLE HIGH-ORDER

HARMONIC GENERATION OF He IN INTENSE LASER

FIELDS: A CASE STUDY

The study of multiple high-order harmonic generation in
intense laser fields is a subject of much current interest both
experimentally @35# and theoretically @3#. For the theoretical
studies of HHG processes, the most successful time-
dependent approach so far is the single-active-electron ap-
proximation with a frozen core @2,3#. In this approach, how-
ever, electron correlation and core excitation, etc., cannot be
explicitly treated. We note that in an earlier work, Kulander
@27# has used the time-dependent Hartree-Fock method to
perform a two-electron calculation of He multiphoton dy-
namics. However, only the multiphoton ionization process
has been studied in @27#. In this work, the finite-difference
algorithm with equal grid spacing is used to discretize the
cylindrical coordinates. In a recent paper, Ullrich and Gross
@28# have applied their time-dependent ~TD! OEP-KLI
method @9# to the study of the HHG of He, using the same
numerical procedure ~even grid spacing! described in @27#.
However, no comparison of the TDOEP-KLI results with
those of the SAE model is made in this latter work @28#. In
this section, we shall extend the time-dependent OEP–KLI-
SIC formalism and the generalized pseudospectral time-
propagation method for a nonperturbative study of HHG of
He atoms in intense laser fields. The results of both the SAE
approximation and the all-electron calculations will be pre-
sented and compared to examine the range of validity of the
SAE model. In the present study, the SAE calculation is
performed within the time-dependent KLI-SIC formalism
with the 1s electron being held frozen. A comparison with
relevant experimental data will be made. As will be shown
below, the all-electron time-dependent KLI-SIC formalism
allows a detailed exploration of the the effects of dynamical

electron correlation or dynamical screening on both the ion-
ization and HHG processes in a unified and self-consistent
manner.
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For the special case of He, it can be shown that the TD–
KLI-SIC equation ~14! can be formally reduced, in the
exchange-only limit, to the time-dependent Hartree-Fock
~TDHF! equation, since there are only 1s spin orbitals being
occupied initially. However, the present TD–KLI-SIC for-
malism is intended for general many-electron atoms. It is
desirable to develop a general TD–KLI-SIC code for many-
electron atoms, including He. We have thus performed both
TD–KLI-SIC and TDHF calculations for He. The results are
essentially identical even though the detailed procedures in-
volved are completely different. Such a comparison is useful
and necessary, as it provides a benchmark for calibration of
the accuracy of the general TD–KLI-SIC code for more
complex atoms.

It is instructive to first make a comparison of the present
TD–KLI-SIC procedure with the corresponding time-
dependent LSDA ~or ALSDA! method. Due to the lack of
long-range potential, the LSDA electron is too loosely bound
with an ionization potential of 0.517 a.u. This is significantly
lower than than the experimental value of 0.904 a.u. and the
SIC-LSDA value of 0.918 a.u. For the case of laser wave-
length 527 nm, while the actual He atom requires the absorp-
tion of 11 photons from the ground state to reach the con-
tinuum, the LSDA electron only requires 6 photons to be
ionized. Thus it is of interest to see the effect of the change
of the ionization potential on the HHG spectrum. Figure 1
shows the comparison of the HHG power spectra of He at-
oms obtained from the TD–KLI-SIC-LSDA ~filled circles!
and ALSDA ~open circles! calculations for the case of laser
intensity 131014 W/cm2 and wavelength 527 nm. The field
is turned on using a sin2 ramp for the first 10 optical cycles
and the field amplitude is held constant afterward. The wave
functions are propagated for 25 optical cycles and the HHG
spectra are obtained from the Fourier transformation of the
induced dipole moment ~in length form! for the last 5 optical
cycles. There are apparently significant differences between
the two results both qualitatively and quantitatively: ~i! The
HHG intensities in the plateau regime of the ALSDA calcu-
lation are about 2–3 orders of magnitude larger than those of
TD–KLI-SIC LSDA and ~ii! the HHG cutoff position from
the ALSDA occurs earlier than that of the TD–KLI-SIC
LSDA. Such differences may be attributed to the typical be-
havior of looser bound LSDA electrons versus the tighter

bound SIC-LSDA electrons, namely, an atom with smaller
ionization potential in general tends to produce a higher
HHG plateau and earlier cutoff. For quantitative prediction
of the HHG spectrum, it is thus essential to have the struc-
ture of the atoms ~in this case, the long-range interaction and
the ionization potential! correctly represented before pursu-
ing the time-dependent calculations. Because of the relative
simplicity and reasonably high accuracy, we have adopted
the LSDA energy functional in our TD–KLI-SIC calcula-
tions discussed below.

Figure 2 shows the comparison of the HHG power spectra
in length and acceleration forms for the case of a linearly
polarized field with laser wavelength 527 nm and peak in-
tensity 631014 W/cm2. The procedure for the field turning
on is the same as that for Fig. 1. The total number of Leg-
endre pseudospectral grid points used is 300 for the radial
coordinate r and a filter function @24# is used at some large
distance ~typically 50–70 a.u.! to filter out the ionizing wave
packet. Up to 30 partial waves are used, which are sufficient
to achieve the convergent results for the present case. Figure
2 shows that the HHG power spectrum in the length form
nearly coincides ~within a few percent! with that of the
acceleration-form calculation throughout the plateau regime.
Deviation occurs only well beyond the cutoff point where the
acceleration-form results are believed to be more accurate
@26,36#. The agreement of the length- and acceleration-
power spectra in the physically important regime demon-
strates that reasonably high-quality electron orbital wave
functions can be achieved by the present TD–KLI-SIC for-
malism and the time-propagation numerical algorithm. In the
following discussions, only the acceleration-form HHG
power spectra will be presented. It is known that the accel-
eration form provides the more accurate framework for the
description of the HHG processes when ionization becomes
important @26,36#.

In Figs. 3~a!–3~d!, we show the comparison of the results
of the all-electron time-dependent KLI-SIC ~filled circles!
and SAE–KLI-SIC ~open circles! calculations for the case of
laser wavelength 527 nm and laser intensity
I51014, 331014, 631014, and 1015 W/cm2, respectively.
Several interesting features are noted. First, for the lower-
intensity cases @Figs. 3~a! and 3~b!#, there is good agreement
of the SAE and all-electron HHG power spectra. The dis-

FIG. 1. Comparison of the HHG spectra of He atoms calculated

by ALSDA ~open circles! and TD–KLI-SIC-LSDA ~filled circles!

methods. The laser intensity used is 131014 W/cm2 and the wave-

length used is 527 nm.

FIG. 2. Comparison of the HHG spectra of He atoms in length

~open circles! and acceleration ~filled circles! forms obtained from

the TD–KLI-SIC method. The laser intensity used is

631014 W/cm2 and the wavelength used is 527 nm.
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crepancy increases with increasing laser intensity. For the
highest-intensity case considered here @Fig. 3~d!#, where ion-
ization becomes appreciable, there is significant ~1–2 orders
of magnitude! departure of the SAE results from those of the
all-electron calculations.

The most notable distinction of the SAE versus the two-
electron results in Fig. 3~d! arises in both the lower- and
higher-harmonic regimes. The SAE model overestimates the
harmonic-generation rates in the lower-energy harmonic re-
gime, while significantly underestimates the higher-energy
harmonics. To understand the origin of such a discrepancy,
we show in Figs. 4~a!–4~c! the time-dependent bound-state
population N1s(t),

N1s~ t !5E f1s
* ~r,t !f1s~r,t !dr5

N~ t !

2
, ~42!

of the He atom for the case of 527 nm and three different
laser peak intensities: ~a! 331014 W/cm2, ~b!
631014 W/cm2, and ~c! 131015 W/cm2, respectively. ~In
both Figs. 3 and 4, we use a sin2 ramp for the first ten optical
cycles and the field amplitude is held constant afterward.!
Note that the two 1s electrons ~spin up and down! in the He

atom are completely equivalent and the spin index can be
ignored in Eq. ~42!. The physical meaning of N1s(t) is the
total electron probability ~density! within the finite regime
bounded by the filter. For the case of two-electron time-
dependent KLI-SIC calculations, N1s(t) includes the total
bound electron probability due to the neutral He atom and
the He 1 ion all together. In the SAE model, N1s(t) repre-
sents only the probability of the ‘‘active’’ electron bounded
to the neutral He atom, while the other 1s electron is frozen
to the 1s orbital. The ionization rates can be estimated from
the slopes of the N1s(t) vs time plots in Figs. 4~a!–4~c!. It is
seen that the SAE model always predicts larger ionization
rates than those of the two-electron calculations and the dis-
crepancy increases with increasing laser intensity. We note
that in the actual time-dependent ionization process of the He
atom, the average electron binding energy of the atom should
increase with time. This is because when the atom is partially
ionized ~in terms of the ionization probability!, the remaining
electrons ~in terms of bound electron probability! will be
more tightly bounded by the nucleus due to the dynamical
screening effect. For example, the ionization potential of the
neutral He atom is 0.904 a.u., while for the He 1 ion the
binding energy is 2.0 a.u. The all-electron TDDFT takes into
account such a dynamical screening effect or equivalently
the dynamical electron correlation, while the SAE model
does not. In the SAE model, the ionization potential is a
static quantity since the remaining electron is frozen. As a
result, the SAE electron is always less bounded by the
nucleus, leading to the overestimation of the ionization rate.

FIG. 3. Comparison of the HHG spectra of He atoms obtained

from the all-electron calculations ~filled circles! with those from the

SAE model ~open circles!. ~a!–~d! show the results corresponding

to the laser intensity I51014, 331014, 631014, and 1015 W/cm2,

respectively. The laser wavelength used is 527 nm .

FIG. 4. Comparison of the bound-state populations N1s(t) of He

atoms obtained from the all-electron calculations ~solid lines! with

those from the SAE model ~dashed lines! for several laser intensi-

ties. The laser wavelength used is 527 nm.
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A similar argument can be applied to the explanation of the

discrepancy of the all-electron and SAE HHG results in Figs.

3~c! and 3~d!. In general, for a given laser intensity and fre-

quency, an electron with smaller ~larger! ionization potential

tends to produce larger ~smaller! harmonic-generation rates
for lower harmonics but with a shorter ~longer! cutoff in the
higher-harmonics regime. Since the active electron in the
SAE model has smaller ionization potential than that in the
all-electron theory when ionization occurs, the SAE model
tends to predict earlier HHG cutoff, as can be seen in Figs.
3~c! and 3~d!.

In this context, it is instructive to pursue further explora-
tion of the effect of dynamical electron correlation on the
production of higher harmonics. This is prompted by a re-
cent experimental study of the HHG of the He atom by
Sarukura et al. @37#, using an ultrahigh-power KrF laser
~248.6 nm! with a peak intensity of 231017 W/cm2. Due to
the possible effect of defocusing of the laser beam, the actual
effective peak intensity responsible for the HHG production
is estimated to be about 3.531015 W/cm2 @38#. To fit the
experimental data ~from 9th to 23rd harmonics!, several the-
oretical works found that it was necessary to use a two-step
model @38,39#. The fitting of the lower harmonics ~up to the
13th–15th harmonic! was achieved by the SAE model for
the neutral He atom, while a separate He 1 model was used
to fit the higher harmonics. In essence, in the two-step model
the HHG of He is considered to be purely two separate one-
electron phenomena. In a recent paper @40# using the two-
electron wave-function approach, a different interpretation of
the He HHG data was inferred: The entire HHG spectrum of
He is due to the neutral He atom alone and the higher har-
monics are the result of strong electron correlations. How-
ever, in this latter work, only the wave functions of the 1S

and 1P states are included and no ionization information is
provided. Thus it appears that the actual mechanism respon-
sible for the observed higher harmonics in He @37# is still not
yet settled.

To explore the origin of the observed HHG behavior @37#
and to resolve the discrepancy of the two different theoretical
interpretations @38–40# of the experimental results, we
present below a detailed analysis of both the ionization and
HHG processes using the time-dependent KLI-SIC formal-
ism. Following Ref. @38#, we consider a laser field ~248.6
nm! with a sin2 pulse of 128 optical cycles ~105 fs! and a
peak intensity of 3.531015 W/cm2. Figure 5~a! shows the
time-dependent population N1s(t) and the laser pulse profile.
It is seen that in the SAE model ~thin line!, the neutral He
atom is completely ionized to the He 1 ion before the peak
intensity is reached. The two-electron TDDFT calculation
~thick line!, however, shows quite different behavior. We
discuss below the implications of the behavior of the N1s(t)
curve ~two-electron calculations! in Fig. 5~a!. First note that
N1s(t)51.0 means that all the electrons are bounded to the
neutral He atom and that there are no ions. When N1s(t)50,
all the electrons are ionized, and this corresponds to the He
21 ion limit. For the intermediate case, N1s(t)50.5, it im-
plies that on average one electron has been ionized and He 1

is the dominant species, though there could still have been
some neutral He atom and He 21 ion exist. Figure 5~a! shows
that N1s(t) stays close to 1.0 during the rising part of the
pulse ~from t50 to about 30 optical cycles! and

there is little ionization produced. As the field increases from
30 to about 60 optical cycles and approaches the peak inten-
sity, N1s(t) drops rapidly from 1.0 to about 0.5. During this
period, the neutral He atom is rapidly ionized to He 1 and the
He 1 ion becomes the dominant species. After the peak in-
tensity is over ~60–80 optical cycles!, the decay of N1s(t)
continues, but with a slower rate due to the decrease of the
laser intensity. After about 80 optical cycles, N1s(t) drops
much more slowly and nearly approaches a constant. This
can be attributed to the fact as the laser intensity is further
decreased, He 1, the dominant species, becomes much more
difficult to ionize due to its substantially larger ionization
potential than that of the neutral He atom.

Figure 5~b! shows the corresponding harmonic-generation
power spectra obtained, respectively, by the two-electron
calculations ~open circles! and the SAE model ~solid tri-
angles!. Also shown are the experimental data @37# ~normal-
ized to the 13th harmonic! ~solid circles with error bars! for
comparison. Similar to the previous theoretical studies @38–
40#, we found that the SAE HHG spectrum shows a large
departure ~underestimation! from the experimental data for
harmonics higher than the 15th harmonic. However, our two-
electron TDDFT results agree well with the whole experi-
mental HHG spectrum. From the analysis of the data in Fig.
5~a!, we can draw the following conclusion on the actual

FIG. 5. ~a! Comparison of the bound-state populations N1s(t) of

He atoms obtained from the all-electron calculations ~thick lines!

with those from the SAE model ~thin lines!. The envelope of the

laser pulse is also presented ~dashed line!. ~b! The HHG spectrum

of He obtained from the all-electron calculation ~open circles! and

from the SAE model ~filled triangles!. The experimental data ~with

error bars! are also shown for comparison. The HHG yields are

normalized to the 13th harmonic peak. In both ~a! and ~b!, the laser

peak intensity used in the calculation is I53.531015 W/cm2 and

the wavelength l5248.6 nm.
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mechanism responsible for the the observed higher harmon-
ics in He @37#: Both the He 1 ion and the dynamical electron
correlation are important to the production of the higher har-
monics. In fact, for the present case, these two factors are
related to each other to some extent. The production of the
higher harmonics is clearly a two-electron correlated phe-
nomenon because the SAE model fails completely in this
high-intensity regime, whereas the two-electron TDDFT pro-
vides the correct result. However, the production of the
higher harmonics appears not entirely due to the neutral He
atom as inferred in a recent work @40#. In fact, Fig. 5~a!
shows that while both the neutral He atom and the He 1 ion
contribute to the HHG processes, the He 1 ion is the domi-
nant species just before and after the peak intensity and is the
one likely to be making the major contributions to the pro-
duction of the higher harmonics. The present TDDFT thus

provides a unified and self-consistent dynamical picture of

the origin of the generation of the higher harmonics in He.

We are currently extending the time-dependent KLI-SIC

formalism to the study of multiphoton dynamics of more

complex atoms in intense laser fields. Results will be pre-

sented elsewhere.
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