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Abstract. An exact solution is presented which describes the time-dependent defor-
mation of a nearly spherical drop suspended on the rotation axis of a more dense rotating
viscous fluid. The solution is demonstrated to be similar, though not identical, to that
derived from the commonly invoked assumption that the external flow field is purely
extensional.

1. Introduction. The spinning drop tensiometer is a device used to measure the
interfacial tension between two fluids [12]. A drop of liquid less dense than the suspending
fluid is placed in a horizontally oriented circular cylinder which is rotated about its
symmetry axis. Centrifugal forces drive the lighter drop fluid along the rotation axis,
while deformation of the drop is resisted by interfacial tension forces as well as viscous
forces in the two fluid phases. The interfacial tension may be inferred from the final
equilibrium shape of the drop, which necessarily corresponds to a prolate ellipsoidal
form. Moreover, rheological information on the drop and suspending fluids may be
deduced from the time-dependent distortion of the drop.

Previous studies analyzing the time-dependent features of this problem [5, 7] have
assumed that since the drop is being stretched, the fluid motion may be analyzed as
if the drop has been placed in an extensional flow. Hsu and Flumerfelt [5] indicated
that this approximation is only valid for highly distorted drop shapes. Recently, Hu and
Joseph [6] numerically solved the Navier-Stokes equations using a finite-element method
to determine the time-dependent shape of the drop in a spinning drop device; the limit
of highly stretched shapes was studied in some detail.

Here we present an exact solution for the fluid motion and time-dependent drop shape
in the case that the drop remains nearly spherical. Wall effects are neglected, and fluid
motions both inside and outside the drop are assumed to be dominated by viscous effects
and so may be described as centrifugally-forced Stokes flows. The problem is solved
by applying a vector solution method [e.g., 4] and is a suitable example problem for a
graduate course on viscous flows [e.g., 2, 8].
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2. Problem statement. Consider an unbounded Newtonian fluid with viscosity p
and density p rotating with constant angular velocity ft. An initially spherical drop of
Newtonian liquid with viscosity Ap, density p — Ap, and undeformed radius a, is placed
on the rotation axis, where its position is stable provided Ap > 0. The interface between
the drop and suspending fluids is characterized by a constant interfacial tension 7. The
centrifugal pressure field dominates the gravitational pressure field provided the local
gravitational acceleration g satisfies g/(aft2) <C 1; gravitational effects are henceforth
neglected. We proceed by calculating the centrifugally-driven time-dependent distortion
of the drop.

It is convenient to describe the fluid motion relative to a coordinate system that ro-
tates with angular velocity ft [e.g, 3]. The suspending and drop fluids are assumed
to be sufficiently viscous that inertial and Coriolis forces are dynamically unimpor-
tant throughout the fluid domain. Balancing the characteristic centrifugal pressure
0(Apft2a2) and the viscous stresses 0(pu/a) yields a characteristic velocity with magni-
tude u = 0(Apfl2a3/p). Coriolis forces may be neglected relative to viscous forces pro-
vided the Taylor number is sufficiently small, fla2/v <C 1, and inertial effects may be like-
wise neglected provided the Reynolds number is sufficiently small, ua/v — Apft2a4 f(pu2)
C 1. In the low Taylor and Reynolds number limit that is considered here, the fluid
motions inside and outside the drop are described by Stokes equations.

Choosing a, Apfl2a3/p, Apfl2a2, and AApft2a2 as the characteristic length, velocity,
pressure in the external fluid, and pressure in the drop, we may write the dimensionless
governing equations as

external fluid: V • <T = — Vprf + V2U = 0, drop fluid: V ■ <T = — Vprf + V~U = 0, (1)

V • u = 0, V ■ u = 0.

Here we denote the velocity, dynamic pressure, and stress fields as (u,pd,cr) and carets
indicate the drop fluid variables. The dimensional dynamic pressure differs from the
actual fluid pressure by incorporating the centrifugal term: Pd = P + p{O A r)2, where
r denotes the position vector measured from the rotation axis. The centrifugal pressure
term is the signature of the background rotation and appears explicitly in the boundary
conditions.

The boundary conditions of continuity of velocity and tangential stress and the normal
stress balance are

u — u = 0 on 5, (2)

t • n • <t — At • n ■ a = 0 on 5, (3)

and

n ■ (n • a - An ■ <x) = ■ n + ^(f2 A r)2 on 5, (4)

where n and t denote the unit normal and tangent vectors along the deformed surface
S, Vs • n represents the interface curvature and f2 = ft/ft is a unit vector aligned with
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the rotation axis. The rotational Bond number, B = Vpf22a3/7, prescribes the relative
magnitudes of the centrifugal stresses causing deformation and interfacial tension stresses
resisting distortion. At large distances from the drop |u| —► 0. The solution we describe
here is valid for small Bond numbers, 8<1.

To describe the nearly spherical shape distortions we write the drop shape as

r = 1 +e/(0,<M)> (5)

where e <C 1. We will see that the small parameter e is in fact equal to the rotational
Bond number. The normal velocity along the interface dictates the time-rate-of-change
of the unknown shape function /(#,

df (R\un = un=—, (6)

where a convective time scale, fi/(ApQ,2a2), is chosen as the characteristic time. At long
times (see Eq. 14) a quiescent steady state is established in which there is a balance
between the centrifugal and interfacial stresses. The resulting steady drop shapes may
be determined analytically as a function of B [11].

3. Solution. The centrifugal term (17 A r)2 is the driving force responsible for fluid
motion and drop deformation. Since Stokes equations are linear we expect the solution
for the velocity field to be linear in the dyadic f2fi. We thus see a departure from the
commonly applied mathematical model of a drop in a straining flow, in which the far-field
is described by a rate of strain tensor E°°, since trE°° = V ■ u°° = 0 but trfin = 1.

In order to construct a solution we follow the method outlined by Hinch [4] and
discussed in detail by Nadim and Stone [9]. Since the procedure is similar to the analysis
of a drop in a straining flow we only outline the important intermediate results. The
velocity and pressure fields in either fluid are represented as

u(r, t) — V0 + r A VV> + V(r • A) — 2A, (7)
Pd(r, t) = 2V ■ A + constant, (8)

where 4>, ij), and A are scalar and vector harmonic functions, respectively. Also, we neglect
any contributions to A that are divergence-free. The appropriate harmonic functions
linear in the driving force are

4> = 4> = (»"2I — 3rr), (9)

v> = 0, j> = o, (10)

A = A = 3/3[r2r + 2r2fi • rfi — 5r2(J7 • r)2r] • £(f2 ■ r)f2, (11)

where a,/?,£,a,/?,£ are functions of time which are to be determined. £ makes a time-
dependent contribution to the pressure but does not directly contribute to the velocity
field. A term proportional to (fi • fl)r may be added to A, but only contributes to the
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pressure a constant term which can then be absorbed into £. We thus observe that since
tr nil = 1 there are six required harmonic functions as compared to four such functions
in the case of a drop in a straining flow. The detailed velocity, pressure, and rate-of-strain
fields are given in the appendix.

The drop shapes may be expanded in surface spherical harmonics [1,9] and the leading-
order deformation must be linear in JlfJ. Hence, we seek

/(0,*,*) = «(<)«":( (12)

where 6(t) is to be determined. It follows that for nearly spherical shapes

Vs n = 2[1 - 2e6(l - 3(f2 ■ n0)2)] + 0(e2), (13)

where n0 denotes the unit normal to the spherical surface. We may now determine the
seven unknown functions by straightforward application of the boundary conditions. At
leading order, velocities are 0(1) so that combining equations (4) and (13) we identify
s — B. For completeness, the solutions for each of the coefficients are included in the
appendix.

The quantity of most interest is the time-dependent shape of the drop, which we find
to be

r / 40(i +a) t \ lexp( (3 + 2A)(16 + 19A) B J ( )— 1 + —[1 - 3(fl • no)2]

The drop attains an ellipsoidal steady shape with a relaxation time (3+9AV/7-
This completes the solution. Because the results described here are limited to nearly
spherical shapes, it is not possible to compare the predictions of Eq. (14) with the recent
numerical calculations of Hu and Joseph [6], who focussed on the large distortion limit.
We note that the corresponding analytical solution for the drop shape in an extensional
flow has the similar, though not identical, form

1 , (16 + 19A)r=1+c^(mrE :n°n" exp •
40(1 + A)

(3 + 2A)(16+ 19A) (15)

where C = /za |E°°|/7 is the capillary number and time has been nondimensionalized
using the surface tension relaxation time fj,a/7 [10].

The time-dependent contributions (i.e., the exponential terms) to (14) and (15) are
identical if time is scaled in both problems with fia/7. However, since the rotating
problem has a quiescent steady state, fluid viscosity does not influence the final shape
and the magnitude of the distortion is thus independent of A. As a final remark we note
that in the rotating case the deforming drop creates a disturbance flow which decays as
0(l/r2). Each end of the drop exerts a force Apfl2a4 on the fluid, and these equal and
opposite forces contribute to produce a dipolar flow at large distances from the drop.
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Appendix. Using the velocity and pressure representations given by (7)—(11) yields
the detailed velocity, pressure, and rate-of-strain fields for the exterior fluid:

u(r, t) = 3 a(t)

pd(r,t) = p0 + 2f3(t)

e(r ,t) — 3 a(t)

- mt)

r 2f2f2 ■ r 5(f2 • r)2r
K r. *7

1 3(n • r)2

(ie)

(17)

I 2ftfl 5rr 10f2 • r p- p-. 5(fi • r)2I 35(fi ■ r)2rr
+ ~7~ + —+ rO) + -^-=^ q

, ^'r)21 5(fi-r)2rr
—5-(«r + rfl) + —^ -y 

3rr
(18)

Inside the drop, the flow fields assume the form

u(r, t) = 2d(i)[r — 3■ rfi] + 6/3(£)[r2r + 2(f2 • r)2r — 5r2r • fifi], (19)

Pd(r,t) = p0 + 42(3(t)[r2 - 3(f2 • r)2] + 2£(t), (20)

e(r,t) = 2o(t)[I-3nn]
+ 6/3(i)[2rr + r2I — 5r2fif2 + 2(fi • r)2I — 3fJ ■ r(f2r + rS~2)],

where po and po are constant reference pressures.
Applying the boundary conditions determines the six coefficients in the above equa-

tions as well as 6(t), which appears in the shape function (12). Continuity of velocity
yields the three relations

-3a - £ = 2d + 6/3, (22)

15a - 3/3 = 12/3, (23)
-6a = —6d - 30/3. (24)

Continuity of tangential stress leads to

48a - 6/3 - A(-12d-96/9) =0. (25)

The normal stress balance yields two equations:

-2/3 + 4£ + 24a - A(4d - 6/3 - 21) = 4^tf + ±, (26)

-72a + 18/3 - A( —12d + 18/3) = -12^8 - (27)

in addition to the usual equilibrium condition po — p0 = 2/B. Finally, the kinematic
condition (u • n = df /dt) requires

7 C

2d + 6/3 = £—. (28)
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We see that Eqs. (22) and (26) determine, respectively, £ and £. The remaining five
equations decouple and are solved for a, /3, a, f3, and S. In particular, we find

a(t) = (2 + 3A) exp / 40(1 +A) -\ (29)
[ > 6(16 + 19A)(3 + 2A) P\ (16 + 19A)(3 + 2A) B J ' 1 '

1 _f 40(1 +A) t]
6(3 + 2A) 6Xp { (16 + 19A)(3 + 2A) B J ' ( ^

(19 + 16A) / 40(1 +A) / 1
12(16+ 19A)(3 + 2A)eXP\ (16 + 19A)(3 + 2A) B J ' 1 '

n, s 1 f 40(1+A) t )
"W ~ 12(16 + 19A) 6XP \ (16 + 19A)(3 + 2A) SJ ' ^ ^

= k 40(1 +A) t\6XP<i (16 + 19A)(3 + 2A) B J
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