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    Time-Dependent Flow Fields in a Coaxial Cylinder 
       Rheometer. The Flow of a BKZ Fluid at 

               the Start of Rotation 

   Kunihiro OSAKI, Kanji KAJIWARA, Nobuo BESSHOt, and Michio KURATA* 

                            Received March 7, 1979 

    Numerical calculations were performed to study the flow of polymeric liquids at the start of rota-
tion of a coaxial cylinder rheometer. The rheological behavior of polymeric liquids was assumed 
to be represented by a strain-dependent constitutive model of Bernstein, Kearsley, and Zapas (BKZ 
model) and the stress equation of motion was solved with an electronic computer. The distribution 
of rate of shear starts from that expected for the steady flow of a Newtonian liquid and approaches 
the distribution obtained for the steady flow of a power law liquid. The rate of shear at a fixed point 
varies monotonously at low rates of rotation where the phenomenon of stress-overshoot is not very 
marked. At high rates of rotation, the rate of shear passes over a maximum or a minimum, respec-
tively, depending on whether the sample is located close to the inner wall or the outer wall. At a 
certain radius slightly smaller than the average of the inner and outer radii of the cylindrical gap, 
the rate of shear scarcely depends on time provided that the rotation velocity and the gap width are 
not too large. The use of coaxial cylinder rheometer to measure time-dependent shear stresses is 
justified under the same condition. 

   KEY WORDS: Coaxial cylinder rheometer/ Polymer solution/ Non-
                 Newtonian viscosity/ BKZ/ Constitutive model/ 

                        INTRODUCTION 

   The Couette flow, which is one of the important rheometrical flows, is the flow 
of the liquid in the narrow gap of two coaxially placed cylinders in relative rotation 
as shown in Fig. 1. The coaxial cylinder rheometer based on the Couette flow 
exhibits some advantages over other rheometers such as the cone-and-plate rhe-
ometer; liquids of even low viscosities can be held in the cylindrical gap; high rates 
of shear can be attained without any out-flow of the sample due to the centrifugal 
force; the cylindrical gap affords a simple and long light pass for optical studies in flow 
field such as the flow birefringence measurement. 

   On the other hand, the Couette flow has a disadvantage as a rheometrical flow 
in that the flow field is uncontrollable,') i.e , the velocity distribution is not determined 
by the relative rotation velocity of the cylinders alone but it also depends on the the-
ological property of the liquid. In the studies of rheological properties of liquids, 
it is desirable to apply to the liquid a rate of shear r of a value known beforehand. 
The rate of shear is related to the velocity v by 
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             Fig. 1. Coaxial cylinder apparatus. Test liquid is confined within 
                   cylindrical gap formed by two coaxially placed cylinders of 

                   radii R; and Ro, respectively. Outer cylinder is rotated with 
                    angular velocity 2 while inner cylinder is kept stationary. 

                    Velocity profile v depends not only on R1, R0, and 2, but on 
                    properties of test liquid. 

           r—rar\r/(1) 

in the case of the Couette flow in a cylindrical gap. For a Newtonian liquid in 
steady flow, the rate of shear at a point r is given by 

                          22 r =
r2(R= 2—Ro 2)(2 ) 

where R, and Ro are respectively the radii of the inner and the outer surfaces of the 

cylindrical gap and r denotes the distance of the point from the axis. The angular 

velocity at r=R0 is taken as 2 and that at r=R; as 0. The viscosity of any New-
tonian liquid can be evaluated by measuring the torque exerted by the liquid on 
the inner cylinder since the rate of shear on the surface of the inner cylinder can be 
calculated from Eq. (2). 

   When the viscosity varies with the rate of shear, Eq. (2) is not applicable. For 
a power-law fluid described by 

7)oCrn-1 (1>n>0)(3 ) 

the rate of shear in steady flow is given by 

         _ 22                           r
nr2in(Rg 2In—Ra —Vin) (4) 

where n is a constant. In this case, one cannot evaluate the viscosity from the torque 
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exerted on the inner cylinder unless one knows the value of n, which belongs to the 
quantities to be determined through measurement. A widely employed procedure2) 
to evaluate the rate of shear for non-Newtonian liquids consists of evaluating the 
approximate values of the rate of shear with Eq. (2), determining an approximate 
value of n from the shear stress and the approximate rate of shear, and then recalcu-
lating the rate of shear with an equation corresponding to Eq. (4). 

   In the measurement of time-dependent rheological properties, such as the 
stresses at the start or on the cessation of shear flow, the stress varies from time to 
time. It is not always possible to apply a constant rate of shear. If the rheological 

property of the material is described by the linear viscoelasticity theory, Eq. (2) holds 
good in slowly varying flow, in which the inertial force is negligible compared with 
the force due to the stress. Thus Eq. (2) is applicable to ordinary viscoelastic ma-
terials, such as polymer solutions, when the rotation velocity  2 is small and changes 
slowly. In the special case of oscillatory shear, the rate of shear at the inner surface 
has been calculated over all the frequency range for linear viscoelastic  materials.3) 

   The time-dependent flow in the cylindrical gap of nonlinear materials is essen-
tially uncontrollable even for a slowly varying flow. Equation (4) may be applied 
to slow flow of a purely viscous power-law liquid, which unfortunately is not even 
a fair model for existing nonlinear materials. Thus the rate of shear may vary 
with the time as well as with the position when a constant velocity 2 is applied to 
the outer cylinder. However, the rate of shear at the center of the cylindrical gap, 
i.e., at Rc- (R=+Ro)/2, may stay rather constant as guessed from the comparison of 
Eqs. (2) and (4). If the rate of shear stays constant at least at one point, the coaxial 
cylinder system can be used for rheological measurements at the start of steady shear 
flow. The purpose of the present study is to calculate the flow field on application 
of constant rotation velocity 2 to the outer surface of the cylindrical gap based on a 
reasonable model to describe the rheological properties of concentrated polymer 
solutions. 

                          METHOD 

Basic Equations 

   The velocity of the liquid is determined from the stress equation of motion, 
the constitutive equation of the material, and the boundary condition. In the 
present case we may assume that the axial and the radial components of the velocity 
are zero, and that the velocity v is a function of radius r and time t. The stress equa-
tion of motion is given by 

av 1  a(r2c)  
         pa t r2 ar(5) 

where p is the density of the liquid and a is the shear stress. The stress equation 
of motion may be replaced by the stress equation of equilibrium 

a (r2a) = 0(6 ) 
ar 
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since we are concerned with a slowly varying process which is much slower than 
the stress-equilibrating process. To estimate the velocity of the stress-equilibrating 
process, we consider a unidirectional shear flow of a liquid of viscosity n held be-
tween two parallel plates. The stress equation of motion is given by 

av ac 
       at ax(7) 

where x is the coordinate taken perpendicularly to the plates. Differentiating with 
respect to x, one obtains 

a6 n  626($ ) 
at pax2 

According to this equation, a time teq= p121277 is sufficient for the stress applied 
on one side of the liquid to diffuse over the whole liquid, where 1 is the distance be-
tween the plates.4) Suppose p=1 g/cm3, n-100 Pa s, and 1=1 mm, one obtains 
teQ=0.5ms. Thus for typical polymer solutions, the stress becomes homogeneous 
over the sample of '1 mm depth within 1 ms. For processes of longer time scales, like 
the present case as seen later, one can safely assume that the stress is equilibrated 
over the sample at each moment: 

   The boundary condition for the sudden start of constant rotation is given by 

v = 0 at r 

  v=0 t<0 
r22 t>0 at r`=Ro(9) 

Using Eq. (1), one can rewrite Eq. (9) as 

           I(0 t<0              T.drS
lSdt>0(10)                                R, r 

   As a constitutive model to represent concentrated polymer solutions, we chose 
the strain-dependent model of Bernstein, Kearsely, and Zapas, or the BKZ model.5) 

The model has proved good in describing the stresses at the start and on the cessa-
tion of steady shear flow.6.8) According to this model, the shear stress in shear 
flow is given by 

a(t) =rrt r(t, t')tt[t—t', I r(t, t') I ]dt' (11) 

where the relative shear strain r (1, t') is given by 

r(t, 1') rj(t")dt"(12) 
                                  The function It is called the memory function and may be written as 
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                         r)  z Gphp(r)e-(t-t'>/Tp(13) 

       in terms of the relaxation time r p, relaxation strength Gp, and the strain-dependent 
       function hp(r) to represent the nonlinearity. The strain-dependent function hp(r) 
       can well be described as a sum of exponential functions for typical polymer solutions.6'8) 

        Here we assumed 

hp(r) = e (14) 

       with a=0.4. The simple functional form and the specific value of a were suitable 
       for describing the behavior of many polystyrene solutions.6) Two sets of values of 

Gp and r p were tested: 

100------- 

1.0-1 ------------------------------------------------------------------------------------  

                                              II 

1p101.100101 102 
7Tj 

Fig. 2. Reduced steady shear viscosity 71/riGi plotted against reduced rate 
                         of shear Tri for two models employed for numerical calculations. 

   100------------------------------------------------------- 
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102101 100 

till 

                     Fig. 3. Time dependence of shear stress following sudden application of 
                            constant rate of shear. Reduced shear stress a/triGi is plotted 

                            against reduced time tiri for model I. Reduced rates of shear tri . 
                          are 0, 0.1, 0.316, 1.0, 3.16, 10, 31.6, and 100 from top to bottom. 
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          Fig. 4. Time dependence of shear stress following sudden application of 
                 constant rate of shear. Reduced shear stress alfr1G1 is plotted 

against reduced time t/ri for model II.- Reduced rates of shear tri 
                 are 0, 0.1, 0.316, 1.0, 3.16, 10, 31.6, and 100 from top to bottom. 

         Model I Gp = Gl rp = rZ 1<p<20 (15a) 

                                                                                                                                              ._           Model II GpG,rp rl(/2s.l1<p� 10 (15b) 
                               \p+1 / 

It is not necessary to give definite values for G1 and r1 in the following. Figure 2 
shows the steady shear viscosity 77 of these models. Figures 3 and 4 show the shear 
stress S at the start of shear flow for models I and II, respectively. It may be ob-
vious that the model II represents a liquid which is nonlinear to a greater extent 
than the model I; for the model II the viscosity decreases more rapidly with the 
rate of shear and the stress overshoot, i.e., the maximum of the shear stress a, is 
more marked than for the model I. 

Calculation Procedure 

   The procedure of calculation consists essentially of solving the set of Eqs. (6), 
(10), and (11) step by step by approximating the differential equation with a dif-
ference equation. First we divide the cylindrical gap into M shells and choose 
M+1 points 

r,n=R,~-R°R'(m-1) m = 1, 2, M+.1(16) 

We also divide the time (t>0) in unit of d and denote 

to=(u-1)4, u=1,2,3,...(17) 

Any time between to and to+1 may be expressed by 

             t = to---s4(18) 

where s varies from zero to unity. 
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   The basic assumptions involved in the following calculation are that the rate  of 
shear is constant over each d period and that the difference of the rate of shear 
between neighboring d periods of time is much smaller than 1 /r1. We define 
a strain at time to relative to the time zero by 

(tn 
gum =  y^m(t')dt'(19) 

where m indicates the radius rm. The rate of shear over the range of time to < t < to+1 
is given by 

gu+i,m -gum(20) 
rum —d 

We wish to express the stress anm at t=tn and r=rm in terms of the quantities gum. 
The relative strain of Eq. (12) at r=rm can be written as 

Tm(t, t') gnm—gum—rumsd(21) 

if to G t' < to+1 • By employing Eq. (21) in Eq. (11) and changing the variable t' to 

s, one can carry out the integral analytically over every d period. Thus the shear 
stress anm is expressed in terms of gnm(u<n). The calculation is lengthy but trivial. 
We do not show the result here. Likewise the shear stress n+1,m is expressed in 
terms ofgnm(u<n+1). 

    Here we assume that the rate of shear changes only slightly at t=tn, i.e., the 

quantity em is small if we write 

Tnm = Tn-1,m+em(22) 

The stress an+1,m is expressed in terms of gnm(u<n) and 6m. Expanding an+i,m in 
terms of em,we obtain 

an+1,m—anm=anm+embnm+0(ezm)(23) 

where anm and bnm are known functions of gum(u<n). According to the stress equa-
tion of equilibrium (6), the quantity rmanm should not vary with the suffix m. Hence 
the quantity rm(an+1,m—anm) is independent of m and we obtain 

rm(anm+embnm) = cn(24) 

where cn is an unknown quantity independent of m. The boundary condition (10) 
at time to+1 may be written as 

E em = 0(25) 
m r

m 

provided that the strain gnm at time to satisfies the boundary condition 

E .gnm = S2tn(26) 
m r

m 
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Equations (24) and (25) can be regarded as a set of linear simultaneous equations 
to be solved for M+2 quantities, Em (1 <m < M+1) and cn. If one knows the 
right distribution of the rate of shear up to the time tn, then one can calculate that 
at t, +1 and the procedure can be repeated for the succeeding times. 

   At the very beginning of the shear flow, the distribution of the rate of shear 
is well approximated by Eq. (2), which is applicable to slowly varying flow of linearly 
viscoelastic materials. The statement is true for materials whose nonlinear behav-
ior is described by strain-dependent constitutive equations such as Eq. (13). For 
these materials the rheological behavior at the very beginning of flow is not affected 
by the rate of shear because the amount of strain is small at short times; in the case 
of Eq. (14) for example, the nonlinear effect may not be of importance when the 

product ar is much smaller than unity, i.e., at times smaller than say 10-2/ar 
at the beginning of flow. 

Numerical Calculations 

   Numerical calculations were performed with FACOM 230-48 of the Institute 
for Chemical Research, Kyoto University, for the following cases; 
constitutive model: two BKZ models described by Eqs.(15a) and (15b) ; 

geometry: Two different gaps, (R0—Re)/Re=0.1 (narrow gap) and 0.2 (wide gap), 
were examined, where Re=(R0+R1)/2; 
rate of shear: calculations were performed at rates of shear corresponding approxi-
mately to 77/770=0.5, 0.2, and 0.1 at the center of the gap, r=RC7 for every com-
bination of the model and the gap. 

   The cylindrical gap (Re, R0) was divided into up to 32 shells and the initial 
condition was given by 

glra = 0(27a) 

224(27b) 
                              g2m=                             rm(Rs2—Ro2) 

i.e., the rate of shear was assumed to be given by Eq. (2) for the first 4 interval. 
Then em and hence gn,n, was calculated step by step for the succeeding points of 
each 4 interval. 

   Preliminary calculations showed that the result was rather insensitive to the 
number of division M of the gap (R1, R0) : the M value of 16 led to less than 1 % 
deviation from the cases of larger M even in the case of the wide gap. The result 
did not depend on the quantity 4 when 4 was smaller than 10-2/aj-. The value 
10-2/ar'is larger than the stress-equilibrating time teq as discussed below Eq. (8) 
even at the maximum rate of shear of the present calculation if the relaxation time 
zl is sufficiently large, i.e., zl> 10s. The following results may be exact to within 
2 %. The rate of shear is given in a reduced form Yvi as a function of a reduced 
time t/z1 and a reduced distance r/Re. The shear stress at r=Re is given in a re-
duced form a/z1G1j-0., where r is the rate of shear in steady state at r=---Re. 
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                     RESULTS AND DISCUSSION 

Time Dependence of Rate of Shear 

   Figures 5 through 7 show how the rate of shear changes with time at fixed points 
for the case of the constitutive model I and the wide gap geometry. The reduced 

      Ri --------------------                              6 

                                    c~ 3
R1/4 -4 F- 

       ,; t Rc _---------- o 

2- R314-2 
Ro  

01 2 
t /Tt 

          Fig. 5. Calculated results for combination of model I and wide gap 
                 geometry, (R0—R;)1R, = 0.2, at relatively low rate of rotation, 

                 corresponding to 77/72°c0.5 at r- Rc.' Solid lines indicate reduced 
                rates of shear to at various radii; rlRe=0.90 (Re), 0.95 (Rl/4), 1.00 

                (Re), 1.05 (Rs/4), and 1.10 (R0) from top to bottom. Dashed line 
                   indicates reduced shear stress a/r1Glf. at r=Re, where t., is rate 
                  of shear in steady state. 

    2_RI4 

    o !R1i4-3 

          tz     •~ ~ —R~                              2b 
1R3/4 O 

IRo 
-1 

   00.51 
t /Tl 

          Fig. 6. Calculated results for combination of model I and wide gap 
                  geometry, (Ro-R,)/R,=0.2, for moderate rate of rotation, corre-

                 sponding to rl/e-0.2 at r=R„ Solid lines indicate reduced rates 
                  of shear tri at various radii; r/Re=0.90, 0.95, 1.00, 1.05, and 1.10 
                 from top to bottom. Dashed line indicates reduced shear stress 

a/ziGif , at r=Re. 

(177)



                     K.  OSAKI, K. KAJIWARA, N. BESSHO, and M. KURATA 

10 R1 

        8 

6R1/4 1.58 

      RC                 •a.4. 

R3/4  
Ro  2

0.5 

    0 1 2 3 4 

10t/Ti 
          Fig. 7. Calculated results for combination of model I and wide gap 

                  geometry, (Ro—R;)/R,=0.2, for high rate of rotation, correspond-
                 ing to r ie-=-0.1 at r=R,. Solid lines indicate reduced rates of 

                  shear tri at various radii; r/R,=0.90, 0.95, 1.00, 1.05, and 1.10 
                 from top to bottom. Dashed line indicates reduced shear stress 

alriGitc. at r=R,. 

rates of shear j-r1 at five points separated by the same distance along the radius are 

plotted against the reduced time t/rs; R114 and R3/4 correspond to R.+(R0—R1)/4 and 
R.+3(R0—R1)/4, respectively. The reduced shear stress a/r1G1j-.0 at the center of 

gap r=R, is also shown. 
   In Fig. 5 the rate of shear varies monotonously with time at each point: The 

rates of shear at R. and R114 increase and those at r>R, decrease with time. The 
rates of shear at t/r1=2 are in close agreement with those evaluated from Eq. (4) with 
n=0.31 obtained from Fig. 2. The decrease of r at R, is small, and 4 % in this 
case. It may be expected from Fig. 5 that the rate of shear is almost independent of 
time at a point in the range Ri74<r<R,. 

   The same qualitative features as summerized in Fig. 5 are obtained for all the 

combinations of constitutive models I and II and the geometries of wide and narrow 

gaps when the rate of shear is relatively low, i.e., when the ratio r//r/° at Re is ap-

proximately 0.5. The difference due to the model is that the variation of j- is 
larger for the model II than for the model I. The difference is attributable to the fact 
that the value of n for the model II is smaller than that for the model I at the rate 
of shear corresponding to 77/n0=0.5. The rates of shear at Ri and Ro for the narrow 

gap system, naturally varying to a smaller extent than those for the wide gap system, 
are roughly equal to the rates of shear at R114 and R314, respectively, for the wide gap 
system. The rate of shear at Re for the narrow gap system varies only slightly; in 

the case of model I, for example, it decreases by 1 % with time as compared with 
4 % for the wide gap system. 

   As the rotation velocity increases, the rate of shear at each point becomes to 
exhibit either a maximum or a minimum depending on whether the radius r is smaller 

(178)



              Time-Dependent Flow Fields in a Coaxial Cylinder Rheometer 

or larger, respectively, than a certain critical value, which is slightly smaller than 
 R,. The maxima and minima are located at the time which is given by the 2.5-3 times 

of that corresponding to the maximum of the shear stress. The rate of shear at R, 
becomes to exhibit a minimum of a considerable depth; the values of j- at the min-
ima of Figs. 6 and 7 are respectively 9 and 20 % lower than the initial values. The 

corresponding figures for the narrow gap system are 2.2 and 5 %, respectively, when 
the initial values of j- are approximately equal to those of Figs. 6 and 7. The 
variation of j- at Re is suppressed largely with decreasing width of the gap. It is 
likely that the rate of shear scarcely varies at a certain radius slightly smaller than 
Re. We will discuss on the significance of this fact later. 

   From the results given above, one may note that the rate of shear in the wide 

gap system varies to a greater degree with time than that in the narrow gap system 
does. One may also see that the time dependence of j- for the model II is stronger 
than that of the model I is. Figure 8 shows the result obtained for the combination  

5 --------------------------------------------2 

                    / 4 —{i 

  r—s 

   o1iRr  ?° 

 N—1 
 rN             .2 

                                R1/4 

  ~-------o 

   1 R`  R
3/4  

0R0 o 0
12 

t/Ti 

          Fig. 8. Calculated results for combination of model II and wide gap 
                 geometry, (R0—Ri)/R,=0.2, for high rate of rotation, correspond-

                 ing to r1/rl°=0.1 at r=Rc. Solid lines indicate reduced rates of shear 
rri at various radii; r/Rk=0.90, 0.95, 1.00, 1.05, and 1.10 from top 

                  to bottom. Dashed line indicates reduced shear stress c/r1Gir. at 
r—R,. 

of the model II and the wide gap at the rotation velocity approximately correspond-
ing to i7/77°=0.1 at Re. This figure represents the result in which the rates of 
shear varied to the highest degree and in the most complicated manner in the pres-
ent calculation. One may note the high maximum value of j- at R. and the low 
minimum at Ro. The minimum value of j- at Re is smaller than the initial value 
by about 40 %. The rate of shear at Ri14 passes over two maxima and one minimum. 
This type of oscillatory behavior is not observed in any other case of the present 
calculations. 
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Distribution of Rate of Shear 
   Figures 9 and 10 show the distribution of rate of shear at fixed times for the 

constitutive models I and II, respectively. The left panels show the results for the 
narrow gap geometry and the right panels for the wide gap. The rate of shear is 

plotted against the radius with double-logarithmic scales so that Eqs. (2) and (4) 
are represented by straight lines. 

   Except for the case of the model II combined with the wide gap geometry, the 
results for the longest time, t/r1=2, of calculation are in good agreement with those 

------------------------sa1.2 
      100----------------------is-2 o$ 

Q4\N 
     \1

,2\     50\,ss— _,.  
       n=031--n_031

` 

1.2,.`,04 
                                                              NN 

`N-0$ 

2 

   20------------------, f-4 ----------------------------------------.2                                        2` \\ 

       'Na n=0.41--n=0.41 
    102is—---------------L— ------ 

    4~\ 
                                                2 

\                                               4  

5--------------------i5---------------------------------------- 

2n_0-53 -'_- 4 n=0.53 \, 8-5S----------------------                   \\4 

------------------8 

       0.951 1.05f 0.91 1.1 
r1Rc 

          Fig. 9. Results for distribution of rate of shear at various times for model I. 
                Left panel gives results for narrow gap geometry and right panel 

                 for wide gap. Reduced rate of shear. Tri is plotted against reduced 
                radius r/R, with double logarithmic scales for three rotation 
                 velocities on each panel. Chain lines and broken lines are due to 

Eqs. (2) and (4), respectively. Values of n indicated were evaluated 
                  from Fig. 2 at rri values corresponding to steady state at r=--Re. 

                Figure attached to each solid line indicates value of 10t/ri. Results 
                for t/ni=2 lie to within ±2 % of dashed lines for all cases. 
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obtained from Eq. (4) and the values of n evaluated from Fig. 2. The noticeable dis-

agreement on the right panel of Fig. 10 between the results for t/r1=2 and those 
from Eq. (4) is due to the approximate nature of Eq. (4) applied to the system rep-
resented by Fig. 2. For the combination of model II and wide gap geometry, 
the rate of shear in steady state varies largely over the cylindrical gap, and it is not 
a very good approximation to, represent the rheological behavior with a single value 
of n over the wide range of rate of shear. The result for t/r1=2 is proved to be 
in accord with the stress equation of equilibrium (6) if the value of n correspond-       

I-------------------------SS 1, 

   50--------------------s t-5 ---------------------------------------- 
3 

                         20
2                            2 

  20\tt1------ 
2 =0.20 

n=0.20 ,20 

\`\\24$ ~\\\.1 4 

  r'10 \\2 

5 n_0.23-----------------------t -----------------n=0.23 \---\~~ ,20 
                    \`4 

     ~~85 

                                               4 

                                           ~\8    

2---------------------St`. 20 
                                                            1.9,i.,

..
.,,                           5 

            n=0.51`4n_0.51—     

1 -------------------------10           s t20 5 
                                               10 

' ' t t.II  

       0.95 1 1.05 0.91 1.1 

                    r / Rc 

         Fig. 10. Results for distribution of rate of shear at various times for model II. 
                Left panel gives results for narrow gap geometry and right panel for 
                wide gap. Reduced rate of shear f ri is plotted against reduced radius 

r/R, with double logarithmic scales for three rotation velocities on 
                each panel. Chain lines and broken lines are due to Eqs. (2) and (4), 

                respectively. Values of n indicated were evaluated from Fig. 2 at fri 
                 values corresponding to steady state at r=R,. Figure attached to each 

                solid line indicates value of 10 tizi. Results for 1/1-1=2 lie to within 
                ±3 % of dashed lines for left panel. 
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ing to the calculated rate of shear at each point is determined from n=d in(ht)/ 
d in j . It may be noted here that Eq. (4) based on the power law approximation 

gives a sufficiently precise values, say to within 10 %, for use in viscosity measurements. 
   A rough observation of Figs. 9 and 10 may be sufficient to see that the variation 

of the rate of shear at Re. is reduced rapidly with decreasing gap width and that 
the rate of shear at a certain point in the range Ri,4<r<R, approximately stays 
constant when the gap width is small. These two features are important in justify-
ing the use of the coaxial cylinder rheometer for the measurements of time-dependent 
rheological functions; the former is related to the optical measurements in which 

the light ordinarily is led along the axis at r—R~ and the latter to the stress measure-
ment as explained in the following section. When the gap width is large and the 
material exhibits marked nonlinearity, the rate of shear at R, varies considerably 
with time and the rate of shear is not controllable, i.e., it does not stay constant in the 

present case, at any point of the material. Thus the wide gap system may be used for 
time-dependent measurements only at very low rates of shear where the nonlinear 
behavior of the material is not very marked. 

Practical Use for Time-Dependent Measurements 
   It is easily shown that the coaxial cylinder rheometer can be employed for 

measuring the time-dependent shear stress at the start of steady shear flow as far as 
the rate of shear stays constant at least at one point. Suppose the rate of shear has 
a constant value 7  at a certain point, r=Rs, irrespective of the time. The torque 
exerted on the inner cylinder can be measured in ordinary coaxial cylinder rheometers. 
The torque gives the shear stress 61(t) at r=R;. According to Eq. (6), one obtains 
a relation 

atRE = asRs(28) 

where as(t) is the shear stress at r=Rs. Thus one obtains the shear stress os(t) cor-
responding to the constant rate of shear rs by measuring the shear stress a;(t) 
corresponding to the time-dependent rate of shear at r=R=. 

   As noted earlier, the rate of shear at one point scarcely depends on time in the 
case of the narrow gap system in the present calculations. The point lies in the 
range R1,4<r<R, as seen in Figs. 9 and 10. The condition that the rate of shear 
stays constant at the point is fulfilled to within 10 % for either of the constitutive 
models I and II in the narrow gap system. It is likely that the condition may be 
fulfilled to within few per cent if the gap is made smaller, say (R0—R=)/R,=0.05, which 
is not unusual for a practical rheometer. This criterion may be applied to real poly-
meric liquids, most of which exhibit non-Newtonian effect to the degree somewhere 
between the two models of the present calculation. One can evaluate the radius 
Rs by equating Eqs. (2) and (4), 

                     5+ n (RRz 

             j-Rs=1— 24°Rt/(n* 1)(29) where n=d In(rr7)/d In. The rate of shear r is obtained from Eq. (2) by putting 
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 r=Rs. Needless to say, one can use Eq. (2) and apply the rheometer in an ordinary 
manner to any slowly varying flow if n is close to unity. 
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