
Vol:.(1234567890)

Data Science and Engineering (2019) 4:352–366

https://doi.org/10.1007/s41019-019-00105-0

1 3

Time‑Dependent Graphs: Definitions, Applications, and Algorithms

Yishu Wang1 · Ye Yuan1 · Yuliang Ma1 · Guoren Wang2

Received: 1 June 2019 / Revised: 6 September 2019 / Accepted: 16 September 2019 / Published online: 25 September 2019

© The Author(s) 2019

Abstract

A time-dependent graph is, informally speaking, a graph structure dynamically changes with time. In such graphs, the

weights associated with edges dynamically change over time, that is, the edges in such graphs are activated by sequences of

time-dependent elements. Many real-life scenarios can be better modeled by time-dependent graphs, such as bioinformatics

networks, transportation networks, and social networks. In particular, the time-dependent graph is a very broad concept,

which is reflected in the related research with many names, including temporal graphs, evolving graphs, time-varying graphs,

historical graphs, and so on. Though static graphs have been extensively studied, for their time-dependent generalizations,

we are still far from a complete and mature theory of models and algorithms. In this paper, we discuss the definition and

topological structure of time-dependent graphs, as well as models for their relationship to dynamic systems. In addition,

we review some classic problems on time-dependent graphs, e.g., route planning, social analysis, and subgraph problem

(including matching and mining). We also introduce existing time-dependent systems and summarize their advantages and

limitations. We try to keep the descriptions consistent as much as possible and we hope the survey can help practitioners to

understand existing time-dependent techniques.

Keywords Time-dependent network · Graph data management · Network analysis · Graph system

1 Introduction

A graph is a data structure which is widely used in net-

work modeling. Almost every scientific domains, including

mathematics, computer science, chemistry, and biology, can

be modeled and studied by graphs. Moreover, graphs are

extensively applied in social networks, biological networks,

transportation networks, distributed systems, and so on. A

static graph (we use the “static graphs” to refer to classical

graphs in this review to opposite it from time-dependent

graphs) consists of two sets: vertices and edges. Here, each

vertex represents an object. Each edge represents a relation

between each pair of vertices. In practical applications, ver-

tices and edges of graphs often contain specific informa-

tion, such as labels or particular weights (such as length

and cost). Generally, for example, when we model a road

transportation network into a graph, each vertex represents

an intersection and the associated coordinates (latitude and

longitude) are a vertex weight. Each edge represents a road

segment between two adjacent intersections and the distance

of the edge is an edge weight.

However, many real-life scenarios can be better modeled

by time-dependent graphs, such as bioinformatics networks

[52, 60, 63], transportation networks [25, 38, 78], social net-

works [56, 62, 72]. In bioinformatics networks, graphs are

used to reflect the similarity and regulatory of biomolecules,

such as proteins, genes, and enzymes. The connections in

biological functions are not always active but change over

time [28, 45]. In social networks, the topological structure

of a graph represents a social relationship. When a person

leaves a group or a new group is established, the topological

structure needs to be updated. While time is a main reason

for these changes [11, 72]. In transportation networks, there

is usually a set of fixed routes on which a group of transport

units moves over time [20, 61, 71, 73]. The transportation

network is one of the most suitable networks that can be

modeled by a time-dependent graph, where the influence

of time always needs to be considered. For example, when

a user takes a transfer in flight transportation networks, the

 * Yishu Wang

 yishu_w0124@163.com

1 School of Computer Science and Engineering, Northeastern

University, Shenyang, China

2 School of Computer Science and Technology, Beijing

Institute of Technology, Beijing, China

http://orcid.org/0000-0003-3373-7060
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-00105-0&domain=pdf

353Time-Dependent Graphs: Definitions, Applications, and Algorithms

1 3

departure time of the second flight must be later than the

arrival time of the first flight. Generally, in such networks,

the weights associated with edges dynamically change

over time (time-dependency) [22]. In terms of modeling,

a time-dependent graph can be thought as a special case of

labeled graphs, in which labels capture some measure of

time [55]. That is to say, edges in such graphs are activated

by sequences of time-dependent elements.

An advantage of modeling a network as a time-depend-

ent graph is that we can study the dynamic effect of time

on the graph instead of the impact of the actual dynamics.

In general, when is a graph appropriate to be modeled and

analyzed as a time-dependent graph? The system needs to

be modeled as a time-dependent graph only when it con-

forms to the time-dependent framework and involves the

time scale. And if the dynamic system changes much faster

than the speed of the dynamic connection, or if the edges

in the graph are actively changing, then there is no need to

model the dynamic system into a time-dependent graph [33].

Allen divided time-dependent relationship into 13 categories

which are shown in Table 1.

Though static graphs have been extensively studied, there

is still far from having a concrete set of structures and algo-

rithm frameworks for time-dependent graphs [55]. Due to

the influence of time, most query processing and mining

problems are more complicated in time-dependent graphs

than that in static graphs. For example, a time-dependent

shortest path problem aims to find the optimal path from a

source to a destination, when the starting time is selected

from a user-given starting-time interval [22] instead of

just finding the shortest path. It is still not clear how time

affects the complexity of the optimization problem in

time-dependent graphs. However, there is an evidence in

[4] which shows that the concept of time can significantly

increase the computational complexity. Many problems,

which can be solved in a linear time or a polynomial time

on static graphs, become NP-complete or NP-hard problems

on time-dependent graphs, such as the connected compo-

nent problem. In recent works, one important problem is to

understand the complexity of classical graph problems in

time-dependent graphs and proposing algorithms for them

[20, 24]. Other works focus on proposing practical applica-

tion problems and solving them [44, 61].

In this paper, we focus on prior works on time-depend-

ent graphs. The rest of the paper is organized as follows.

Section 2 introduces the time-dependent graph framework

including definitions and models. Section 3 introduces route

planning problems and existing algorithms on time-depend-

ent graphs. Section 4 shows some special time-dependent

queries in social analysis. Section 5 provides two kinds of

time-dependent subgraph problems, including subgraph

matching and mining. Section 6 shows existing time-

dependent graph systems and summarizes their advantages

and limitations. Section 7 concludes this paper.

2 Time‑Dependent Graph Framework

2.1 Definition

The time-dependent graphs can be fundamentally divided

into two types according to the time type of the active

an edge: time instances and time intervals as illustrated

in Fig. 1. In Fig. 1a, the weight on an edge represents a

sequence of time instances. In this case, the interaction

between each pair of vertices is activated at a sequence of

time instances. The time-dependent graph is represented as

a triple G = (V , E, T) . V is a set of vertices and E ⊆ V × V is

a set of edges, and for each e ∈ E , there is a non-empty set

of time T
e
= ⟨t1,… , t

n
⟩ as a weight. Such time-dependent

graphs are commonly used to represent instant messaging

networks where the duration does not need to be considered,

such as mail networks, telephone networks, and information

networks. For example, a public transportation network can

Table 1 Presentation of

ALLEN’s 13 time-dependent

relations. Adapted from [77]

354 Y. Wang et al.

1 3

be represented as this type of time-dependent graph. A vehi-

cle on the network is operated according to a specific set of

discrete times on the timetable.

In the other case (Fig. 1b), the edges are activated in

a sequence of time intervals. The weight on each edge e

represents as T
e
= {[t1, t2],… , [t

n−1, t
n
]} , where a period of

activity is beginning at t
1
 and ending at t

2
 . In such graphs,

the duration is very important. This type of time-dependent

graph can naturally model the systems whose edges change

in time intervals, such as proximity networks, seasonal food

webs, and infrastructural systems [33]. For example, a road

network can be modeled as such time-dependent graph

because of the traffic control (i.e., the limit line) and traffic

congestion (i.e., the morning–evening rush hours).

2.2 Data Modeling

In the existing works, there are several ways of modeling

a time-dependent graph with a sequence of time instances

on each edge. These models are mainly divided into two

categories: one is to model discrete time-dependent graphs

and the other is to model continuous time-dependent graphs.

Next, we introduce the two models separately.

2.2.1 Models for Discrete Time‑Dependent Graphs

An edge on a discrete time-dependent graph is activated

by disjoint time points. Formally, there are several ways of

modeling discrete time-dependent graphs.

One is to build labels for the edges which has well-

defined attributes [15, 35, 73]. A time-dependent graph with

a label � ∶ E → 2
ℕ is denoted by G = (V , E, �(G)) . The label

set of �(G) is a collection of natural numbers on each edge,

which can be denoted by �(E) where ��� =
∑

e∈E
��(e)� . This

modeling method is widely available and can build unified

searching schemes for time-dependent graphs.

Another is to build snapshots for the time-dependent

graph, that is, the time-dependent graph is considered as

an ordered pair of disjoint sets [9, 49, 80]. A time-depend-

ent graph is denoted by G = (V , A) , where A is a set of

time-dependent edges. A function A(t) = {e ∶ (e, t) ∈ A}

contains all edges in G at time t which is also called the

tth instance of G. Accordingly, a snapshot of G at t is

denoted by G(t) = (V , A(t)) . In this case, a time-dependant

graph can be considered as a sequence of static graphs

G = {G1, G2,… , G
t
} . This modeling method is most com-

monly used for modeling discrete time-dependent graphs,

which is suitable for the time-dependent graph with a spe-

cific time structure, especially in real-time networks.

The third is to transfer the time-dependent graph into

a static graph by building copies of vertices [35, 75, 76].

The reason for doing this is mainly because the technol-

ogy tends to be perfect on static graph. If a time-dependent

graph can be transformed into a static graph without los-

ing any time-dependent information, it can provide a good

foundation for future studies on time-dependent graphs.

[75] provides a transfer method which has two steps to

transform a time-dependent graph G = (V , E) into a static

graph Ĝ = (V̂ , Ê) as illustrated in Fig. 2. Firstly, create

copies of each vertex v ∈ V in V̂ , where V̂ composed of

(a) (b)

Fig. 1 Two fundamental time-dependent graphs. Here, a shows

a time-dependent graph on which the weight on each edge is a

sequence of time instances. These instances are marked by black

lines in the timelines (gray bars). b Shows a time-dependent graph on

which the weight on each edge is a set of time intervals. These inter-

vals are marked by black bars in the timelines (gray bars). Note that

these time intervals can be either continuous or discrete

(a) (b)

Fig. 2 Graph transformation from a time-dependent graph to a static

graph

355Time-Dependent Graphs: Definitions, Applications, and Algorithms

1 3

two parts Tin(u, v) = {t + � ∶ (u, v, t, �) ∈
∏

(u, v)} and

T
out
(v, u) = {t ∶ (u, v, t, �) ∈

∏

(v, u)} . Here, Tin(u, v) main-

tains all vertices which are in-neighbors of v. Symmetrically,

T
out
(u, v) maintains all vertices which are out-neighbors of v.

Secondly, create edges from (v, tin) to (v, t
out
) for each vertex

v ∈ V by order vertex in V̂
in
(v) according to time instances

order, then create a directed edge from each v to its copes.

This modeling method can transplant algorithms of static

graphs to problems of time-dependant graphs. But the disad-

vantage is obvious that building multiple copies of the ver-

tices increase the scale of graphs. And [75] also shows that

the results obtain directly from the time-dependent graph are

quite different from the results obtained from the converted

static graph for queries that need to consider time order.

2.2.2 Models for Continuous Time‑Dependent Graphs

There are two drawbacks of the discrete time model. First,

this model cannot represent the state of the graph between

two discrete time points, which might yield inaccurate

results. Second, the memory and processing requirements

are high. A more precise way to describe a time-dependent

network is to use the continuous time-dependent function.

For a continuous time-dependent graph whose edges are

activated in a sequence of time intervals, there are two mod-

eling methods.

One is to define an index function, called presence func-

tion, to determine whether a pair of vertices is connected at

a given time interval [65]. If vertex u and v is connected at

time t, then the presence function f (u, v, t) = 1 . Otherwise,

f (u, v, t) = 0 . This modeling method applies to time-depend-

ent graphs where the time intervals are discrete and disjoint

and the edges are only active and inactive.

The other is to treat a time-dependent graph as a flow-

dependent graph which means the weight it takes for flow

to traverse an edge is different in different time intervals

[19, 22, 24]. For e ∈ E , the flow function fe ∶ [0, T) → ℝ
+ ,

where fe(t) defines the rate of flow entering edge e at time t.

For example, a road network can be modeled as a continu-

ous time-dependent graph, where a non-negative travel time

function �
e
 determines the time it takes for flow to traverse

an edge e [42]. The flow arrives at the end node of e at time

t + �e(fe(t)) . Accordingly, this modeling method applies to

time-dependent graphs where the time intervals are continu-

ous and the functions on edges change over time.

2.3 Topological Structure

In static graphs, the topological structure can be character-

ized by measures. Some measures can be applied directly

to time-dependent graphs, including adjacent point, degree,

etc. For example, in a time-dependent graph, the degree cal-

culation is similar to that in a static graph. It only needs to

calculate the number of active edges connected to vertices

over a period of time. While other measures need rethinking

and redefining to take time into account on time-dependent

graphs.

2.3.1 Time‑Respecting Paths

In the static graph, a path is simply a sequence of edges

from origin vertex u to destination vertex v, such as

p1 = ⟨D, A, B, C⟩ (red dotted line) and p2 = ⟨D, A, C⟩ (blue

dotted line) in Fig. 3a. However, a time-respecting path [32,

39] has to be redefined to take time into account. For exam-

ple, as shown in Fig. 3b, D and C are connected only through

path p = ⟨(D, A, 4), (A, B, 5), (B, C, 6)⟩ (red dotted line),

assuming edge delay is 1. Accordingly, the time-respecting

path is a sequence of edges that follow a time order. If there

are paths from A to B and B to C, it does not mean that there

is a time-respecting path between A and C. Consequently,

as seen in the example above, a time-respecting path from

A to C is existing only if the contact between A and B takes

place before the contact between B and C.

In the static graph, the most basic problem associated

with the path is the shortest path problem that computes the

shortest distance between two reachable vertices. In [16], the

time-dependent shortest path problem is refined into three

types:

Earliest Arrival Path Problem. The earliest arrival path

problem asks for the corresponding route with the earliest

arrival time at B from A at departure time t
a
.

Latest Departure Path Problem. The latest departure path

problem asks for the corresponding route with the latest

departure time from A and arrives at B no later than t
b
.

Shortest Duration Path Problem. The shortest duration path

problem asks for the corresponding route with shortest dura-

tion time that departs from A no sooner than t
a
 and arrives

B no later than t
b
.

Due to the complexity of time-dependent information,

each of the above problems can not be solved in a greedy

strategy which is often used to compute the shortest path

problems in a static graph. Cooke et al. [16] proposed a

(a) (b)

Fig. 3 Paths from D to C in a static graph and a time-dependent graph

356 Y. Wang et al.

1 3

modified version of Bellman’s iteration scheme [3] to com-

pute the shortest path with time-dependent information.

Afterward, many algorithms [59, 70, 73, 75] are proposed

to solve Cooke et al.’s three problems on the time-dependent

graph. Since the path problem is the most foundational prob-

lem on graphs, most of these algorithms are discussed in

Sect. 3.1.

2.3.2 Connectivity, Components, and Menger’s Theorem

Connectivity is a fundamental concept for both static net-

works and time-dependent networks. We said a graph is con-

nectivity if there are paths between every pair of vertices.

A connected component is defined as a set of vertices with

paths between each pair of them. In directed static graphs,

connected components can be classified into weakly and

strongly connected components. In particular, a graph is said

to be strongly connected, if there is a path from i to j and a

path from j to i, for each pair of vertices i and j. Correspond-

ingly, a graph is said to be weakly connected, if the corre-

sponding undirected graph which is obtained by removing

all directions in the edges is a connected graph, i.e., replace

all directed edges with undirected edges. In time-dependent

graphs, the order of time naturally introduces a directional-

ity of the graph. For instance, in the time-dependent graph

G (shown as Fig. 4a), there exists a time-respecting path

between vertex A and vertex E (i.e., edge e
AB

 at time 1 and

edge e
BE

 at time 8 in Fig. 4b), but there is no path between E

and A. Hence, the connectivity of the time-dependent graph

is more similar to that of the static directed graph [58]. How-

ever, the concepts of weakly and strongly connected can

not be generalized for time-dependent graphs if we only

hold time-respecting paths instead of paths. Nicosia et al.

proposed the definition of strong and weak connectivity on

time-dependent graphs (called time-varying graphs in their

paper [58]) as follows.

Definition 1 (Strong Connectedness [58]) Two nodes i and

j of a time-varying graph are strongly connected, if i is tem-

porally connected to j and also j is temporally connected to i.

Definition 2 (Weak Connectedness [58]) Two nodes i and

j of a time-varying graph are weakly connected if i is tem-

porally connected to j and also j is temporally connected to

i in the underlying undirected time-varying graph.

According to above two definitions, the strongly con-

nected component and the weakly connected component

can be easily defined, that is, the vertices sets where each

pair of vertices fulfills the criteria. And Nicosia et al. also

showed that finding the strongly connected components of

a time-dependent graph is equivalent to finding the maximal

cliques of an affine graph that is an undirected static graph

with the same vertices as the time-dependent graph.

Menger’s theorem [53] is one of the most basic theo-

rems in the theory of graph connectivity. It states that the

maximum number of node-disjoint s-v paths is equal to the

minimum number of nodes that must be removed in order

to separate s from v [8]. However, Kempe et al. [39] proved

that the Menger’s theorem of static graphs does not apply

to time-dependent graphs. In particular, they also proved

that there is no natural analogue of Menger’s Theorem for

the single-label time-dependent graph and it is NP-hard to

compute the number of node-disjoint time-respecting paths.

Over Kempe et al.’s work, Mertzios et al. [54] provided a

natural time-dependent (called temporal in their paper) ana-

logue of Menger’s theorem for all (both single-label and

multi-label) time-dependent graphs.

Theorem 1 (Menger’s Temporal Analogue [54]) Take any

temporal graph �(G) , where G = (V , E) , with two distin-

guished nodes s and v. The maximum number of out-disjoint

journeys from s to v is equal to the minimum number of node

departure times needed to separate s from v.

By symmetry, they have that the maximum number of in-

disjoint journeys from s to v is equal to the minimum number

of node arrival times needed to separate s from v.

2.3.3 Spanning Tree

The spanning tree is an important concept related to paths

in static graphs. In particular, the minimum spanning tree

problem refers to the minimal connected subgraph generated

Fig. 4 A time-dependent

undirected graph and the time-

dependent reachability

(a) (b)

357Time-Dependent Graphs: Definitions, Applications, and Algorithms

1 3

for the original graph. The connected subgraph contains all

the vertices of the original graph, whose number of edges

connecting the subgraphs is the smallest. The minimum

spanning tree problem can be solved in polynomial time

and has widely used in graphs. Many complex queries are

based on the minimum spanning tree problem [5, 31, 46,

68], and many efficient graph algorithms are based on build-

ing a minimum spanning tree, such as min-cut max-flow

algorithm.1

Gunturi et al. [27] proposed a related concept in time-

dependent graph called time-sub-interval minimum span-

ning tree (TSMST). TSMST refers to a collection of mini-

mum spanning trees in an interval with minimum total cost.

Further in [35], Huang et al. defined two kinds of minimum

spanning trees (MST
s
) in a time-dependent graph: (1) MST

a

which is the MST
s
 with earliest arrival times and (2) MST

w

which is the MST
s
 with the smallest total weight. Huang

et al. proved that MST
a
 can be computed in linear time, but

MST
w
 is a MAX-SNP hard. Consequently, they transformed

the MST
w
 problem to the minimum Directed Steiner Tree

problem.

3 Time‑Dependent Route Planning

The time-dependent route planning is an important problem

with application in routing on road networks [22, 24], travel

planning on public transportation networks [14, 73], vehicle

dispatching on vehicle networks [37, 50], as well as in some

robotic and navigation systems [12, 43]. To the best of our

knowledge, the time-dependent shortest path problem, as

the most basic route planning problem, is first proposed by

Cooke and Halsey in [16].

Before we discuss the algorithms of routing problems

on the time-dependent graph, we first introduce an impor-

tant property of the time-dependent graph, namely first-in-

first-out (FIFO) property. The FIFO property means that,

on every link, an earlier departure will lead to an earlier

arrival and a later departure will result in a later arrival. It

renders that every edge has a non-decreasing arrival time

function in a time-dependent network. We called a network

is a FIFO network if every link in the network has the FIFO

property. The facts of the FIFO property can be referred in

[44]. Notice that the FIFO property is a special property on

time-dependent graphs, but not all time-dependent graphs

are FIFO networks. For example, a source s and a destina-

tion d are reachable by two vehicles, one is faster and the

other is slower. Assume that a traveler A chooses the slower

vehicle to depart in advance from s, then he may arrive later

than the traveler B who chooses to depart late but takes the

faster vehicle. Obviously, this travel does not satisfy the

FIFO property. The other example of not satisfying the

FIFO property is a path that allows waiting time at vertices.

The FIFO property is relevant to time-dependent routing

and many routing problems are based on the FIFO attribute.

In this section, we first discuss the single-criteria time-

dependent routing problem which only focuses on finding

minimum travel time in time-dependent graphs. Then, we

introduce the multi-criteria time-dependent routing prob-

lem which optimizes the travel time and multiple time-inde-

pendent costs. Since the methods in this section are all used

to solve the route planning problem on the time-dependent

graph in principle, we try to keep the descriptions consistent

as much as possible.

3.1 Single‑Criteria Route Planning

As already noted, broadly speaking, time-dependent graphs

can be divided into discrete and continuous. So, we intro-

duce single-criteria routing algorithms on the two types of

time-dependent graphs, respectively.

3.1.1 Models Based on Discrete Travel Time

In the time-dependent network with discrete travel time,

certain segments can only be traversed at specific discrete

time instances based on a timetable. Therefore, the cost

of an edge, varying as a travel time function, represents a

succinctly periodic, discrete, piecewise linear (PWL) func-

tion. The public transportation network is representative of

discrete time-dependent networks. According to real traffic

conditions, it is always necessary to wait for a vehicle at a

station. And when transfer from one vehicle to another, the

vehicle schedule must be strictly followed.

As we maintained before, Cooke and Halsey [16] pro-

posed the most basic route planning problem. Cooke and

Halsey proved that these queries could be solved with a mod-

ified version of Dijkstra’s algorithm. However, it does not

scale well with the size of the graph and several techniques,

such as indexing have therefore been proposed to improve

efficiency. Pyrga et al. [61] proposed realistic time-expanded

and time-dependent models and extended their methods for

a series of realistic requirements of time-dependent shortest

path (TDSP) problem on discrete time-dependent graphs.

Chabini [14] extended the A* algorithm to compute the min-

imum travel time path for one as well as for multiple depar-

ture times. They improved a lower bound on minimum travel

time which is used to design an effective adaptive A*-based

algorithm. To speed up the A* algorithm, Nannicini et al.

[57] and Demiryurek et al. [21] presented methods based

on the bidirectional A* search algorithm. Notice that the

time-dependent paths must be in time order. But we cannot

know the arrival time in advance during backward search. 1 https ://brill iant.org/wiki/spann ing-trees /.

https://brilliant.org/wiki/spanning-trees/

358 Y. Wang et al.

1 3

Hence, both Nannicini et al. and Demiryurek et al. run the

backward search by the idea of lower bound function. Wu

et al. [75] proposed efficient algorithms, named as one-pass

algorithms. The one-pass algorithm is based on Dijkstra’s

algorithm and solves the route planning queries by enumer-

ation. For each vertex v, the one-pass algorithm builds a

store list L(v) = (s[v], a[v]) , where s[v] is the departure time

from source x to v, and a[v] is the arrival time at v. Then, it

updates the L(v) until finding the earliest arrival time from

the source vertex x to v at different starting time. In order

to provide an alternative approach, they proposed a method

of transferring a time-dependent graph into a static graph.

Notice that Wu et al. proved that the results obtained directly

from the time-dependent graph are quite different from the

results obtained from the converted static graph. This calls

the need for studying the time-dependent problem directly

on time-dependent graphs. After that Wang et al. [73] pre-

sented an efficient indexing technique, named as Timeta-

ble Labeling (TTL), for time-dependent routing problem in

public transportation networks. The TTL index is defined

based on the concept of canonical paths. It builds two label

sets L
in
(v) and L

out
(v) for each node v in the time-dependent

graph, which contains the information about the canonical

paths between v and the nodes that rank higher than v. Wang

et al. showed that the TTL index enables to support three

common route planning queries (described in Sect. 2.3.1).

3.1.2 Models Based on Continuous Travel Time

Route planning on a continuous time-dependent network is

drastically different from that on a discrete time-dependent

network. Routing in continuous time-dependent networks is

to calculate the optimal path from a source s to a destination

d on road network without changing vehicle. It is a key com-

ponent in road network, self-driving technology, navigation

systems as well as in some robotics. In a continuous time-

dependent network, the cost of the edge varies as a travel

time function which is always a continuous and PWL func-

tion. Notice that we are not simply calculating the optimal

path with a certain departure time, which is easily calculated

by Dijkstra’s algorithm, but calculating the minimum travel

time under certain conditions, such as the expected arrival

time or the departure time interval.

Ordal and Rom [59] presented a Ford-type algorithm to

solve the TDSP problem when no constraints are imposed

on waiting times at the nodes. On the basis of Ordal and

Rom’s work, Dehne et al. [18] presented an improved

method that can solve the TDSP problem in FIFO networks.

They proved that the algorithm can run in polynomial time,

while other methods require super-polynomial time. And

they also presented an approximation method with possibly

super-polynomial size output in time O(
Δ

�

(|E| + |V|log|V|)) .

Afterward, Foschini et al. [24] presented a method that can

solve TDSP problem in super-polynomial time. The main

idea of their method is to calculate primitive and mini-

mized breakpoints and build acyclic layered graph repre-

sentation of the time-dependent graph. They presented an

output-sensitive algorithm whose running time depends on

the number of breakpoints at the nodes and edges in the

time-dependent graph. In order to speed up the technique for

TDSP problem, Foschini et al. proposed (1 + �)-approxima-

tion schemes to compute the arrival time functions in time

O(K
1

�

log(
MaxTravelTime

MinTravelTime
)) . Ding et al. [22] presented a query

as LTT(v
s
, v

e
, T) to ask the minimum-travel-time path from

a source s to a destination d with the best departure time

selected in a given time interval. They showed that their

approach, named as Two-Step-LTT, adapts both on FIFO

and NON-FIFO time-dependent networks. The first step is

Dijkstra-based Time-refinement in which they compute the

earliest arrival time function for each node. The second step

is Fast Path-selection in which they compute the optimal

path. To adapt Two-Step-LTT in non-FIFO networks, they

showed how to transform a non-FIFO time-dependent graph

into a FIFO one. They also proved the time complexity of

their algorithm is O((n logn + m)�(T)).

3.2 Multi‑criteria Route Planning

Multi-criteria routing problem is more complicated than

the single-criteria shortest path problem. Given two paths

pi and pj , we say that pi dominates pj if and only if there

are no criteria for which pi has a worse value than pj , with

at least on strict equality. A path is called Pareto-optimal

if it is not dominated by any other path. Therefore, multi-

criteria routing problems aim to find Pareto-optimal path

sets from a source s to a destination d. The most common

multi-criteria (or bi-criteria) time-dependent routing opti-

mization problems consider the optimization between travel

time and multiple (or a) time-independent costs (expressed

as the weights on each edge) including an approximation of

energy consumption, distance, tolls, or other penalties [1].

Pyrga et al. [61] considered a bi-criteria search to opti-

mize the travel time and the number of transfers in discrete

time-dependent graphs. In order to solve the bi-criteria opti-

mization problem, they set a bounded number of transfers

which constraints that the total number of transfers is not

greater than k. Based on Pyrga et al.’s work, Khoa et al. [40]

also optimized the arrival time and the number of transfers,

but they allowed walking during a transfer in a bus network.

They presented three speed up techniques to accelerate the

multi-criteria searching algorithm. Disser et al. [23] pre-

sented a multi-criteria searching algorithm by introducing

the reliability of the transfer and gave the probability of tak-

ing the train. Different from Pyrga et al.’s work, Disser et al.

focused on a many-source shortest path on train networks

and they considered foot-path and special transfer rules

359Time-Dependent Graphs: Definitions, Applications, and Algorithms

1 3

during transfers. In the multi-criteria searching algorithm,

they used multi-dimensional labels to record all the prom-

ising path that the node can reach and found the shortest

path based on the Dijkstra’s algorithm. And they proposed

four speed up techniques to improve the performance of the

searching algorithm.

Batz and Sanders [1] considered the optimization of travel

time and costs in continuous time-dependent graphs. They

proved that this problem is NP-hard and it can be computed

by Dijkstra-like algorithms as prefix optimality is violated.

Therefore, they presented a multi-label A* searching algo-

rithm. However, the efficiency of the algorithm is too low in

practical applications. They used the generalized heuristic

time-dependent contraction hierarchies (TCHs) during pre-

processing and contracted the least important nodes. The

heuristic minimum cost queries with TCHs are divided into

two phases. Firstly, it is a bidirectional upward search which

only takes little running time. Then, it only uses the edge

touched in bidirectional upward search to do a downward

search. Experiments show that heuristic TCHs are very fast.

4 Time‑Dependent Social Analysis

In real scenarios, time is a common and necessary dimen-

sion on online social networks (OSNs). For example, when

a user logs in or logs out of an account, the background

database will have a timestamp to record such operations.

Many complex dynamic time-dependent interactions can be

abstracted into time-dependent information. Compared with

traditional static social queries that only reflect the relation-

ship between users, time-dependent social queries can dis-

tinguish between new and old, active and inactive relation-

ships, and so on. Additionally, query and mining problems

on time-dependent social networks are more focused on the

evolution over time [29, 36]. For example, the time-depend-

ent shortest path queries in a social network can discover

how close between two given users have been and how the

closeness has evolved over time. Consequently, queries on

time-series social networks are more complicated, and due

to the concept of the time dimension, there are many query

problems that are unique to time-dependent social networks.

Most of the works on time-dependent social networks are

based on snapshots and time windows. Wang et al. [74] pro-

posed a time-dependent social network advertising and they

designed a learning algorithm to obtain the optimal poli-

cies between users and advertisers. Wang et al. [72] dem-

onstrated that the influence of a user on another depends on

their interactions in previous time windows. Therefore, they

presented a dynamic factor graph (DFG) model to tackle

the dynamic social influence analysis with time information.

They modeled networks as a sequence of time-dependent

graph snapshots (which called factor graph in [72]), and each

graph snapshot belongs to a time window. In particular, each

graph snapshot depends on the factor graph in the previous

time window. This technique is optimal to time-dependent

social network, but it has huge storage overhead. To efficient

the queries, Huo and Tsotras [36] presented the temporal

partitioning. They divided the time instance in the time-

dependent graph into multiple partitions, and each partition

has a time window with a fixed length.

Furthermore, Chen et al. [15] introduced primitive que-

ries on time-dependent social networks. They divided the

primitive queries into three aspects, which are aimed to find

and check the user’s online status, the relationships between

users, and the status of the user participating in the activ-

ity during a time interval [t
s
, t

e
] . Based on three primitive

queries, they also presented three special queries that are

shown as follows.

Friends of Interesting Activities (FIA) query The FIA query

aims to find out user’s friends who are interested in some-

thing or people over a period of time.

Users of Time Filter (UTF) query The UTF query is used

to find a user who is active within a certain time threshold,

and the user’s friends are interested in a given event. UTF

queries can be used in the social network advertising and

social influence analysis in practice.

Group of Users with Relationship Duration (GURD) query

The GURD query is used to find a group of users that satisfy

a certain time condition, and the average intimacy between

users satisfies a given value within a certain period of time.

To solve three problems on time-dependent social net-

works, Chen et al. designed two tree structures: Temporal

Users and Relationships tree (TUR-tree) and Temporal Users

and Activities tree (TUA-tree). The TUR-tree is extended

by MVB tree [2] to index user relationships. The TUR-tree

generates keys by string concatenating. For a user v
i
 identi-

fied by uid
i
 , the key is expressed as 0|uid

i
 , and the relation-

ship between uid
i
 and uidj is expressed as 1|uidi|uidj . The

TUA-tree is a hybrid structure of B+-tree and Bloom Filter to

represent the communication between user identifiers, time

information, and keywords. For a TUA-tree, the entry of

leaf node is formatted as < key, ptr > , where ptr points to

an activity, and key is concatenation of user identifier and

time associated with the activity the user is participating in.

The TUA-tree splits, merges, and redistributes nodes by key.

360 Y. Wang et al.

1 3

5 Time‑Dependent Subgraph Problems

5.1 Time‑Dependent Subgraph Matching

The graph pattern matching is a fundamental problem in

the graph data mining and has been applied in many fields.

The graph pattern matching (a.k.a. subgraph isomorphism)

problem is known to be NP-complete even in a static graph

[30]. The existing graph pattern matching problems can be

roughly divided into two types according to the pattern of

query graph on time-dependent graphs.

Querying static graph pattern (SGP) in time-dependent

graphs The querying static graph pattern problem is to find

isomorphism subgraphs, when the query graph is a static

graph (see Fig. 5c) with some time constraints (i.e., the inter-

action occurring time interval or the relation order) and the

data graph is a time-dependent graph (see Fig. 5a).

Querying time-dependent graph pattern (TGP) in time-

dependent graphs The querying time-dependent graph pat-

tern problem is to find isomorphism subgraphs, when the

query graph is a time-dependent graph (see Fig. 5b) and the

data graph is a time-dependent graph (see Fig. 5a).

For the same time-dependent graph, the difference in the

query graph will result in different query results, as shown

in Fig. 5.

5.1.1 Querying Static Graph Pattern

Redmond and Cunningham [64] proposed three methods for

subgraph matching algorithms by considering time-depend-

ent and topological information at different stages.

Time before Topology (Ti-To) The Ti-To first abstracts all

possible time-respecting subgraphs as a candidate subgraph

set from the data graph by breadth-first algorithm on edges.

Then, find extracted subgraphs that satisfy the conditions of

the query graph from the candidate set by the VF2 [17] sub-

graph isomorphism algorithm. Experiments show that the

candidate set may have a large overlap and time consuming.

Topology before Time (To-Ti) The To-Ti performs the VF2

subgraph isomorphism algorithm on the entire data graph

and build a candidate subgraph set. At this stage, it does

not pay attention to any time-dependent information. Then,

To-Ti checks the time-dependent information between the

query graph and the candidate subgraph set and retains the

matching result.

Time and Topology Together (Ti&To) The Ti&To considers

subgraph isomorphism and time constraints at same time.

The isomorphic processing is described by a state space,

each state s in the state space describes a local map. In a

state s, the Ti&To first determines whether a candidate pair,

consisting of vertices in query graph and data graph, is iso-

morphic and then Ti&To determines whether the candidate

pair contents the time constraint. If the candidate pair satis-

fies both conditions, the neighbor vertices of the candidate

pair are expanded downward to become new candidate pair.

Loop until all the subgraphs that satisfy the conditions are

found.

To solve the SGP problem with time-dependent relation

order, a Hasse diagram based algorithm is proposed by Sun

et al. [69]. They used Hasse diagram to express the time-

dependent partial order of the edges in the query graph. Each

edge corresponds to a Hasse node, and a time-dependent

relationship in the query graph is represented as a directed

(a)

(b) (c)

(d) (e)

Fig. 5 Two kinds of graph pattern matching problems on the time-

dependent graph. a Shows a data graph. d Shows the query result of

TGP query from (b). The edge (D, C) only can be activated at time

t = 3 , thus there is only one matching result. c Shows the query result

of SGP query from c with a limitation that the interaction occurring

time interval d ≤ 4 . The edge (D, C) only can be activated at time

t = 5 , because t
CB

− t
DC

= 3 < d at t = 5 and t
CB

− t
DC

= 5 > d at

t = 3 . Only when t = 5 (D, C) contents the time constraint

361Time-Dependent Graphs: Definitions, Applications, and Algorithms

1 3

Hasse edge. Then, they built the Hasse-cache structure to

implement the continuous time-dependent subgraph query

algorithm. The algorithm uses the probability of the time-

dependent graph to reduce intermediate results, while

achieving topology matching and time relationship verifi-

cation. Compared with searching the entire query graph, the

algorithm searches whether the time-dependent relationships

of the data edges match the relationship of query edges and

improves the performance of the algorithm by using the

Hasse-cache structure.

5.1.2 Querying Time‑Dependent Graph Pattern

TCGPM-V [77] is a pattern matching method based on ver-

tex matching. Firstly, it uses the depth-first search tree to find

all matching vertex sets and then enumerates all possible

time-dependent subgraphs until finding the prospective time-

dependent subgraph. Unlike TCGPM-V, TCGPM-E [77] is a

pattern matching method based on edge matching. TCGPM-

E first selects the edge with the smallest calculation result

in the query graph according to the sorting function. Then,

calculate the maximum number of edges in the query graph

that can be linked around by the edge. Next, find an edge set

in which all edges match with this edge in the data graph

and decompose the data graph into multiple subgraphs. Each

subgraph contains an edge in the edge set and the number of

subgraphs is equal to the size of the edge set. Finally, sub-

graph isomorphism is performed on each subgraph, and the

prospective time-dependent subgraph is enumerated.

In addition to the basic time-dependent graph pattern

query problem, there are some more complex isomorphic

problems exist in the time-dependent graph. Semertzidis

and Pitoura [66] presented a durable graph pattern queries

that aim to find persistent matches (the top-k longest period

of time) of input patterns in node-labeled time-dependent

graph. The evolution of graph is expressed as a sequence of

snapshots which is corresponding to graphs with different

time instances. A straightforward algorithm for the top-k

most durable graph pattern queries is to perform a subgraph

isomorphism algorithm on each snapshot then aggregates

the results. But the straightforward algorithm does not adapt

to the large-scale time-dependent graphs. They merged the

snapshots into a labeled version graph (LVG) which records

the time interval of nodes, edges, and labels as lifespan.

Then, they calculated and filtered the candidate set by neigh-

borhood and path time indexes based on Bloom filters [6],

and then they presented an algorithm to find the top-k most

durable graph. The algorithm first checks if there are isomor-

phic matches of the query graph in the candidate sets and

deletes the candidates without an isomorphic match. Then

the algorithm checks if the lifespan of edges and vertices in

the candidate graph is conformed to the lifespan of the query

graph. The top-k most durable graphs are gotten by ordering

the duration of the results.

5.2 Time‑Dependent Subgraph Mining

Subgraph discovery and analysis problems are widely used

in static graphs. In practice, subgraph mining is a very broad

concept and essentially can be seen as a clustering problem.

The problem of finding a set of vertices with certain features

and closely interacting with each other in graphs is called

a subgraph mining problem. A time-dependent graph min-

ing problem seeks to mine subgraph structures with time-

dependent information, such as relaxed moving object clus-

ters [47], heavy subgraphs [7], diversified subgraphs [79],

and dense subgraphs [49].

The moving object cluster is a loosely defined and gen-

eral task to find a group of moving objects that are traveling

together sporadically [47], which can be widely used in the

studies of animal behaviors, routes planning, and vehicle

control. There are two elements which are geographically

close to each other when moving together in a certain time

interval. To record the moving object cluster, swarm was

proposed to contain a number of objects who are in the same

cluster in a time interval. For a group of moving objects as

O and a set of timestamps as T, a swarm is a pair (O, T) con-

taining at least min
o
 individuals who are in the same cluster

at least min
t
 timestamp snapshots, that is, |O| ⩾ min

o
 and

|T| ⩾ min
t
 . The search space of moving an object cluster is

very huge, because the size of all the possible combinations

is exponential (i.e., 2O
DB × 2

O
TB). And since the discovery of

the moving object cluster is based on multiple timestamps,

it has a polynomial solution. Therefore, the efficient method

called ObjectGrowth [47] was proposed to remove redundant

and hopeless candidates through two pruning rules.

The heaviest dynamic subgraph (HDS) seeks to find the

highest-scoring time-dependent subgraph in a weighted

dynamic network whose edge weights evolve over time. The

score of a subgraph is defined by calculating the sum of the

edge weights and the score has to be maximized over all

possible subgraphs and all possible sub-intervals. For each

time snapshot, if the edge exists, the score gets 1 or the score

gets − 1. Given a time-dependent graph with T timestamps,

there are T ⋅ (T + 1)∕2 time intervals to consider. Bogdanov

et al. [7] proved that the HDS problem is NP-hard even if the

score is 1 or − 1 and they gave a filter-and-verify algorithm

to solve the HDS problem, named as MEDEM. To prune

the irrelevant sub-interval space and quickly verifying can-

didate sub-intervals, MEDEM calculates the upper bound

of the solution. A simple upper bound can be obtained by

summing all the positive edges. And a tighter upper bound

is calculated by score of a connected component of positive

edges P and the lowest score among negative edges N. The

tighter upper bound is calculated as follows:

362 Y. Wang et al.

1 3

To avoid the quadratic enumeration, MEDEM gives an

efficient and effective group filtering phase with time

complexity in O(t ⋅ log2(t) ⋅ |E|) . MEDEM is based on a

filter-and-verification framework, but it not adapted to the

time-dependent graph with large number of vertices, edges,

and timestamps. Because there are a large number of time

intervals that need to be filtered and verified, Ma et al. [49]

proposed a highly efficient data-driven approach named as

FIDES. They showed that all the edges evolve in a conver-

gent manner and defined a cohesive density curve to find

the dense subgraph. Accordingly, the dense subgraphs only

exist in time intervals in which the cohesive density curve

has a local maximum. They also proved that finding dense

graphs problem is equivalent to the net worth maximiza-

tion problem, a variant of the Prize Collecting Steiner Tree

problem. FIDES first computes k time intervals and then

finds and returns dense subgraphs with the largest possible

cohesive density. The experiments show that both quality of

the dense subgraphs and the running time of the FIDES are

better than MEDEM.

Since it is important to find dense subgraph patterns with

close vertices interacting, many definitions of dense sub-

graph patterns have been proposed, such k-core, k-truss, �

-dense subgraph, and �-quasi-clique [79] . Most dense sub-

graph pattern problems are NP-hard problems. A diversified

subgraph is a dense graph based on the definition of �-quasi-

clique to calculate the �-quasi-clique during a time interval

in a time-dependent graph.

Definition 3 (�-Quasi-Clique [79]) Given a time-dependent

graph G = (V , E) and a parameter � , for all v ∈ V and t ∈ I ,

we say that G is a �-quasi-clique during the time interval I iff

According to Difinition 3, a diverseifed time-depend-

ent graph mining problem is to find k dense time-pen-

dent subgraphs in a time-dependent graph, that the k is

large and diversified (i.e., maximizing the coverage).

Here the coverage set of a time-dependent graph G′ is

denoted as C(G�) = {(v, t) | v ∈ V
�
, t ∈ I

�} , whose size is

|C(G�)| = |V �| ⋅ |I�| . For finding qualified patterns, effective

pruning rules are required. Yang et al. presented five prun-

ing rules for time-dependent subgraph mining, to prune the

vertices with low degree and short duration, the vertices far

away form selected vertex, the snapshot graphs over bound,

the vertices over bound, and the remaining snapshot graphs

with a consecutive interval, respectively.

∑

max(0, P + N) − min (N) ⩾ score.

d
v
(t) ⩾ � ⋅ (|V| − 1).

6 Time‑Dependent Graph Systems

At present, a large number of graph management systems

have been proposed, including Neo4j2 and Titan3 as well

as large graph processing frameworks such as Pregel [51],

GraphLab [48], and GraphX [26]. But these graph systems

are all designed for static graphs and they can be extended

to process time-dependent graphs.

6.1 Snapshot‑Based System

Existing works of the time-dependent graph system are

mainly based on snapshot-based approaches. These sys-

tems use snapshot-based approaches to solve problems on

time-dependent graphs, so they are called snapshot-based

approach systems. The snapshot-based approach is to con-

vert the time-dependent graph into a sequence of static

graphs over time and each static graph is called a snapshot.

The snapshot-based approach faces a huge challenge of gen-

erating a large number of snapshots even if there is only

one time-dependent graph, which consumes a lot of storage

space and query time. Therefore, many corresponding tech-

niques have been proposed for efficient snapshot processing.

Cattuto et al. [13] proposed a time-dependent social net-

work management system with a multi-layer index structure

based on Neo4j. They used wearable sensors to collect time-

dependent data and built a time-resolved behavioral social

network. Then, they defined a frame to contain the status of

the social network during each time interval. For each frame,

they built a proximity graph whose nodes represent individu-

als and edges represent proximity relations between indi-

viduals recorded in the corresponding frame. The TGraph

[34] is also a time-dependent network management system

based on Neo4j. The TGraph uses Neo4j storage nodes, rela-

tionships and static properties of nodes/relationships, while

the time-dependent properties of nodes/relationships are

stored by a dynamic properties storage (DPS) component.

The TGraph first writes the time-dependent properties to

the memory data structure MemTable. Then, DPS stores the

data in the MemTable into the disk files UnStableFile and

StableFile. Each UnStableFile and StableFile holds the data

within a time interval. Finally, DPS uses MetaFile to record

the filename and the corresponding time interval of each

file. The TGraph records all time-dependent information in

memory, which causes many data to be logged repeatedly.

To support the large-scale graph, distributed time-

dependent graph management systems with low-cost stor-

age and efficient query time-dependent information are

proposed. DynamoGraph [67] exploits graph partitioning

to store each individual vertex as a map containing key-

value pairs tagged with time or JSON document. The edges

are stored within vertex documents in a list that contains 2 http://neo4j .com/.
3 http://think aurel ius.githu b.io/titan /.

http://neo4j.com/
http://thinkaurelius.github.io/titan/

363Time-Dependent Graphs: Definitions, Applications, and Algorithms

1 3

the edges alongside with their attributes. DeltaGraph [41]

performs snapshot retrieval queries in parallel by recording

graph data over time through a hierarchical index structure.

In DeltaGraph, the leaf nodes correspond to equispaced

snapshots, and the edges between the nodes preserve the

difference between the corresponding snapshots. Snapshots

and edges can be distributed to a group of computers in

parallel by using horizontal partitions for distributed stor-

age. DeltaGraph records an atomic activity in the network

by an event. An event can be used for creation, deletion,

and changing attributes of vertices and edges. Moreover, an

event represents the occurrence of an edge or vertex at a time

instance. Hence, an event always corresponds to a single

timepoint. Therefore, for the snapshot S
t
 and S

t+1
 at time t

and t + 1 , respectively, we have that

where E is the set of all events at time t + 1 . Khurana and

Deshpande showed that the DeltaGraph can solve both sin-

gle-point queries as well as multi-point snapshot queries,

that is, to retrieve a graph structure/a subset of vertex or

edge attributed/all attributed in a time instance and a time

interval, respectively.

6.2 Traversal‑Based System

Snapshot-based systems are useful for analyzing the evolu-

tion of networks. However, as pointed out in [75], the query

results obtained by converting the time-dependent graph

into a static graph are completely different from the results

directly obtained from time-dependent graph. Therefore,

these snapshot-based systems only adapt to settle snapshot-

based queries, but not suitable for traversal-based queries

such as information diffusion analysis [10]. Compared to

snapshot-based systems, traversal-based systems are suit-

able for analyzing information dissemination that follows

time limits.

The ChronoGraph [10] is a novel system enabling time-

dependent graph traversals. The ChronoGraph supports

three types of graphs, including static property graphs, time-

instant property graphs, and time-period property graphs. It

splits time-dependent graph into a collection of events that

are instances of graph elements that are valid for a specific

time-instant or a non-negligible period of time. In a cita-

tion network, the time-instant property graph consists of ⋃
id1,id2,t e(id1�isCitedBy�id2)t , representing v(id

1
) cites v(id

2
)

at time t. And in a phone call network, the time-period prop-

erty graph consists of
⋃

id1,id2,(t1,t2)
e(id1�isCalling�id2)(t1,t2)

 ,

representing v(id
1
) has a phone call with v(id

2
) starting at t

1

and ending at t
2
 . The ChronoGraph divides the time period

from the time instances into a time period by a property

filter, a property skip parameter, a singular constraint fil-

ter, and a singular constraint skip parameter, and converts

S
t+1 = S

t
+ E, S

t
= S

t+1 − E.

all time-instant events into time-period events. Then, the

ChronoGraph uses a path management scheme, formed as

Map < Object, Set < Lsit < Object >>> , to manage a pair

of current graph elements and their relevant path set (i.e.,

lists of objects). The ChronoGraph allows convenient and

efficient time-dependent graph traversal and has a good

effect on time-dependent breadth-first search, depth-first

search, and single source shortest path.

7 Conclusions and Open Questions

In this paper, we reviewed extensive studies on time-depend-

ent graphs. We showed how dynamic systems benefit from

the modeling of time-dependent graphs and discussed

methods for discovering and analyzing dynamic network

structures in the time domain. Meanwhile, we explained

the great significance of the time-dependent graph struc-

ture in network researches, which has a good application in

many fields. Therefore, the studies of the time-dependent

graph have great theoretical significance and broad applica-

tion prospects for studying the query processing and min-

ing problems. As the data scale continues to expand and

the data structure becomes more and more complex, these

bring more challenges to the query processing and data min-

ing problems on time-dependent graphs, which also bring

more opportunities for researchers.

The study of the time-dependent graph is still a rather

young field with many open questions and unexplored direc-

tions. We will list some of these issues as follows:

Generative models for time-dependent networks. There are

very few models building for time-dependent networks. At

the same time, existing models also have shortcomings,

especially the snapshot-based model which ignores the

impact of time information between snapshots. Therefore, an

important open issue is to clearly construct and study param-

eterized, generative models for time-dependent networks.

Measures for time-dependent networks. Although a large

number of measures of time-dependent graphs have been

discussed in this review, we believe there is much room

for improvement in this measure. The existing studies of

time-dependent graphs are mostly based on time instances

which are discrete. However, the discrete time-dependent

graph is rarely used in practical applications, and more is

the time-dependent graph with continuous time. Therefore,

how to extend the existing time-dependent algorithms to

not only discrete time-dependent graphs but also continu-

ous time-dependent graphs is one of the focuses of future

research works. At the same time, there are many unique

time-dependent queries but most of the existing measures

are generalizations of static network measures. Accordingly,

364 Y. Wang et al.

1 3

other important open issues are quantifying and character-

izing the structural features of real-time-dependent systems.

Dynamical systems for time-dependent networks As we men-

tioned in Sect. 6, most of the time-dependent systems are

snapshot based which only adapt to snapshot-based queries.

These systems are less sensitive to time-dependent effects

and only focus on the structure changes over time. How-

ever, a maturity and integrity time-dependent system does

not only benefit to the questions about structure contacts,

but also about the nature of acting over contacts. Conse-

quently, there should be more systems that are sensitive to

time-dependent effects like the order of events.

Acknowledgements This work is supported by the National Natu-

ral Science Foundation of China for Excellent Young Scientists

(61622202), the National Natural Science Foundation of China

(61732003, 61572119), and the Fundamental Research Funds for the

Central Universities (N150402005).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of

interest.

Informed consent Informed consent was obtained from all individual

participants.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

 1. Batz GV, Sanders P (2012) Time-dependent route planning with

generalized objective functions. In: European symposium on

algorithms. Springer, pp 169–180

 2. Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996)

An asymptotically optimal multiversion B-tree. VLDB J Int J

Very Large Data Bases 5(4):264–275

 3. Bellman R (1958) On a routing problem. Q Appl Math

16(1):87–90

 4. Bhadra S, Ferreira A (2003) Complexity of connected compo-

nents in evolving graphs and the computation of multicast trees

in dynamic networks. In: International conference on ad-hoc

networks and wireless. Springer, pp 259–270

 5. Bhavsar SP, Splinter RJ (1996) The superiority of the minimal

spanning tree in percolation analyses of cosmological data sets.

Mon Not R Astron Soc 282(4):1461–1466

 6. Bloom BH (1970) Space/time trade-offs in hash coding with

allowable errors. Commun ACM 13(7):422–426

 7. Bogdanov P, Mongiovì M, Singh AK (2011) Mining heavy sub-

graphs in time-evolving networks. In: 2011 IEEE 11th interna-

tional conference on data mining. IEEE, pp 81–90

 8. Bollobás B (2013) Modern graph theory, vol 184. Springer,

Berlin

 9. Braha D, Bar-Yam Y (2009) Time-dependent complex networks:

dynamic centrality, dynamic motifs, and cycles of social interac-

tions. In: Adaptive networks. Springer, pp 39–50

 10. Byun J, Woo S, Kim D (2019) ChronoGraph: enabling tempo-

ral graph traversals for efficient information diffusion analysis

over time. IEEE Trans Knowl Data Eng. https ://doi.org/10.1109/

TKDE.2019.28915 65

 11. Carrasco B, Lu Y, da Trindade JM (2011) Partitioning social

networks for time-dependent queries. In: Proceedings of the 4th

workshop on social network systems. ACM, p 2

 12. Carroll KP, McClaran SR, Nelson EL, Barnett DM, Friesen DK,

William GN (1992) AUV path planning: an A* approach to path

planning with consideration of variable vehicle speeds and mul-

tiple, overlapping, time-dependent exclusion zones. In: Proceed-

ings of the 1992 symposium on autonomous underwater vehicle

technology. IEEE, pp 79–84

 13. Cattuto C, Quaggiotto M, Panisson A, Averbuch A (2013) Time-

varying social networks in a graph database: a Neo4j use case. In:

First international workshop on graph data management experi-

ences and systems. ACM, p 11

 14. Chabini I, Lan S (2002) Adaptations of the A* algorithm for

the computation of fastest paths in deterministic discrete-time

dynamic networks. IEEE Trans Intell Transp Syst 3(1):60–74

 15. Chen X, Zhang C, Ge B, Xiao W (2017) Temporal query process-

ing in social network. J Intell Inf Syst 49(2):147–166

 16. Cooke KL, Halsey E (1966) The shortest route through a network

with time-dependent internodal transit times. J Math Anal Appl

14(3):493–498

 17. Cordella LP, Foggia P, Sansone C, Vento M (1999) Performance

evaluation of the VF graph matching algorithm. In: Proceedings

10th international conference on image analysis and processing.

IEEE, pp 1172–1177

 18. Dehne F, Omran MT, Sack JR (2009) Shortest paths in time-

dependent FIFO networks using edge load forecasts. In: Proceed-

ings of the second international workshop on computational trans-

portation science. ACM, pp 1–6

 19. Dehne F, Omran MT, Sack JR (2012) Shortest paths in time-

dependent FIFO networks. Algorithmica 62(1–2):416–435

 20. Delling D, Wagner D (2009) Time-dependent route planning. In:

Robust and online large-scale optimization. Springer, pp 207–230

 21. Demiryurek U, Banaei-Kashani F, Shahabi C, Ranganathan A

(2011) Online computation of fastest path in time-dependent spa-

tial networks. In: International symposium on spatial and temporal

databases. Springer, pp 92–111

 22. Ding B, Yu JX, Qin L (2008) Finding time-dependent shortest

paths over large graphs. In: Proceedings of the 11th international

conference on extending database technology: advances in data-

base technology. ACM, pp 205–216

 23. Disser Y, Müller-Hannemann M, Schnee M (2008) Multi-criteria

shortest paths in time-dependent train networks. In: International

workshop on experimental and efficient algorithms. Springer, pp

347–361

 24. Foschini L, Hershberger J, Suri S (2011) On the complexity of

time-dependent shortest paths. In: Proceedings of the twenty-

second annual ACM-SIAM symposium on discrete algorithms.

SIAM, pp 327–341

 25. Gendreau M, Ghiani G, Guerriero E (2015) Time-dependent rout-

ing problems: a review. Comput Oper Res 64:189–197

 26. Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Sto-

ica I (2014) GraphX: graph processing in a distributed dataflow

framework. In: 11th USENIX symposium on operating systems

design and implementation (OSDI 14), pp 599–613

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TKDE.2019.2891565
https://doi.org/10.1109/TKDE.2019.2891565

365Time-Dependent Graphs: Definitions, Applications, and Algorithms

1 3

 27. Gunturi V, Shekhar S, Bhattacharya A (2010) Minimum spanning

tree on spatio-temporal networks. In: International conference on

database and expert systems applications. Springer, pp 149–158

 28. Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV,

Dupuy D, Walhout AJ, Cusick ME, Roth FP et al (2004) Evidence

for dynamically organized modularity in the yeast protein–protein

interaction network. Nature 430(6995):88

 29. Hanneke S, Fu W, Xing EP et al (2010) Discrete temporal models

of social networks. Electron J Stat 4:585–605

 30. Hartmanis J (1982) Computers and intractability: a guide to the

theory of NP-completeness. SIAM Rev 24(1):90

 31. Held M, Karp RM (1970) The traveling-salesman problem and

minimum spanning trees. Oper Res 18(6):1138–1162

 32. Holme P, Edling CR, Liljeros F (2004) Structure and time evolu-

tion of an internet dating community. Soc Netw 26(2):155–174

 33. Holme P, Saramäki J (2012) Temporal networks. Phys Rep

519(3):97–125

 34. Huang H, Song J, Lin X, Ma S, Huai J (2016) TGraph: a tempo-

ral graph data management system. In: Proceedings of the 25th

ACM international on conference on information and knowl-

edge management. ACM, pp 2469–2472

 35. Huang S, Fu AWC, Liu R (2015) Minimum spanning trees in

temporal graphs. In: Proceedings of the 2015 ACM SIGMOD

international conference on management of data. ACM, pp

419–430

 36. Huo W, Tsotras VJ (2014) Efficient temporal shortest path queries

on evolving social graphs. In: Proceedings of the 26th interna-

tional conference on scientific and statistical database manage-

ment. ACM, p 38

 37. Ichoua S, Gendreau M, Potvin JY (2003) Vehicle dispatching with

time-dependent travel times. Eur J Oper Res 144(2):379–396

 38. Idri A, Oukarfi M, Boulmakoul A, Zeitouni K, Masri A (2017)

A new time-dependent shortest path algorithm for multimodal

transportation network. Procedia Comput Sci 109:692–697

 39. Kempe D, Kleinberg J, Kumar A (2002) Connectivity and

inference problems for temporal networks. J Comput Syst Sci

64(4):820–842

 40. Khoa VD, Pham TV, Nguyen HT, Van Hoai T (2015) Multi–cri-

teria route planning in bus network. In: IFIP international confer-

ence on computer information systems and industrial manage-

ment. Springer, pp 535–546

 41. Khurana U, Deshpande A (2013) Efficient snapshot retrieval over

historical graph data. In: 2013 IEEE 29th international conference

on data engineering (ICDE). IEEE, pp 997–1008

 42. Köhler E, Langkau K, Skutella M (2002) Time-expanded graphs

for flow-dependent transit times. In: European symposium on

algorithms. Springer, pp 599–611

 43. Kollmitz M, Hsiao K, Gaa J, Burgard W (2015) Time dependent

planning on a layered social cost map for human-aware robot navi-

gation. In: 2015 European conference on mobile robots (ECMR).

IEEE, pp 1–6

 44. Kontogiannis S, Zaroliagis C (2016) Distance oracles for time-

dependent networks. Algorithmica 74(4):1404–1434

 45. Lebre S, Becq J, Devaux F, Stumpf MP, Lelandais G (2010) Sta-

tistical inference of the time-varying structure of gene-regulation

networks. BMC Syst Biol 4(1):130

 46. Li D, Jia X, Liu H (2004) Energy efficient broadcast routing

in static ad hoc wireless networks. IEEE Trans Mob Comput

3(2):144–151

 47. Li Z, Ding B, Han J, Kays R (2010) Swarm: mining relaxed tem-

poral moving object clusters. Proc VLDB Endow 3(1–2):723–734

 48. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Heller-

stein JM (2012) Distributed GraphLab: a framework for machine

learning and data mining in the cloud. Proc VLDB Endow

5(8):716–727

 49. Ma S, Hu R, Wang L, Lin X, Huai J (2017) Fast computation

of dense temporal subgraphs. In: 2017 IEEE 33rd international

conference on data engineering (ICDE). IEEE, pp 361–372

 50. Malandraki C, Daskin MS (1992) Time dependent vehicle rout-

ing problems: formulations, properties and heuristic algorithms.

Transp Sci 26(3):185–200

 51. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N,

Czajkowski G (2010) Pregel: a system for large-scale graph pro-

cessing. In: Proceedings of the 2010 ACM SIGMOD international

conference on management of data. ACM pp 135–146

 52. Marchetti-Bowick M, Yin J, Howrylak JA, Xing EP (2016) A

time-varying group sparse additive model for genome-wide

association studies of dynamic complex traits. Bioinformatics

32(19):2903–2910

 53. Menger K (1927) Zur allgemeinen kurventheorie. Fundam Math

10(1):96–115

 54. Mertzios GB, Michail O, Spirakis PG (2019) Temporal network

optimization subject to connectivity constraints. Algorithmica

81(4):1416–1449

 55. Michail O (2016) An introduction to temporal graphs: an algo-

rithmic perspective. Internet Math 12(4):239–280

 56. Moinet A, Starnini M, Pastor-Satorras R (2015) Burstiness and

aging in social temporal networks. Phys Rev Lett 114(10):108701

 57. Nannicini G, Delling D, Liberti L, Schultes D (2008) Bidirec-

tional A* search for time-dependent fast paths. In: International

workshop on experimental and efficient algorithms. Springer, pp

334–346

 58. Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V

(2012) Components in time-varying graphs. Chaos Interdiscip J

Nonlinear Sci 22(2):023101

 59. Orda A, Rom R (1990) Shortest-path and minimum-delay algo-

rithms in networks with time-dependent edge-length. J ACM

(JACM) 37(3):607–625

 60. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic

interactome: it’s about time. Brief Bioinform 11(1):15–29

 61. Pyrga E, Schulz F, Wagner D, Zaroliagis C (2008) Efficient mod-

els for timetable information in public transportation systems. J

Exp Algorithmics (JEA) 12:2–4

 62. Qiu X, Zhao L, Wang J, Wang X, Wang Q (2016) Effects of time-

dependent diffusion behaviors on the rumor spreading in social

networks. Phys Lett A 380(24):2054–2063

 63. Rao A, Hero AO III, Engel JD et al (2007) Inferring time-varying

network topologies from gene expression data. EURASIP J Bio-

inform Syst Biol 2007:7

 64. Redmond U, Cunningham P (2016) Subgraph isomorphism in

temporal networks. arXiv preprint arXiv :1605.02174

 65. Riolo CS, Koopman JS, Chick SE (2001) Methods and measures

for the description of epidemiologic contact networks. J Urban

Health 78(3):446–457

 66. Semertzidis K, Pitoura E (2019) Top-k durable graph pat-

tern queries on temporal graphs. IEEE Trans Knowl Data Eng

31(1):181–194

 67. Steinbauer M, Anderst-Kotsis G (2016) Dynamograph: a distrib-

uted system for large-scale, temporal graph processing, its imple-

mentation and first observations. In: Proceedings of the 25th inter-

national conference companion on world wide web. International

World Wide Web Conferences Steering Committee, pp 861–866

 68. Subramaniam S, Pope S (1998) A mixing model for turbulent

reactive flows based on euclidean minimum spanning trees. Com-

bust Flame 115(4):487–514

 69. Sun X, Tan Y, Wu Q, Wang J (2017) Hasse diagram based algo-

rithm for continuous temporal subgraph query in graph stream.

In: 2017 6th international conference on computer science and

network technology (ICCSNT). IEEE, pp 241–246

http://arxiv.org/abs/1605.02174

366 Y. Wang et al.

1 3

 70. Tang J, Musolesi M, Mascolo C, Latora V (2009) Temporal dis-

tance metrics for social network analysis. In: Proceedings of the

2nd ACM workshop on online social networks. ACM, pp 31–36

 71. van der Tuin MS, de Weerdt M, Batz GV (2018) Route planning

with breaks and truck driving bans using time-dependent contrac-

tion hierarchies. In: Proceedings of the twenty-eighth international

conference on automated planning and scheduling, ICAPS 2018,

Delft, The Netherlands, June 24–29, 2018, pp 356–365

 72. Wang C, Tang J, Sun J, Han J (2011) Dynamic social influence

analysis through time-dependent factor graphs. In: 2011 Inter-

national conference on advances in social networks analysis and

mining. IEEE, pp 239–246

 73. Wang S, Lin W, Yang Y, Xiao X, Zhou S (2015) Efficient route

planning on public transportation networks: a labelling approach.

In: Proceedings of the 2015 ACM SIGMOD international confer-

ence on management of data. ACM, pp 967–982

 74. Wang W, Yang L, Liao Q, Zhu X, Zhang Q (2015) TiSA: time-

dependent social network advertising. In: 2015 IEEE international

conference on communications (ICC). IEEE, pp 1188–1193

 75. Wu H, Cheng J, Huang S, Ke Y, Lu Y, Xu Y (2014) Path problems

in temporal graphs. Proc VLDB Endow 7(9):721–732

 76. Wu H, Cheng J, Ke Y, Huang S, Huang Y, Wu H (2016) Efficient

algorithms for temporal path computation. IEEE Trans Knowl

Data Eng 28(11):2927–2942

 77. Xu Y, Huang J, Liu A, Li Z, Yin H, Zhao L (2017) Time-con-

strained graph pattern matching in a large temporal graph. In:

Asia-Pacific web (APWeb) and web-age information manage-

ment (WAIM) joint conference on web and big data. Springer, pp

100–115

 78. Yang L, Zhou X (2017) Optimizing on-time arrival probability

and percentile travel time for elementary path finding in time-

dependent transportation networks: linear mixed integer program-

ming reformulations. Transp Res Part B Methodol 96:68–91

 79. Yang Y, Yan D, Wu H, Cheng J, Zhou S, Lui J (2016) Diversified

temporal subgraph pattern mining. In: Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery

and data mining. ACM, pp 1965–1974

 80. Zhao Q, Tian Y, He Q, Oliver N, Jin R, Lee WC (2010) Commu-

nication motifs: a tool to characterize social communications. In:

Proceedings of the 19th ACM international conference on Infor-

mation and knowledge management. ACM, pp 1645–1648

	Time-Dependent Graphs: Definitions, Applications, and Algorithms
	Abstract
	1 Introduction
	2 Time-Dependent Graph Framework
	2.1 Definition
	2.2 Data Modeling
	2.2.1 Models for Discrete Time-Dependent Graphs
	2.2.2 Models for Continuous Time-Dependent Graphs

	2.3 Topological Structure
	2.3.1 Time-Respecting Paths
	2.3.2 Connectivity, Components, and Menger’s Theorem
	2.3.3 Spanning Tree

	3 Time-Dependent Route Planning
	3.1 Single-Criteria Route Planning
	3.1.1 Models Based on Discrete Travel Time
	3.1.2 Models Based on Continuous Travel Time

	3.2 Multi-criteria Route Planning

	4 Time-Dependent Social Analysis
	5 Time-Dependent Subgraph Problems
	5.1 Time-Dependent Subgraph Matching
	5.1.1 Querying Static Graph Pattern
	5.1.2 Querying Time-Dependent Graph Pattern

	5.2 Time-Dependent Subgraph Mining

	6 Time-Dependent Graph Systems
	6.1 Snapshot-Based System
	6.2 Traversal-Based System

	7 Conclusions and Open Questions
	Acknowledgements
	References

