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Abstract

A time-dependent graph is, informally speaking, a graph structure dynamically changes with time. In such graphs, the 

weights associated with edges dynamically change over time, that is, the edges in such graphs are activated by sequences of 

time-dependent elements. Many real-life scenarios can be better modeled by time-dependent graphs, such as bioinformatics 

networks, transportation networks, and social networks. In particular, the time-dependent graph is a very broad concept, 

which is reflected in the related research with many names, including temporal graphs, evolving graphs, time-varying graphs, 

historical graphs, and so on. Though static graphs have been extensively studied, for their time-dependent generalizations, 

we are still far from a complete and mature theory of models and algorithms. In this paper, we discuss the definition and 

topological structure of time-dependent graphs, as well as models for their relationship to dynamic systems. In addition, 

we review some classic problems on time-dependent graphs, e.g., route planning, social analysis, and subgraph problem 

(including matching and mining). We also introduce existing time-dependent systems and summarize their advantages and 

limitations. We try to keep the descriptions consistent as much as possible and we hope the survey can help practitioners to 

understand existing time-dependent techniques.

Keywords Time-dependent network · Graph data management · Network analysis · Graph system

1 Introduction

A graph is a data structure which is widely used in net-

work modeling. Almost every scientific domains, including 

mathematics, computer science, chemistry, and biology, can 

be modeled and studied by graphs. Moreover, graphs are 

extensively applied in social networks, biological networks, 

transportation networks, distributed systems, and so on. A 

static graph (we use the “static graphs” to refer to classical 

graphs in this review to opposite it from time-dependent 

graphs) consists of two sets: vertices and edges. Here, each 

vertex represents an object. Each edge represents a relation 

between each pair of vertices. In practical applications, ver-

tices and edges of graphs often contain specific informa-

tion, such as labels or particular weights (such as length 

and cost). Generally, for example, when we model a road 

transportation network into a graph, each vertex represents 

an intersection and the associated coordinates (latitude and 

longitude) are a vertex weight. Each edge represents a road 

segment between two adjacent intersections and the distance 

of the edge is an edge weight.

However, many real-life scenarios can be better modeled 

by time-dependent graphs, such as bioinformatics networks 

[52, 60, 63], transportation networks [25, 38, 78], social net-

works [56, 62, 72]. In bioinformatics networks, graphs are 

used to reflect the similarity and regulatory of biomolecules, 

such as proteins, genes, and enzymes. The connections in 

biological functions are not always active but change over 

time [28, 45]. In social networks, the topological structure 

of a graph represents a social relationship. When a person 

leaves a group or a new group is established, the topological 

structure needs to be updated. While time is a main reason 

for these changes [11, 72]. In transportation networks, there 

is usually a set of fixed routes on which a group of transport 

units moves over time [20, 61, 71, 73]. The transportation 

network is one of the most suitable networks that can be 

modeled by a time-dependent graph, where the influence 

of time always needs to be considered. For example, when 

a user takes a transfer in flight transportation networks, the 
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departure time of the second flight must be later than the 

arrival time of the first flight. Generally, in such networks, 

the weights associated with edges dynamically change 

over time (time-dependency) [22]. In terms of modeling, 

a time-dependent graph can be thought as a special case of 

labeled graphs, in which labels capture some measure of 

time [55]. That is to say, edges in such graphs are activated 

by sequences of time-dependent elements.

An advantage of modeling a network as a time-depend-

ent graph is that we can study the dynamic effect of time 

on the graph instead of the impact of the actual dynamics. 

In general, when is a graph appropriate to be modeled and 

analyzed as a time-dependent graph? The system needs to 

be modeled as a time-dependent graph only when it con-

forms to the time-dependent framework and involves the 

time scale. And if the dynamic system changes much faster 

than the speed of the dynamic connection, or if the edges 

in the graph are actively changing, then there is no need to 

model the dynamic system into a time-dependent graph [33]. 

Allen divided time-dependent relationship into 13 categories 

which are shown in Table 1.

Though static graphs have been extensively studied, there 

is still far from having a concrete set of structures and algo-

rithm frameworks for time-dependent graphs [55]. Due to 

the influence of time, most query processing and mining 

problems are more complicated in time-dependent graphs 

than that in static graphs. For example, a time-dependent 

shortest path problem aims to find the optimal path from a 

source to a destination, when the starting time is selected 

from a user-given starting-time interval [22] instead of 

just finding the shortest path. It is still not clear how time 

affects the complexity of the optimization problem in 

time-dependent graphs. However, there is an evidence in 

[4] which shows that the concept of time can significantly 

increase the computational complexity. Many problems, 

which can be solved in a linear time or a polynomial time 

on static graphs, become NP-complete or NP-hard problems 

on time-dependent graphs, such as the connected compo-

nent problem. In recent works, one important problem is to 

understand the complexity of classical graph problems in 

time-dependent graphs and proposing algorithms for them 

[20, 24]. Other works focus on proposing practical applica-

tion problems and solving them [44, 61].

In this paper, we focus on prior works on time-depend-

ent graphs. The rest of the paper is organized as follows. 

Section 2 introduces the time-dependent graph framework 

including definitions and models. Section 3 introduces route 

planning problems and existing algorithms on time-depend-

ent graphs. Section 4 shows some special time-dependent 

queries in social analysis. Section 5 provides two kinds of 

time-dependent subgraph problems, including subgraph 

matching and mining. Section  6 shows existing time-

dependent graph systems and summarizes their advantages 

and limitations. Section 7 concludes this paper.

2  Time‑Dependent Graph Framework

2.1  Definition

The time-dependent graphs can be fundamentally divided 

into two types according to the time type of the active 

an edge: time instances and time intervals as illustrated 

in Fig. 1. In Fig. 1a, the weight on an edge represents a 

sequence of time instances. In this case, the interaction 

between each pair of vertices is activated at a sequence of 

time instances. The time-dependent graph is represented as 

a triple G = (V , E, T) . V is a set of vertices and E ⊆ V × V  is 

a set of edges, and for each e ∈ E , there is a non-empty set 

of time T
e
= ⟨t1,… , t

n
⟩ as a weight. Such time-dependent 

graphs are commonly used to represent instant messaging 

networks where the duration does not need to be considered, 

such as mail networks, telephone networks, and information 

networks. For example, a public transportation network can 

Table 1  Presentation of 

ALLEN’s 13 time-dependent 

relations. Adapted from [77]
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be represented as this type of time-dependent graph. A vehi-

cle on the network is operated according to a specific set of 

discrete times on the timetable.

In the other case (Fig. 1b), the edges are activated in 

a sequence of time intervals. The weight on each edge e 

represents as T
e
= {[t1, t2],… , [t

n−1, t
n
]} , where a period of 

activity is beginning at t
1
 and ending at t

2
 . In such graphs, 

the duration is very important. This type of time-dependent 

graph can naturally model the systems whose edges change 

in time intervals, such as proximity networks, seasonal food 

webs, and infrastructural systems [33]. For example, a road 

network can be modeled as such time-dependent graph 

because of the traffic control (i.e., the limit line) and traffic 

congestion (i.e., the morning–evening rush hours).

2.2  Data Modeling

In the existing works, there are several ways of modeling 

a time-dependent graph with a sequence of time instances 

on each edge. These models are mainly divided into two 

categories: one is to model discrete time-dependent graphs 

and the other is to model continuous time-dependent graphs. 

Next, we introduce the two models separately.

2.2.1  Models for Discrete Time‑Dependent Graphs

An edge on a discrete time-dependent graph is activated 

by disjoint time points. Formally, there are several ways of 

modeling discrete time-dependent graphs.

One is to build labels for the edges which has well-

defined attributes [15, 35, 73]. A time-dependent graph with 

a label � ∶ E → 2
ℕ is denoted by G = (V , E, �(G)) . The label 

set of �(G) is a collection of natural numbers on each edge, 

which can be denoted by �(E) where ��� =
∑

e∈E
��(e)� . This 

modeling method is widely available and can build unified 

searching schemes for time-dependent graphs.

Another is to build snapshots for the time-dependent 

graph, that is, the time-dependent graph is considered as 

an ordered pair of disjoint sets [9, 49, 80]. A time-depend-

ent graph is denoted by G = (V , A) , where A is a set of 

time-dependent edges. A function A(t) = {e ∶ (e, t) ∈ A} 

contains all edges in G at time t which is also called the 

tth instance of G. Accordingly, a snapshot of G at t is 

denoted by G(t) = (V , A(t)) . In this case, a time-dependant 

graph can be considered as a sequence of static graphs 

G = {G1, G2,… , G
t
} . This modeling method is most com-

monly used for modeling discrete time-dependent graphs, 

which is suitable for the time-dependent graph with a spe-

cific time structure, especially in real-time networks.

The third is to transfer the time-dependent graph into 

a static graph by building copies of vertices [35, 75, 76]. 

The reason for doing this is mainly because the technol-

ogy tends to be perfect on static graph. If a time-dependent 

graph can be transformed into a static graph without los-

ing any time-dependent information, it can provide a good 

foundation for future studies on time-dependent graphs. 

[75] provides a transfer method which has two steps to 

transform a time-dependent graph G = (V , E) into a static 

graph Ĝ = (V̂ , Ê) as illustrated in Fig.  2. Firstly, create 

copies of each vertex v ∈ V  in V̂  , where V̂  composed of 

(a) (b)

Fig. 1  Two fundamental time-dependent graphs. Here, a shows 

a time-dependent graph on which the weight on each edge is a 

sequence of time instances. These instances are marked by black 

lines in the timelines (gray bars). b Shows a time-dependent graph on 

which the weight on each edge is a set of time intervals. These inter-

vals are marked by black bars in the timelines (gray bars). Note that 

these time intervals can be either continuous or discrete

(a) (b)

Fig. 2  Graph transformation from a time-dependent graph to a static 

graph
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two parts Tin(u, v) = {t + � ∶ (u, v, t, �) ∈
∏

(u, v)} and 

T
out
(v, u) = {t ∶ (u, v, t, �) ∈

∏

(v, u)} . Here, Tin(u, v) main-

tains all vertices which are in-neighbors of v. Symmetrically, 

T
out
(u, v) maintains all vertices which are out-neighbors of v. 

Secondly, create edges from (v, tin) to (v, t
out
) for each vertex 

v ∈ V  by order vertex in V̂
in
(v) according to time instances 

order, then create a directed edge from each v to its copes. 

This modeling method can transplant algorithms of static 

graphs to problems of time-dependant graphs. But the disad-

vantage is obvious that building multiple copies of the ver-

tices increase the scale of graphs. And [75] also shows that 

the results obtain directly from the time-dependent graph are 

quite different from the results obtained from the converted 

static graph for queries that need to consider time order.

2.2.2  Models for Continuous Time‑Dependent Graphs

There are two drawbacks of the discrete time model. First, 

this model cannot represent the state of the graph between 

two discrete time points, which might yield inaccurate 

results. Second, the memory and processing requirements 

are high. A more precise way to describe a time-dependent 

network is to use the continuous time-dependent function. 

For a continuous time-dependent graph whose edges are 

activated in a sequence of time intervals, there are two mod-

eling methods.

One is to define an index function, called presence func-

tion, to determine whether a pair of vertices is connected at 

a given time interval [65]. If vertex u and v is connected at 

time t, then the presence function f (u, v, t) = 1 . Otherwise, 

f (u, v, t) = 0 . This modeling method applies to time-depend-

ent graphs where the time intervals are discrete and disjoint 

and the edges are only active and inactive.

The other is to treat a time-dependent graph as a flow-

dependent graph which means the weight it takes for flow 

to traverse an edge is different in different time intervals 

[19, 22, 24]. For e ∈ E , the flow function fe ∶ [0, T) → ℝ
+ , 

where fe(t) defines the rate of flow entering edge e at time t. 

For example, a road network can be modeled as a continu-

ous time-dependent graph, where a non-negative travel time 

function �
e
 determines the time it takes for flow to traverse 

an edge e [42]. The flow arrives at the end node of e at time 

t + �e(fe(t)) . Accordingly, this modeling method applies to 

time-dependent graphs where the time intervals are continu-

ous and the functions on edges change over time.

2.3  Topological Structure

In static graphs, the topological structure can be character-

ized by measures. Some measures can be applied directly 

to time-dependent graphs, including adjacent point, degree, 

etc. For example, in a time-dependent graph, the degree cal-

culation is similar to that in a static graph. It only needs to 

calculate the number of active edges connected to vertices 

over a period of time. While other measures need rethinking 

and redefining to take time into account on time-dependent 

graphs.

2.3.1  Time‑Respecting Paths

In the static graph, a path is simply a sequence of edges 

from origin vertex u to destination vertex v, such as 

p1 = ⟨D, A, B, C⟩ (red dotted line) and p2 = ⟨D, A, C⟩ (blue 

dotted line) in Fig. 3a. However, a time-respecting path [32, 

39] has to be redefined to take time into account. For exam-

ple, as shown in Fig. 3b, D and C are connected only through 

path p = ⟨(D, A, 4), (A, B, 5), (B, C, 6)⟩ (red dotted line), 

assuming edge delay is 1. Accordingly, the time-respecting 

path is a sequence of edges that follow a time order. If there 

are paths from A to B and B to C, it does not mean that there 

is a time-respecting path between A and C. Consequently, 

as seen in the example above, a time-respecting path from 

A to C is existing only if the contact between A and B takes 

place before the contact between B and C.

In the static graph, the most basic problem associated 

with the path is the shortest path problem that computes the 

shortest distance between two reachable vertices. In [16], the 

time-dependent shortest path problem is refined into three 

types:

Earliest Arrival Path Problem. The earliest arrival path 

problem asks for the corresponding route with the earliest 

arrival time at B from A at departure time t
a
.

Latest Departure Path Problem. The latest departure path 

problem asks for the corresponding route with the latest 

departure time from A and arrives at B no later than t
b
.

Shortest Duration Path Problem. The shortest duration path 

problem asks for the corresponding route with shortest dura-

tion time that departs from A no sooner than t
a
 and arrives 

B no later than t
b
.

Due to the complexity of time-dependent information, 

each of the above problems can not be solved in a greedy 

strategy which is often used to compute the shortest path 

problems in a static graph. Cooke et al. [16] proposed a 

(a) (b)

Fig. 3  Paths from D to C in a static graph and a time-dependent graph
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modified version of Bellman’s iteration scheme [3] to com-

pute the shortest path with time-dependent information. 

Afterward, many algorithms [59, 70, 73, 75] are proposed 

to solve Cooke et al.’s three problems on the time-dependent 

graph. Since the path problem is the most foundational prob-

lem on graphs, most of these algorithms are discussed in 

Sect. 3.1.

2.3.2  Connectivity, Components, and Menger’s Theorem

Connectivity is a fundamental concept for both static net-

works and time-dependent networks. We said a graph is con-

nectivity if there are paths between every pair of vertices. 

A connected component is defined as a set of vertices with 

paths between each pair of them. In directed static graphs, 

connected components can be classified into weakly and 

strongly connected components. In particular, a graph is said 

to be strongly connected, if there is a path from i to j and a 

path from j to i, for each pair of vertices i and j. Correspond-

ingly, a graph is said to be weakly connected, if the corre-

sponding undirected graph which is obtained by removing 

all directions in the edges is a connected graph, i.e., replace 

all directed edges with undirected edges. In time-dependent 

graphs, the order of time naturally introduces a directional-

ity of the graph. For instance, in the time-dependent graph 

G (shown as Fig. 4a), there exists a time-respecting path 

between vertex A and vertex E (i.e., edge e
AB

 at time 1 and 

edge e
BE

 at time 8 in Fig. 4b), but there is no path between E 

and A. Hence, the connectivity of the time-dependent graph 

is more similar to that of the static directed graph [58]. How-

ever, the concepts of weakly and strongly connected can 

not be generalized for time-dependent graphs if we only 

hold time-respecting paths instead of paths. Nicosia et al. 

proposed the definition of strong and weak connectivity on 

time-dependent graphs (called time-varying graphs in their 

paper [58]) as follows.

Definition 1 (Strong Connectedness [58]) Two nodes i and 

j of a time-varying graph are strongly connected, if i is tem-

porally connected to j and also j is temporally connected to i.

Definition 2 (Weak Connectedness [58]) Two nodes i and 

j of a time-varying graph are weakly connected if i is tem-

porally connected to j and also j is temporally connected to 

i in the underlying undirected time-varying graph.

According to above two definitions, the strongly con-

nected component and the weakly connected component 

can be easily defined, that is, the vertices sets where each 

pair of vertices fulfills the criteria. And Nicosia et al. also 

showed that finding the strongly connected components of 

a time-dependent graph is equivalent to finding the maximal 

cliques of an affine graph that is an undirected static graph 

with the same vertices as the time-dependent graph.

Menger’s theorem [53] is one of the most basic theo-

rems in the theory of graph connectivity. It states that the 

maximum number of node-disjoint s-v paths is equal to the 

minimum number of nodes that must be removed in order 

to separate s from v [8]. However, Kempe et al. [39] proved 

that the Menger’s theorem of static graphs does not apply 

to time-dependent graphs. In particular, they also proved 

that there is no natural analogue of Menger’s Theorem for 

the single-label time-dependent graph and it is NP-hard to 

compute the number of node-disjoint time-respecting paths. 

Over Kempe et al.’s work, Mertzios et al. [54] provided a 

natural time-dependent (called temporal in their paper) ana-

logue of Menger’s theorem for all (both single-label and 

multi-label) time-dependent graphs.

Theorem 1 (Menger’s Temporal Analogue [54]) Take any 

temporal graph �(G) , where G = (V , E) , with two distin-

guished nodes s and v. The maximum number of out-disjoint 

journeys from s to v is equal to the minimum number of node 

departure times needed to separate s from v.

By symmetry, they have that the maximum number of in-

disjoint journeys from s to v is equal to the minimum number 

of node arrival times needed to separate s from v.

2.3.3  Spanning Tree

The spanning tree is an important concept related to paths 

in static graphs. In particular, the minimum spanning tree 

problem refers to the minimal connected subgraph generated 

Fig. 4  A time-dependent 

undirected graph and the time-

dependent reachability

(a) (b)
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for the original graph. The connected subgraph contains all 

the vertices of the original graph, whose number of edges 

connecting the subgraphs is the smallest. The minimum 

spanning tree problem can be solved in polynomial time 

and has widely used in graphs. Many complex queries are 

based on the minimum spanning tree problem [5, 31, 46, 

68], and many efficient graph algorithms are based on build-

ing a minimum spanning tree, such as min-cut max-flow 

algorithm.1

Gunturi et al. [27] proposed a related concept in time-

dependent graph called time-sub-interval minimum span-

ning tree (TSMST). TSMST refers to a collection of mini-

mum spanning trees in an interval with minimum total cost. 

Further in [35], Huang et al. defined two kinds of minimum 

spanning trees ( MST
s
 ) in a time-dependent graph: (1) MST

a
 

which is the MST
s
 with earliest arrival times and (2) MST

w
 

which is the MST
s
 with the smallest total weight. Huang 

et al. proved that MST
a
 can be computed in linear time, but 

MST
w
 is a MAX-SNP hard. Consequently, they transformed 

the MST
w
 problem to the minimum Directed Steiner Tree 

problem.

3  Time‑Dependent Route Planning

The time-dependent route planning is an important problem 

with application in routing on road networks [22, 24], travel 

planning on public transportation networks [14, 73], vehicle 

dispatching on vehicle networks [37, 50], as well as in some 

robotic and navigation systems [12, 43]. To the best of our 

knowledge, the time-dependent shortest path problem, as 

the most basic route planning problem, is first proposed by 

Cooke and Halsey in [16].

Before we discuss the algorithms of routing problems 

on the time-dependent graph, we first introduce an impor-

tant property of the time-dependent graph, namely first-in-

first-out (FIFO) property. The FIFO property means that, 

on every link, an earlier departure will lead to an earlier 

arrival and a later departure will result in a later arrival. It 

renders that every edge has a non-decreasing arrival time 

function in a time-dependent network. We called a network 

is a FIFO network if every link in the network has the FIFO 

property. The facts of the FIFO property can be referred in 

[44]. Notice that the FIFO property is a special property on 

time-dependent graphs, but not all time-dependent graphs 

are FIFO networks. For example, a source s and a destina-

tion d are reachable by two vehicles, one is faster and the 

other is slower. Assume that a traveler A chooses the slower 

vehicle to depart in advance from s, then he may arrive later 

than the traveler B who chooses to depart late but takes the 

faster vehicle. Obviously, this travel does not satisfy the 

FIFO property. The other example of not satisfying the 

FIFO property is a path that allows waiting time at vertices. 

The FIFO property is relevant to time-dependent routing 

and many routing problems are based on the FIFO attribute.

In this section, we first discuss the single-criteria time-

dependent routing problem which only focuses on finding 

minimum travel time in time-dependent graphs. Then, we 

introduce the multi-criteria time-dependent routing prob-

lem which optimizes the travel time and multiple time-inde-

pendent costs. Since the methods in this section are all used 

to solve the route planning problem on the time-dependent 

graph in principle, we try to keep the descriptions consistent 

as much as possible.

3.1  Single‑Criteria Route Planning

As already noted, broadly speaking, time-dependent graphs 

can be divided into discrete and continuous. So, we intro-

duce single-criteria routing algorithms on the two types of 

time-dependent graphs, respectively.

3.1.1  Models Based on Discrete Travel Time

In the time-dependent network with discrete travel time, 

certain segments can only be traversed at specific discrete 

time instances based on a timetable. Therefore, the cost 

of an edge, varying as a travel time function, represents a 

succinctly periodic, discrete, piecewise linear (PWL) func-

tion. The public transportation network is representative of 

discrete time-dependent networks. According to real traffic 

conditions, it is always necessary to wait for a vehicle at a 

station. And when transfer from one vehicle to another, the 

vehicle schedule must be strictly followed.

As we maintained before, Cooke and Halsey [16] pro-

posed the most basic route planning problem. Cooke and 

Halsey proved that these queries could be solved with a mod-

ified version of Dijkstra’s algorithm. However, it does not 

scale well with the size of the graph and several techniques, 

such as indexing have therefore been proposed to improve 

efficiency. Pyrga et al. [61] proposed realistic time-expanded 

and time-dependent models and extended their methods for 

a series of realistic requirements of time-dependent shortest 

path (TDSP) problem on discrete time-dependent graphs. 

Chabini [14] extended the A* algorithm to compute the min-

imum travel time path for one as well as for multiple depar-

ture times. They improved a lower bound on minimum travel 

time which is used to design an effective adaptive A*-based 

algorithm. To speed up the A* algorithm, Nannicini et al. 

[57] and Demiryurek et al. [21] presented methods based 

on the bidirectional A* search algorithm. Notice that the 

time-dependent paths must be in time order. But we cannot 

know the arrival time in advance during backward search. 1 https ://brill iant.org/wiki/spann ing-trees /.

https://brilliant.org/wiki/spanning-trees/
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Hence, both Nannicini et al. and Demiryurek et al. run the 

backward search by the idea of lower bound function. Wu 

et al. [75] proposed efficient algorithms, named as one-pass 

algorithms. The one-pass algorithm is based on Dijkstra’s 

algorithm and solves the route planning queries by enumer-

ation. For each vertex v, the one-pass algorithm builds a 

store list L(v) = (s[v], a[v]) , where s[v] is the departure time 

from source x to v, and a[v] is the arrival time at v. Then, it 

updates the L(v) until finding the earliest arrival time from 

the source vertex x to v at different starting time. In order 

to provide an alternative approach, they proposed a method 

of transferring a time-dependent graph into a static graph. 

Notice that Wu et al. proved that the results obtained directly 

from the time-dependent graph are quite different from the 

results obtained from the converted static graph. This calls 

the need for studying the time-dependent problem directly 

on time-dependent graphs. After that Wang et al. [73] pre-

sented an efficient indexing technique, named as Timeta-

ble Labeling (TTL), for time-dependent routing problem in 

public transportation networks. The TTL index is defined 

based on the concept of canonical paths. It builds two label 

sets L
in
(v) and L

out
(v) for each node v in the time-dependent 

graph, which contains the information about the canonical 

paths between v and the nodes that rank higher than v. Wang 

et al. showed that the TTL index enables to support three 

common route planning queries (described in Sect. 2.3.1).

3.1.2  Models Based on Continuous Travel Time

Route planning on a continuous time-dependent network is 

drastically different from that on a discrete time-dependent 

network. Routing in continuous time-dependent networks is 

to calculate the optimal path from a source s to a destination 

d on road network without changing vehicle. It is a key com-

ponent in road network, self-driving technology, navigation 

systems as well as in some robotics. In a continuous time-

dependent network, the cost of the edge varies as a travel 

time function which is always a continuous and PWL func-

tion. Notice that we are not simply calculating the optimal 

path with a certain departure time, which is easily calculated 

by Dijkstra’s algorithm, but calculating the minimum travel 

time under certain conditions, such as the expected arrival 

time or the departure time interval.

Ordal and Rom [59] presented a Ford-type algorithm to 

solve the TDSP problem when no constraints are imposed 

on waiting times at the nodes. On the basis of Ordal and 

Rom’s work, Dehne et  al. [18] presented an improved 

method that can solve the TDSP problem in FIFO networks. 

They proved that the algorithm can run in polynomial time, 

while other methods require super-polynomial time. And 

they also presented an approximation method with possibly 

super-polynomial size output in time O(
Δ

�

(|E| + |V|log|V|)) . 

Afterward, Foschini et al. [24] presented a method that can 

solve TDSP problem in super-polynomial time. The main 

idea of their method is to calculate primitive and mini-

mized breakpoints and build acyclic layered graph repre-

sentation of the time-dependent graph. They presented an 

output-sensitive algorithm whose running time depends on 

the number of breakpoints at the nodes and edges in the 

time-dependent graph. In order to speed up the technique for 

TDSP problem, Foschini et al. proposed (1 + �)-approxima-

tion schemes to compute the arrival time functions in time 

O(K
1

�

log(
MaxTravelTime

MinTravelTime
)) . Ding et al. [22] presented a query 

as LTT(v
s
, v

e
, T) to ask the minimum-travel-time path from 

a source s to a destination d with the best departure time 

selected in a given time interval. They showed that their 

approach, named as Two-Step-LTT, adapts both on FIFO 

and NON-FIFO time-dependent networks. The first step is 

Dijkstra-based Time-refinement in which they compute the 

earliest arrival time function for each node. The second step 

is Fast Path-selection in which they compute the optimal 

path. To adapt Two-Step-LTT in non-FIFO networks, they 

showed how to transform a non-FIFO time-dependent graph 

into a FIFO one. They also proved the time complexity of 

their algorithm is O((n logn + m)�(T)).

3.2  Multi‑criteria Route Planning

Multi-criteria routing problem is more complicated than 

the single-criteria shortest path problem. Given two paths 

pi and pj , we say that pi dominates pj if and only if there 

are no criteria for which pi has a worse value than pj , with 

at least on strict equality. A path is called Pareto-optimal 

if it is not dominated by any other path. Therefore, multi-

criteria routing problems aim to find Pareto-optimal path 

sets from a source s to a destination d. The most common 

multi-criteria (or bi-criteria) time-dependent routing opti-

mization problems consider the optimization between travel 

time and multiple (or a) time-independent costs (expressed 

as the weights on each edge) including an approximation of 

energy consumption, distance, tolls, or other penalties [1].

Pyrga et al. [61] considered a bi-criteria search to opti-

mize the travel time and the number of transfers in discrete 

time-dependent graphs. In order to solve the bi-criteria opti-

mization problem, they set a bounded number of transfers 

which constraints that the total number of transfers is not 

greater than k. Based on Pyrga et al.’s work, Khoa et al. [40] 

also optimized the arrival time and the number of transfers, 

but they allowed walking during a transfer in a bus network. 

They presented three speed up techniques to accelerate the 

multi-criteria searching algorithm. Disser et al. [23] pre-

sented a multi-criteria searching algorithm by introducing 

the reliability of the transfer and gave the probability of tak-

ing the train. Different from Pyrga et al.’s work, Disser et al. 

focused on a many-source shortest path on train networks 

and they considered foot-path and special transfer rules 
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during transfers. In the multi-criteria searching algorithm, 

they used multi-dimensional labels to record all the prom-

ising path that the node can reach and found the shortest 

path based on the Dijkstra’s algorithm. And they proposed 

four speed up techniques to improve the performance of the 

searching algorithm.

Batz and Sanders [1] considered the optimization of travel 

time and costs in continuous time-dependent graphs. They 

proved that this problem is NP-hard and it can be computed 

by Dijkstra-like algorithms as prefix optimality is violated. 

Therefore, they presented a multi-label A* searching algo-

rithm. However, the efficiency of the algorithm is too low in 

practical applications. They used the generalized heuristic 

time-dependent contraction hierarchies (TCHs) during pre-

processing and contracted the least important nodes. The 

heuristic minimum cost queries with TCHs are divided into 

two phases. Firstly, it is a bidirectional upward search which 

only takes little running time. Then, it only uses the edge 

touched in bidirectional upward search to do a downward 

search. Experiments show that heuristic TCHs are very fast.

4  Time‑Dependent Social Analysis

In real scenarios, time is a common and necessary dimen-

sion on online social networks (OSNs). For example, when 

a user logs in or logs out of an account, the background 

database will have a timestamp to record such operations. 

Many complex dynamic time-dependent interactions can be 

abstracted into time-dependent information. Compared with 

traditional static social queries that only reflect the relation-

ship between users, time-dependent social queries can dis-

tinguish between new and old, active and inactive relation-

ships, and so on. Additionally, query and mining problems 

on time-dependent social networks are more focused on the 

evolution over time [29, 36]. For example, the time-depend-

ent shortest path queries in a social network can discover 

how close between two given users have been and how the 

closeness has evolved over time. Consequently, queries on 

time-series social networks are more complicated, and due 

to the concept of the time dimension, there are many query 

problems that are unique to time-dependent social networks.

Most of the works on time-dependent social networks are 

based on snapshots and time windows. Wang et al. [74] pro-

posed a time-dependent social network advertising and they 

designed a learning algorithm to obtain the optimal poli-

cies between users and advertisers. Wang et al. [72] dem-

onstrated that the influence of a user on another depends on 

their interactions in previous time windows. Therefore, they 

presented a dynamic factor graph (DFG) model to tackle 

the dynamic social influence analysis with time information. 

They modeled networks as a sequence of time-dependent 

graph snapshots (which called factor graph in [72]), and each 

graph snapshot belongs to a time window. In particular, each 

graph snapshot depends on the factor graph in the previous 

time window. This technique is optimal to time-dependent 

social network, but it has huge storage overhead. To efficient 

the queries, Huo and Tsotras [36] presented the temporal 

partitioning. They divided the time instance in the time-

dependent graph into multiple partitions, and each partition 

has a time window with a fixed length.

Furthermore, Chen et al. [15] introduced primitive que-

ries on time-dependent social networks. They divided the 

primitive queries into three aspects, which are aimed to find 

and check the user’s online status, the relationships between 

users, and the status of the user participating in the activ-

ity during a time interval [t
s
, t

e
] . Based on three primitive 

queries, they also presented three special queries that are 

shown as follows.

Friends of Interesting Activities (FIA) query The FIA query 

aims to find out user’s friends who are interested in some-

thing or people over a period of time.

Users of Time Filter (UTF) query The UTF query is used 

to find a user who is active within a certain time threshold, 

and the user’s friends are interested in a given event. UTF 

queries can be used in the social network advertising and 

social influence analysis in practice.

Group of Users with Relationship Duration (GURD) query 

The GURD query is used to find a group of users that satisfy 

a certain time condition, and the average intimacy between 

users satisfies a given value within a certain period of time.

To solve three problems on time-dependent social net-

works, Chen et al. designed two tree structures: Temporal 

Users and Relationships tree (TUR-tree) and Temporal Users 

and Activities tree (TUA-tree). The TUR-tree is extended 

by MVB tree [2] to index user relationships. The TUR-tree 

generates keys by string concatenating. For a user v
i
 identi-

fied by uid
i
 , the key is expressed as 0|uid

i
 , and the relation-

ship between uid
i
 and uidj is expressed as 1|uidi|uidj . The 

TUA-tree is a hybrid structure of B+-tree and Bloom Filter to 

represent the communication between user identifiers, time 

information, and keywords. For a TUA-tree, the entry of 

leaf node is formatted as < key, ptr > , where ptr points to 

an activity, and key is concatenation of user identifier and 

time associated with the activity the user is participating in. 

The TUA-tree splits, merges, and redistributes nodes by key.



360 Y. Wang et al.

1 3

5  Time‑Dependent Subgraph Problems

5.1  Time‑Dependent Subgraph Matching

The graph pattern matching is a fundamental problem in 

the graph data mining and has been applied in many fields. 

The graph pattern matching (a.k.a. subgraph isomorphism) 

problem is known to be NP-complete even in a static graph 

[30]. The existing graph pattern matching problems can be 

roughly divided into two types according to the pattern of 

query graph on time-dependent graphs.

Querying static graph pattern (SGP) in time-dependent 

graphs The querying static graph pattern problem is to find 

isomorphism subgraphs, when the query graph is a static 

graph (see Fig. 5c) with some time constraints (i.e., the inter-

action occurring time interval or the relation order) and the 

data graph is a time-dependent graph (see Fig. 5a).

Querying time-dependent graph pattern (TGP) in time-

dependent graphs The querying time-dependent graph pat-

tern problem is to find isomorphism subgraphs, when the 

query graph is a time-dependent graph (see Fig. 5b) and the 

data graph is a time-dependent graph (see Fig. 5a).

For the same time-dependent graph, the difference in the 

query graph will result in different query results, as shown 

in Fig. 5.

5.1.1  Querying Static Graph Pattern

Redmond and Cunningham [64] proposed three methods for 

subgraph matching algorithms by considering time-depend-

ent and topological information at different stages.

Time before Topology (Ti-To) The Ti-To first abstracts all 

possible time-respecting subgraphs as a candidate subgraph 

set from the data graph by breadth-first algorithm on edges. 

Then, find extracted subgraphs that satisfy the conditions of 

the query graph from the candidate set by the VF2 [17] sub-

graph isomorphism algorithm. Experiments show that the 

candidate set may have a large overlap and time consuming.

Topology before Time (To-Ti) The To-Ti performs the VF2 

subgraph isomorphism algorithm on the entire data graph 

and build a candidate subgraph set. At this stage, it does 

not pay attention to any time-dependent information. Then, 

To-Ti checks the time-dependent information between the 

query graph and the candidate subgraph set and retains the 

matching result.

Time and Topology Together (Ti&To) The Ti&To considers 

subgraph isomorphism and time constraints at same time. 

The isomorphic processing is described by a state space, 

each state s in the state space describes a local map. In a 

state s, the Ti&To first determines whether a candidate pair, 

consisting of vertices in query graph and data graph, is iso-

morphic and then Ti&To determines whether the candidate 

pair contents the time constraint. If the candidate pair satis-

fies both conditions, the neighbor vertices of the candidate 

pair are expanded downward to become new candidate pair. 

Loop until all the subgraphs that satisfy the conditions are 

found.

To solve the SGP problem with time-dependent relation 

order, a Hasse diagram based algorithm is proposed by Sun 

et al. [69]. They used Hasse diagram to express the time-

dependent partial order of the edges in the query graph. Each 

edge corresponds to a Hasse node, and a time-dependent 

relationship in the query graph is represented as a directed 

(a)

(b) (c)

(d) (e)

Fig. 5  Two kinds of graph pattern matching problems on the time-

dependent graph. a Shows a data graph. d Shows the query result of 

TGP query from (b). The edge (D, C) only can be activated at time 

t = 3 , thus there is only one matching result. c Shows the query result 

of SGP query from c with a limitation that the interaction occurring 

time interval d ≤ 4 . The edge (D,  C) only can be activated at time 

t = 5 , because t
CB

− t
DC

= 3 < d at t = 5 and t
CB

− t
DC

= 5 > d at 

t = 3 . Only when t = 5 (D, C) contents the time constraint
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Hasse edge. Then, they built the Hasse-cache structure to 

implement the continuous time-dependent subgraph query 

algorithm. The algorithm uses the probability of the time-

dependent graph to reduce intermediate results, while 

achieving topology matching and time relationship verifi-

cation. Compared with searching the entire query graph, the 

algorithm searches whether the time-dependent relationships 

of the data edges match the relationship of query edges and 

improves the performance of the algorithm by using the 

Hasse-cache structure.

5.1.2  Querying Time‑Dependent Graph Pattern

TCGPM-V [77] is a pattern matching method based on ver-

tex matching. Firstly, it uses the depth-first search tree to find 

all matching vertex sets and then enumerates all possible 

time-dependent subgraphs until finding the prospective time-

dependent subgraph. Unlike TCGPM-V, TCGPM-E [77] is a 

pattern matching method based on edge matching. TCGPM-

E first selects the edge with the smallest calculation result 

in the query graph according to the sorting function. Then, 

calculate the maximum number of edges in the query graph 

that can be linked around by the edge. Next, find an edge set 

in which all edges match with this edge in the data graph 

and decompose the data graph into multiple subgraphs. Each 

subgraph contains an edge in the edge set and the number of 

subgraphs is equal to the size of the edge set. Finally, sub-

graph isomorphism is performed on each subgraph, and the 

prospective time-dependent subgraph is enumerated.

In addition to the basic time-dependent graph pattern 

query problem, there are some more complex isomorphic 

problems exist in the time-dependent graph. Semertzidis 

and Pitoura [66] presented a durable graph pattern queries 

that aim to find persistent matches (the top-k longest period 

of time) of input patterns in node-labeled time-dependent 

graph. The evolution of graph is expressed as a sequence of 

snapshots which is corresponding to graphs with different 

time instances. A straightforward algorithm for the top-k 

most durable graph pattern queries is to perform a subgraph 

isomorphism algorithm on each snapshot then aggregates 

the results. But the straightforward algorithm does not adapt 

to the large-scale time-dependent graphs. They merged the 

snapshots into a labeled version graph (LVG) which records 

the time interval of nodes, edges, and labels as lifespan. 

Then, they calculated and filtered the candidate set by neigh-

borhood and path time indexes based on Bloom filters [6], 

and then they presented an algorithm to find the top-k most 

durable graph. The algorithm first checks if there are isomor-

phic matches of the query graph in the candidate sets and 

deletes the candidates without an isomorphic match. Then 

the algorithm checks if the lifespan of edges and vertices in 

the candidate graph is conformed to the lifespan of the query 

graph. The top-k most durable graphs are gotten by ordering 

the duration of the results.

5.2  Time‑Dependent Subgraph Mining

Subgraph discovery and analysis problems are widely used 

in static graphs. In practice, subgraph mining is a very broad 

concept and essentially can be seen as a clustering problem. 

The problem of finding a set of vertices with certain features 

and closely interacting with each other in graphs is called 

a subgraph mining problem. A time-dependent graph min-

ing problem seeks to mine subgraph structures with time-

dependent information, such as relaxed moving object clus-

ters [47], heavy subgraphs [7], diversified subgraphs [79], 

and dense subgraphs [49].

The moving object cluster is a loosely defined and gen-

eral task to find a group of moving objects that are traveling 

together sporadically [47], which can be widely used in the 

studies of animal behaviors, routes planning, and vehicle 

control. There are two elements which are geographically 

close to each other when moving together in a certain time 

interval. To record the moving object cluster, swarm was 

proposed to contain a number of objects who are in the same 

cluster in a time interval. For a group of moving objects as 

O and a set of timestamps as T, a swarm is a pair (O, T) con-

taining at least min
o
 individuals who are in the same cluster 

at least min
t
 timestamp snapshots, that is, |O| ⩾ min

o
 and 

|T| ⩾ min
t
 . The search space of moving an object cluster is 

very huge, because the size of all the possible combinations 

is exponential (i.e., 2O
DB × 2

O
TB ). And since the discovery of 

the moving object cluster is based on multiple timestamps, 

it has a polynomial solution. Therefore, the efficient method 

called ObjectGrowth [47] was proposed to remove redundant 

and hopeless candidates through two pruning rules.

The heaviest dynamic subgraph (HDS) seeks to find the 

highest-scoring time-dependent subgraph in a weighted 

dynamic network whose edge weights evolve over time. The 

score of a subgraph is defined by calculating the sum of the 

edge weights and the score has to be maximized over all 

possible subgraphs and all possible sub-intervals. For each 

time snapshot, if the edge exists, the score gets 1 or the score 

gets − 1. Given a time-dependent graph with T timestamps, 

there are T ⋅ (T + 1)∕2 time intervals to consider. Bogdanov 

et al. [7] proved that the HDS problem is NP-hard even if the 

score is 1 or − 1 and they gave a filter-and-verify algorithm 

to solve the HDS problem, named as MEDEM. To prune 

the irrelevant sub-interval space and quickly verifying can-

didate sub-intervals, MEDEM calculates the upper bound 

of the solution. A simple upper bound can be obtained by 

summing all the positive edges. And a tighter upper bound 

is calculated by score of a connected component of positive 

edges P and the lowest score among negative edges N. The 

tighter upper bound is calculated as follows:
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To avoid the quadratic enumeration, MEDEM gives an 

efficient and effective group filtering phase with time 

complexity in O(t ⋅ log2(t) ⋅ |E|) . MEDEM is based on a 

filter-and-verification framework, but it not adapted to the 

time-dependent graph with large number of vertices, edges, 

and timestamps. Because there are a large number of time 

intervals that need to be filtered and verified, Ma et al. [49] 

proposed a highly efficient data-driven approach named as 

FIDES. They showed that all the edges evolve in a conver-

gent manner and defined a cohesive density curve to find 

the dense subgraph. Accordingly, the dense subgraphs only 

exist in time intervals in which the cohesive density curve 

has a local maximum. They also proved that finding dense 

graphs problem is equivalent to the net worth maximiza-

tion problem, a variant of the Prize Collecting Steiner Tree 

problem. FIDES first computes k time intervals and then 

finds and returns dense subgraphs with the largest possible 

cohesive density. The experiments show that both quality of 

the dense subgraphs and the running time of the FIDES are 

better than MEDEM.

Since it is important to find dense subgraph patterns with 

close vertices interacting, many definitions of dense sub-

graph patterns have been proposed, such k-core, k-truss, �

-dense subgraph, and �-quasi-clique [79] . Most dense sub-

graph pattern problems are NP-hard problems. A diversified 

subgraph is a dense graph based on the definition of �-quasi-

clique to calculate the �-quasi-clique during a time interval 

in a time-dependent graph.

Definition 3 (�-Quasi-Clique [79]) Given a time-dependent 

graph G = (V , E) and a parameter � , for all v ∈ V  and t ∈ I , 

we say that G is a �-quasi-clique during the time interval I iff

According to Difinition 3, a diverseifed time-depend-

ent graph mining problem is to find k dense time-pen-

dent subgraphs in a time-dependent graph, that the k is 

large and diversified (i.e., maximizing the coverage). 

Here the coverage set of a time-dependent graph G′ is 

denoted as C(G�) = {(v, t) | v ∈ V
�
, t ∈ I

�} , whose size is 

|C(G�)| = |V �| ⋅ |I�| . For finding qualified patterns, effective 

pruning rules are required. Yang et al. presented five prun-

ing rules for time-dependent subgraph mining, to prune the 

vertices with low degree and short duration, the vertices far 

away form selected vertex, the snapshot graphs over bound, 

the vertices over bound, and the remaining snapshot graphs 

with a consecutive interval, respectively.

∑

max(0, P + N) − min (N) ⩾ score.

d
v
(t) ⩾ � ⋅ (|V| − 1).

6  Time‑Dependent Graph Systems

At present, a large number of graph management systems 

have been proposed, including Neo4j2 and Titan3 as well 

as large graph processing frameworks such as Pregel [51], 

GraphLab [48], and GraphX [26]. But these graph systems 

are all designed for static graphs and they can be extended 

to process time-dependent graphs.

6.1  Snapshot‑Based System

Existing works of the time-dependent graph system are 

mainly based on snapshot-based approaches. These sys-

tems use snapshot-based approaches to solve problems on 

time-dependent graphs, so they are called snapshot-based 

approach systems. The snapshot-based approach is to con-

vert the time-dependent graph into a sequence of static 

graphs over time and each static graph is called a snapshot. 

The snapshot-based approach faces a huge challenge of gen-

erating a large number of snapshots even if there is only 

one time-dependent graph, which consumes a lot of storage 

space and query time. Therefore, many corresponding tech-

niques have been proposed for efficient snapshot processing.

Cattuto et al. [13] proposed a time-dependent social net-

work management system with a multi-layer index structure 

based on Neo4j. They used wearable sensors to collect time-

dependent data and built a time-resolved behavioral social 

network. Then, they defined a frame to contain the status of 

the social network during each time interval. For each frame, 

they built a proximity graph whose nodes represent individu-

als and edges represent proximity relations between indi-

viduals recorded in the corresponding frame. The TGraph 

[34] is also a time-dependent network management system 

based on Neo4j. The TGraph uses Neo4j storage nodes, rela-

tionships and static properties of nodes/relationships, while 

the time-dependent properties of nodes/relationships are 

stored by a dynamic properties storage (DPS) component. 

The TGraph first writes the time-dependent properties to 

the memory data structure MemTable. Then, DPS stores the 

data in the MemTable into the disk files UnStableFile and 

StableFile. Each UnStableFile and StableFile holds the data 

within a time interval. Finally, DPS uses MetaFile to record 

the filename and the corresponding time interval of each 

file. The TGraph records all time-dependent information in 

memory, which causes many data to be logged repeatedly.

To support the large-scale graph, distributed time-

dependent graph management systems with low-cost stor-

age and efficient query time-dependent information are 

proposed. DynamoGraph [67] exploits graph partitioning 

to store each individual vertex as a map containing key-

value pairs tagged with time or JSON document. The edges 

are stored within vertex documents in a list that contains 2 http://neo4j .com/.
3 http://think aurel ius.githu b.io/titan /.

http://neo4j.com/
http://thinkaurelius.github.io/titan/
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the edges alongside with their attributes. DeltaGraph [41] 

performs snapshot retrieval queries in parallel by recording 

graph data over time through a hierarchical index structure. 

In DeltaGraph, the leaf nodes correspond to equispaced 

snapshots, and the edges between the nodes preserve the 

difference between the corresponding snapshots. Snapshots 

and edges can be distributed to a group of computers in 

parallel by using horizontal partitions for distributed stor-

age. DeltaGraph records an atomic activity in the network 

by an event. An event can be used for creation, deletion, 

and changing attributes of vertices and edges. Moreover, an 

event represents the occurrence of an edge or vertex at a time 

instance. Hence, an event always corresponds to a single 

timepoint. Therefore, for the snapshot S
t
 and S

t+1
 at time t 

and t + 1 , respectively, we have that

where E is the set of all events at time t + 1 . Khurana and 

Deshpande showed that the DeltaGraph can solve both sin-

gle-point queries as well as multi-point snapshot queries, 

that is, to retrieve a graph structure/a subset of vertex or 

edge attributed/all attributed in a time instance and a time 

interval, respectively.

6.2  Traversal‑Based System

Snapshot-based systems are useful for analyzing the evolu-

tion of networks. However, as pointed out in [75], the query 

results obtained by converting the time-dependent graph 

into a static graph are completely different from the results 

directly obtained from time-dependent graph. Therefore, 

these snapshot-based systems only adapt to settle snapshot-

based queries, but not suitable for traversal-based queries 

such as information diffusion analysis [10]. Compared to 

snapshot-based systems, traversal-based systems are suit-

able for analyzing information dissemination that follows 

time limits.

The ChronoGraph [10] is a novel system enabling time-

dependent graph traversals. The ChronoGraph supports 

three types of graphs, including static property graphs, time-

instant property graphs, and time-period property graphs. It 

splits time-dependent graph into a collection of events that 

are instances of graph elements that are valid for a specific 

time-instant or a non-negligible period of time. In a cita-

tion network, the time-instant property graph consists of ⋃
id1,id2,t e(id1�isCitedBy�id2)t , representing v(id

1
) cites v(id

2
) 

at time t. And in a phone call network, the time-period prop-

erty graph consists of 
⋃

id1,id2,(t1,t2)
e(id1�isCalling�id2)(t1,t2)

 , 

representing v(id
1
) has a phone call with v(id

2
) starting at t

1
 

and ending at t
2
 . The ChronoGraph divides the time period 

from the time instances into a time period by a property 

filter, a property skip parameter, a singular constraint fil-

ter, and a singular constraint skip parameter, and converts 

S
t+1 = S

t
+ E, S

t
= S

t+1 − E.

all time-instant events into time-period events. Then, the 

ChronoGraph uses a path management scheme, formed as 

Map < Object, Set < Lsit < Object >>> , to manage a pair 

of current graph elements and their relevant path set (i.e., 

lists of objects). The ChronoGraph allows convenient and 

efficient time-dependent graph traversal and has a good 

effect on time-dependent breadth-first search, depth-first 

search, and single source shortest path.

7  Conclusions and Open Questions

In this paper, we reviewed extensive studies on time-depend-

ent graphs. We showed how dynamic systems benefit from 

the modeling of time-dependent graphs and discussed 

methods for discovering and analyzing dynamic network 

structures in the time domain. Meanwhile, we explained 

the great significance of the time-dependent graph struc-

ture in network researches, which has a good application in 

many fields. Therefore, the studies of the time-dependent 

graph have great theoretical significance and broad applica-

tion prospects for studying the query processing and min-

ing problems. As the data scale continues to expand and 

the data structure becomes more and more complex, these 

bring more challenges to the query processing and data min-

ing problems on time-dependent graphs, which also bring 

more opportunities for researchers.

The study of the time-dependent graph is still a rather 

young field with many open questions and unexplored direc-

tions. We will list some of these issues as follows:

Generative models for time-dependent networks. There are 

very few models building for time-dependent networks. At 

the same time, existing models also have shortcomings, 

especially the snapshot-based model which ignores the 

impact of time information between snapshots. Therefore, an 

important open issue is to clearly construct and study param-

eterized, generative models for time-dependent networks.

Measures for time-dependent networks. Although a large 

number of measures of time-dependent graphs have been 

discussed in this review, we believe there is much room 

for improvement in this measure. The existing studies of 

time-dependent graphs are mostly based on time instances 

which are discrete. However, the discrete time-dependent 

graph is rarely used in practical applications, and more is 

the time-dependent graph with continuous time. Therefore, 

how to extend the existing time-dependent algorithms to 

not only discrete time-dependent graphs but also continu-

ous time-dependent graphs is one of the focuses of future 

research works. At the same time, there are many unique 

time-dependent queries but most of the existing measures 

are generalizations of static network measures. Accordingly, 
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other important open issues are quantifying and character-

izing the structural features of real-time-dependent systems.

Dynamical systems for time-dependent networks As we men-

tioned in Sect. 6, most of the time-dependent systems are 

snapshot based which only adapt to snapshot-based queries. 

These systems are less sensitive to time-dependent effects 

and only focus on the structure changes over time. How-

ever, a maturity and integrity time-dependent system does 

not only benefit to the questions about structure contacts, 

but also about the nature of acting over contacts. Conse-

quently, there should be more systems that are sensitive to 

time-dependent effects like the order of events.
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