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Summary

A differential equation is derived for the radius of a spherically symmetrical
body of uniform density as a function of time ¢, for any arbitrary equation of
state of the material at the centre, the equation of state elsewhere being
determined by that at the centre through the condition p = p(f). This
differential equation can be applied to cases where the body may oscillate or
continually contract or expand. In Paper I of this series we overlooked the
possibility of asymptotic contraction to a radius R>9GM/4c2, where M is
the mass. If, however, a stage is reached for which R <9GM/4c2, collapse
to zero volume must occur. We have applied our analysis to bodies in which
the material at the centre obeys a polytropic equation of state and obtained
general formulae for determining the radial motion uniquely for any poly-
tropic index and initial conditions.

1. Introduction. In the latter part of the previous paper (1) we considered the
adiabatic contraction of a spherically symmetrical body the density of which is
uniform throughout at each instant z. We confined attention to the case in which
the body continually contracts, but we overlooked* the possibility of asymptotic
contraction to a radius greater than gGM/4¢2. In the present paper we adopt a
completely general approach to the problem, except for the condition that p = p(%).
Physically, this means that we are free to choose the equation of state of the material
at any one given point.

2. Fundamental equations. From the previous paper, we find that the internal
metric can be expressed in the form

ds? = —Adr?— erd Q2+ 2dr?, (@)
where dQ? = d62+sin2 0dg2,
and p is given by

e#2 = Bf+Cff, (@)

where B, C are arbitrary functions of # whose physical significance will be discussed
below and f is an arbitraryt function of 7, depending only on the definition of the
radial coordinate, A= p—a (3)

a = a(r) being related to f by
f=exp (— f eo/ 2dr), (4)

* After we had come to the conclusion that our analysis following equation (34) was
faulty, we found that our mistake had been discovered independently by H. Bondi.
+ We could take f(#) = 1(r), and hence e* = e#/r2, without loss of generality.
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and .

¢ = p2F (1), (5)
where F is an arbitrary function of ¢ depending only on the definition of the time
coordinate. For convenience, we identify ¢ as the proper time of an observer
permanently situated at the centre, so that F is given by

F = 1/p%(o, f) = B2|4B?, 6)

in accordance with equation (31) of Paper I.
According to equation (29) of Paper I, the pressure is given by

? = plexp 4(o(rs) - v) 1}, @)

where the suffix s refers to the surface value. Since the pressure at the surface is
taken to be zero, it follows that there is a relation between B and C, given by
equation (34) of Paper I, namely
2
(g) +4BC = K%(Bk2+C)3, (8)
where

« = f(rs), (9)
and K is a constant.

We shall now give a more thorough and accurate analysis replacing that
following equation (34) in Paper I. In particular, we shall show that the equation
of state of the material at the centre provides a further equation relating B and C,
hence enabling us to obtain a unique solution given the arbitrary initial conditions*
of the problem.

3. Conditions for a realistic model. We begin by recalling that for the space-time
to be locally Minkowskian near the centre, B must be positive.

We shall now investigate what other restrictions must be placed on B, C in
order to obtain a realistic model. We shall impose the following conditions,}
except possibly at the end-point of collapse:

(a) o<p< o,

(b) o<p< o,

(c) —wo<p’<o,

(d) e#2 = R(r, t)>o, for r>o,

where the prime symbol denotes, as previously, differentiation with respect to r.
It is convenient to introduce a new variable y(¢) defined by the equation

y = g-l-lcz, (10)

and to work from now on in terms of B and y, instead of B and C. From equation
(2), it follows that
I B 2,2
e"/’*/z = — = Bf+ C/f',: _('_yi_i)’ (II)
R f

* The reference in the Summary of Paper I to ¢ an initial non-zero velocity distribution ’
is unnecessary.

1 Professor Bondi has drawn our attention to the fact that condition (c) could be violated
without infringing the fundamental laws of physics, but we shall not consider this possibility
here.
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and so, by equation (9),
R(rs, t) = Rs = «/By. (12)
Since

f'= —e®2exp (-—fe‘u/zdr)<o,

and B must be positive, it follows that a necessary and sufficient condition for
R to be positive is that y is positive. On rewriting equation (33) of Paper I in
the form

8mp = 3K2B3?3, (13)

we see that since B> o, necessary and sufficient conditions that o< p< oo are that
o<B< o and o<y< .

Since we shall impose the condition that p(rs, ) = o, condition (b) will auto-
matically follow from condition (c).

On substituting for v from equation (5) in equation (77) we get

— fl(ré‘» t)__ I} I
p=rli ) 9
It immediately follows from this equation that
P = - @+
o

From equation (11) we deduce that

B(y+f2—«*+ By|B)

~ 4t ) = 2O (x5)
and hence
p(r, 1) = G—% (16)
Consequently, s )
2ff ' B(p+p

P = IR T BB B

Since f' <o and f—c0 as r—>o, it follows that, since p+ p>o0 at r = 7;, a necessary
and sufficient condition that — co<p’< o for all  is that o< y/B< co.

We therefore conclude that the following conditions on B and y are both
necessary and sufficient to ensure that the model is ‘ realistic ’ in the sense defined
by (a), (b), (c) and (d) above:

(i) o<B< wm,
(1) o<y < o0,

(iii) o< y/B< .

4. Inequalities for models that are instantaneously static. With the aid of equation
(10), equation (8) can be rewritten as

B2
a— 4x?+4y = K2By?, (17)

and this cubic equation for y is to be solved subject to conditions (i), (ii) and (iii)
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above. If we write equation (17) in the standard form

y3+p*y+q* = o, (18)
then

_ 4

P* = _T(—Z—B’ (19)

and
x_ 42 B2
7" = K®B” K®B¥ (20)

The nature of the solutions of (18) depends on the sign of the discriminant D
given by
D = —4p*3—270%2 (21)

If D> o, there are three distinct real roots given by

y = 2A/(—?3—*) cos (§+2—§7—7), (22)
s (-3 ()

and #n = o, 1, 2. If D = o, y is again given by equation (22), but with § = o or
m, depending on the sign of ¢*, and there are only two distinct roots. If D<o,
there is only one real root and this is given by

e e JE e

We now consider models that are initially static, i.e. models for which B, y = o
for some value o of £. We shall use the suffix zero to denote values at ¢ = #o.
From equation (20) we see that go* >0, and hence we deduce that Dg>o, for if
Dy <o it would follow from equation (23) that yo would be negative, contrary to
condition (ii) for a realistic model. Also, since go* > o, it follows that #/2< fp< 7,
and hence, from equation (22),

y02 = - 0421’0*a

o< al<.

where

where

From this inequality, we can obtain another inequality that is analogous to
the well-known inequality Rs2< 1/(37p), or equivalently M/R;< 4/9, that applies
to the permanently static (equilibrium) uniform density Schwarzschild model.
For, on substituting for Ry(Z) and p(f) from equations (12) and (13), respectively,
we find that the total mass M given by*

M = §mp(t) Rs3(2)

becomes
M = $«3K2. (24)
Hence, using equation (19) with yo2 = — a2pg*, it follows that
M2 AKAB2y02 2,AK2B
m = 02y02 = o2k 0 (25)

* Justification of this formula is given in the Appendix.
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However, from equations (19), (20) and (21), it is clear that D> o implies that
k2K2By < lé
27

Hence, we deduce from equation (25) that
Mz2 < 16a2
R2(to) ~ 27’
and since 0 < a2< 1, it follows, for any model that is static at ¢ = #g, that
M _ 4
<, 2
Rs(tO) 3\/3 ( 7)

(26)

Since

M= ";—” p(t) Re¥(t),

we can write equation (27) in the form

I
3mpo’

Furthermore it is easily shown that, if initially the model contracts slowly
through a sequence of quasi-equilibrium configurations, so that B~o, B~o, the
condition (27) can be sharpened by replacing the right hand side by 4/9. For,
on differentiating equation (18) and using equations (19), (20) and (17), we
obtain

Ry¥(to) < (28)

Y(@3y2+p*) = —p¥y—g*
B B 4B2

Since, for ¢~#p, we have postulated that B~o, B~o, and since conditions
(1), (i1) and (iii) hold generally, it follows from equation (29) that

3y02 +p0* <o0.

Since yo2 = —a?pe*, and po* <o, it follows that a2<}. Consequently, from
equation (26) we deduce that condition (27) can be replaced by the sharper con-
dition
M _4
<3 o
R o (30)

in agreement with the result obtained by H. Bondi who, in considering the slow
contraction of models of uniform density, found that y, defined by

% _ %
PYP

’

diverged to infinity as M/R->4/[g.

5. A sufficient condition for collapse. We will now show that the inequalities
i>£>ﬂ'
3v3 Rsto) 9
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provide a sufficient condition that collapse to a point-singularity of infinite density
must occur in a finite time. For, in this case < a2<1 and, since y¢2 = — a2po¥,

it follows that 3y02+po*>o. By condition (iii), B and y must be of the same
sign. Consequently, from equation (29) we must have Bo>o. Therefore, B and y
are increasing functions, since initially Bp = o = 3. Thus, it follows from equa-
tion (19) that 3y2+p*>o0 for all >y, and hence, from equation (29), we see
that
2B 4B?
Bt B>

for all £>to. From this inequality we deduce that

—K2y3>o0,

B\ _1
(Fz) >;K2y3Bz>o,

and hence, since B = o for t = 7, that

oD >pi>o0,
for some positive constant Sy; for all ¢>¢;, where #; is some (arbitrarily) chosen
value of £ later than = .
If we now assume that B—>B, as t->co, where B, may be positively finite
or infinite, we obtain a contradiction. For the inequality for B/B2 implies that

Bco dB 0
5> dt,
| 5 B2, P

which is impossible, since the right hand side is infinite (because 8;>0) and the
left hand side is finite. Hence, since B is an increasing function, the only possibility
is that B diverges to infinity for some finite value = of t. Consequently, from
equation (12), it follows that Ry(7) = o and so, from equation (13), p(7) is infinite.

We therefore see that, if the body contracts to within a surface radius of less
than gGM/4¢2, it must collapse to a point singularity within a finite proper time.

6. Differential equation for the radius of the body in the general case. Since we
are considering the general problem of radial motion of a spherically symmetrical
body of uniform density, it is clear that we are free to choose the equation of
state of the material at any one point, e.g. the centre. This will in fact provide
the other equation relating B and y (or, alternatively, B and C), besides equation
(17). These two equations will then yield a unique solution, given the initial
conditions of the problem.

We take the equation of state at the centre to be of the form

u = u(p)
where u = p()/p(o, t), or equivalently for a given M,
u = u(Rs),

since p = 3M/4mR;3. Consequently, we can eliminate B, y and obtain a differential
equation involving only the variables of immediate physical significance: R;, u
and M. From now on we shall drop the suffix s and write R for R;.
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From equation (15), since f2(o) is infinite, it follows that
ilra ) _ 9B
; = I+, 31)
0,0~ "yB (
and hence, from equation (14), it follows that
plo,) _ 3B ,
pt)y B (32)
From equation (32), u is given by
B
u=u(p) = u(R) = p(?) =J~)_—,
() = uR) = 205 = 5B (33)
and since, by equation (12), R = /By, it follows that
_ _KB(I + 1)
and hence that § o yBuR _ uR (39
B k(14w R(1+u) 35

On multiplying equation (17) by B2R? and substituting for B2/B2 from equa-
tion (35), we obtain

2R2
R B2R24 4yBUR? — K2B3)R? — ?32 oR2 = 2M

(1 +u)? R’
by equation (13). On eliminating y, by equation (12), it follows that
u2R?
1w 4x2B2R2+ 4«BR = 2M|R.
This equation, regarded as a quadratic in «kBR;, can be solved to give
22
«BR = g{IiJ(I-%ﬁ(—;‘:fi_)z)}. (36)

On taking the logarithm of each side and differentiating with respect to the time,
we obtain B R d M u2Re

]§+ﬁ =% log {I iN/(I—vJT—F(T-I-—u)E)}'
Finally, on eliminating B/B by means of equation (35), we find that

——E—— = -d—log {Ii/(l—%+ﬁ—}. (37)

R(x+u) dt R~ (1+u)?

Clearly, given u = u(R) and the initial values of R, R and the constant M, equation
(37) determines R(t).

7. Some immediate consequences of equation (37). On carrying out the differentia-
tion indicated in equation (37), we obtain

N {]l_4+ uRuR 4 RRu? }
I TR (14wl (1+u)?
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From this equation, we can draw some immediate consequences of interest that
provide useful checks on the validity of equation (37):

(i) Clearly, since R, M > o, it follows that, if R~o~R, we must take the
positive signs on the right hand side of equation (38). 'The value #% of u required
for the body to be in equilibrium, so that R = o = R, is given by

I M|R
1+a {1+1/(1—2M[R)}/(1—2M|R)

and this yields
3v/(1—2M[R)—1
1—+v/(1—2MR)’ (39)

in agreement with the value given by the standard solution of the Schwarzschild
problem. (We note that M/R = 4/9 gives @& = o and so p(o, t) infinite.)

(ii) For a body that is instantaneously static, but not in equilibrium, at ¢ = £,
the radial acceleration at this instant is readily found from equation (38) to be
given by

U=

1+4 _ M|R+ RRug?|(1 +uo)?
I4up n M/R ’

where ug is the (initial) value of u, % is given by equation (39) and R, R denote
values at t = #9. Hence,
TT s M(1+uo)(E—uo)
R = o2 RE . (40)

From this equation, it follows that, according as up 2 %, i.e. as p(0) is less than or
greater than the value required to maintain equilibrium, so RSo, and (as we
should expect) the body begins either to contract or expand.
(iif) We observe that, in the pressure-free case, since up in equation (40) is
infinite, it follows that
B = —MRe,

in accordance with standard theory. Moreover, on putting # infinite in equation

(37), we get

M
1— % + R2 = constant,

which is the well-known formula for radial motion in the pressure-free model.
8. Relativistic central-polytropes. We propose now to apply our analysis to
the case where the material at the centre obeys the polytropic equation of state

pV7 = constant, (41)

where V is a differential element of volume and vy is constant. This equation
reduces to the form pp~" = constant when p < pc2, since pV is constant in New-
tonian theory. However, in relativity, the work done by the pressure contributes
to the density. Since

(pV) = _PVs
it follows that
sp=_YP s , 2
P otp P (42)

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny |z uo 1sonb AQ ¥G£1092/661/7/6€ |L/o10IHE/SEIUW/ W00 dNO DlWapEoE//:SA)Y WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1968MNRAS.139..499T

FT9B3VNRAS, 139- ~499T!

No. 4, 1968 Time-dependent internal solutions, 11 507

where 8p, 8p are changes in the pressure and density due to compression or ex-
pansion. Incidentally, it would appear that we should take equation (41) as the
relativistic polytropic equation of state, since pp~ = constant leads to a velocity
of sound that increases indefinitely with increasing p and so ultimately exceeds
the local velocity of light.

Since u = p(t)/p(o, t), it follows from equation (42) that

y = (I+u);ip (5) = 1_‘51‘ <1—-§-§) = I%‘ (1+%), (43)

since p = 3M/4mR3. Because y is a constant, equation (43) can be integrated to

give
R3 = B3u(y—1)—1p/O"D  B3u/n— r)nil

” ” , (44)

where B is an arbitrary constant and # is the polytropic index given by y = 1+ 1/n.
Equations (37) and (44) enable the solution to be found.

On substituting for R/R from equation (43) in the left hand side of equation
(37), we obtain

= = 28 = (-7 )

On integration this equation gives
uln—1 2M  u2R? ):3
AT T = R3
- {1 i,\/( R Tara?)) (45)

where & is a constant. On substituting for R and R in terms of u and # from equa-
tions (43) and (44), we obtain a first order separable differential equation for u
as a function of #. It is convenient to replace u by v, where

v = un—1, (46)

and equation (45) reduces to the form

B v (47)

where

f@) = ,02(1 n/3)_2 2Mn

(tv+ 1)1/3 1)(5 2n)/3+ (-v+ I) v(l*n). (48)

These equations give 9(2), and R() is given by equation (44) which can be rewritten

in the form

g Plontl
R CEE))

(49)

We see from equation (47) that © and f vanish together, and from equation (49)
that the vanishing of % implies the vanishing of R and conversely. Consequently
the vanishing of f provides a necessary and sufficient condition that the radial
motion is instantaneously arrested. In general, this will mean that at the epoch in
question the radial motion is reversed.

In any particular model where the material at the centre is subject to a poly-
tropic equation of state (equation (41)), we need only consider equations (47),
(48) and (49) with the appropriate values of the various parameters.
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9. Examples of relativistic central polytropes. To illustrate the method, we
shall consider two particular values of y, namely y = 3/2 and y = 4/3. In the
former case, the motion will depend on the initial conditions and the mass; whereas,
in the latter case, a general result is obtained.

(I) y = 3/2 (n = 2) and the motion starts from rest
In this case, equation (48) gives

I 1\V3) 4M I
f(@) = ﬁvzw 11—24/3k (I—i—;) }+? <1+5). (50)
The constants k, B depend on the initial conditions and we shall consider two
particular examples:
(a) the motion starts from rest at a radius Ry, given by

I = 4/(1—2GM|c?Rp) = 0-99,

so that Ry = 20 000/199 GM/c2. We take central pressure to be such that vy = 125
and hence uy = 252;

(b) the motion starts from rest at a radius Ry, given by I = o-g, so that
Ry = (200/19) GM/c?2, and in this case we shall take v9 = 8, and hence uyp = 18.

In case (a), formula (39) gives # = 197 and therefore the central pressure is
insufficient to maintain equilibrium. The initial inward acceleration is given by
equation (40). Since the motion starts from rest, f(vg) = o, and the constant &
is given from equation (45) by

k= {n(1+ 1/00}1/3 {(I—Ii-l)}’ (51)

and on putting v9 = 125, # = 2, and I = 0-99, we can determine k. We get 8
from equation (49), so that equation (50) gives

f(@) = 6-324 02/3{1—1-0023 (I+é>1/3;+°'7875 <1+;IJ). - (52)

Values of f have been computed for values of v from 10 to 150 at intervals of 10.
From this table we see that starting at vo = 125, for which f(v) = o, the body

TaBLE 1

v f(@)

10 —0°151933
20 —0-048124
30 — 0002209
40 +0°020593
50 0-031646
60 0-035853
70 0°035710
8o 0032640
90 0027506
100 0020877
110 0°'013135
120 0004547
130 —0-00468¢9
140 —0°014430
150 — 0024563
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contracts with surface velocity given by equations (47) and (49), until v~ 30,
when the contraction is halted and the body begins to expand again. The body
thereafter oscillates between these extreme values of v. The amplitude of the

oscillations is given by Rumax _ (_Iﬂ) 9 /3~2-6
Rmin 30
To obtain an idea of the order of magnitude of the period of oscillation we
note that, on taking v+ 1~ in equation (49), we get

223 , 9
R = T ﬁ m.
Equation (47) gives 3
o=V (53)
and so, on introducing ¢ explicitly,
evf
= @o)® (54)
From equation (53) it follows that the period of oscillation in seconds is given
by 48 125 do
3¢ Jso VS

where the lower limit is approximate. (The maximum surface velocity occurs
when v~ 60 and is about 0-04¢.) We find that in the case of a mass equal to 108
times that of the Sun, the period of oscillation is about 3-25 X 10% seconds, i.e.
about a month. The mean radius of this model is approximately 1-4x 104 times
the radius of the Sun, and the mean density is approximately o-5x 1074 g cm™3,
(This low density makes the assumption of uniform density somewhat unrealistic
in the case of this particular example.)

In case (b), we have # = 17, and since vp = 8 it follows that #y = 18, leading
to a small inward acceleration. In general, the body will ‘ bounce’ or collapse
depending on whether the inward motion is halted before the radius becomes too
small. By the same method as before, we find that in this case,

f(v) = 6-1202/3 {1—1-012 (I+%)1/3}+I'I6 (I +§) (55)

Values of f have been computed for various values of v. It is found that for v > 8,
f is negative (at least in the neighbourhood of v = 8) and for v<8, f is always
positive and diverges positively as v tends to zero. Hence the body collapses to
a point singularity of infinite density. The total time of collapse for a body of
mass 108 times (and radius 2 X 103 times) that of the Sun can be calculated by
the method used for case (a) and we find that it is about 5x 104 seconds, i.e.
about 14 h.

For comparison, we note that for the same mass the time of pressure-free
collapse (from the same initial radius) is about 4- 5 h.

(A1) y = 4/3 (n = 3) and the motion starts from rest
Equation (48) becomes
1/3 1/3
f(v) = ]%2_2(32 (I-I—E) +6_]_W(I+£) E, (56)

v B o] v
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where £ is given by equation (51) with n = 3. We have, from equation (49),
6M 41
T = 2312y |
B 3 (I l ) (I+I/7JO)1/3 (57)

On substituting for & and B from equations (51) and (57) in (56), we get
1/3
SO _ (142 @y 2oz (SEUD) P (12X G ()

3231 +1) 14+1/v 1+1/o

From equation (39), the value @ of o to maintain equilibrium is given by

@ = (3l-1))(x—1),

and hence
- 1 0= $id—1 = (6l—4)/3(—1).
onsequently, -
- 1= 3014 (59)
39+6
Therefore, on writing
I+ I/‘U()
Coi1+1fo’ (60)
equation (58) becomes
v)(1+ 1/v0)1/3 2(w— +i4v
3J;/(3()I(+l)(/13—)1/v) = 20—z -2 322712) ) _ g(w), (61)

say.
The sign of f(v) is that of g(w), the derivative of which is given by

g 4 2 { I+‘Uo}
dw ~ 2T 303 5G4 2) e (62)

The behaviour of this derivative depends on whether vg 27, i.e. on whether
pos p, where p denotes the central pressure required to maintain equilibrium.
Putting w = 1 in equation (62) we get

dw 3 7+2)

If 99>, then this derivative at w = 1 (v = vg) is negative and hence the body
initially contracts, as we would expect. From the form of dg/dw in equation (62),
we immediately see that the negative slope of g becomes steeper as w decreases
and the body collapses.

On the other hand, if we have vg < 7, so that the system initially expands, then
dg/dw is an increasing function for increasing values of w and the expansion is
never halted.

These results are independent of the initial value of M/R and depend only
on vp, and hence on the initial central pressure.

10. Stability of relativistic central-polytropes. We can readily show that an
equilibrium model (of uniform density with a polytropic equation of state at the centre)
is stable if, at the value of v concerned,
axf
P (63)
and otherwise is unstable.
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First, we observe that R = o = R, the conditions that characterize an equi-
librium model, imply that ¥ = o = . Also, we have seen that these conditions
imply that

f=o=%.

From equation (47), we must always have f> o. If, at the value v of v for which
and df/dv vanish, we have

& <o

dv2 "
then any curve in the (9, f)-plane arbitrarily close to that of f, corresponding to
slightly different initial conditions from those of equilibrium, can be positive only
for a small range of v surrounding v = vo. From this we deduce that, if slightly
disturbed from equilibrium, the body can only oscillate with a small amplitude
and hence the equilibrium model is stable against small radial disturbances.
Similarly, if condition (63) does not hold for the value of v in question, then the
body is unstable.

We can use this result to recover a result given by Bondi (2) concerning the
critical value of y (at the centre) below which the equilibrium model would be
unstable. We require the value of # for which d2f/dv? vanishes when f and df/dv
vanish.

We rewrite equation (48) in the form

1/3
f (7:1)2(/132 If;(;) — p2-n/3) (1 +5) o(w),

where @ is given by equation (60), and

(@) = 2w_2{{,2/3_‘_71(7_}+21)-’_3 {<1+(I;w) 'vo)n/3_w;.

We can readily verify that g'(w) = o, for w = 1, if and only if v9 = ¥ (equilibrium
condition). Since, corresponding to

7 = (31-1)(1-1),

o Gn)I=(14n)
n(i=1) ’

we find that, in general,

if follows that if g’’(w) = o for w = 1 then » must be given by
1 _ —1+14l—9l2
no 3(i-3h)?
Consequently, the critical value of y at the centre is given by

y = I+£ = ‘_2.|_§ _l_

n 3 33-0%

For values of y exceeding this, the body is stable and for smaller values it is
unstable.

We observe that, since I = 4/(1—2GM|/c2R) if we put [ = 1 in equation (64)

corresponding to ¢ infinite (or R infinite), then we recapture the Newtonian

(64)
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critical value y = 4/3. It is also possible to obtain Bondi’s value of y for any
point of the body.

Mathematics Department,
Imperial College,
London, S.W.7.
1967 August.
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APPENDIX

To show that we are justified in taking the total mass to be given by the
formula

M = gmp(t) Rs%(2), (65)

we must consider the external metric. This will be a case of the general form
given by equation (1) of Paper I, namely

ds? = —erdr2— erdQ2+ edr2.

For r>r;, both p and p vanish and so, if m is defined by equation (11) of Paper I,
namely
8m = (123427 + ger/2— " 231272, (66)

equations (12) and (13) of Paper I imply that outside the sphere

m' = o = m.
Hence, in this region
m(r, t) = constant = m;,

if m is assumed to be continuous at r = 7.

By Birkhoff’s theorem the external metric can be expressed in the static
Schwarzschild form. Hence, for r>7;, we can choose the coordinates so that, in
particular, i = o. Equation (7) of Paper I then implies that outside the sphere

0 = 3o (324 p'v) =t (67)
and equation (66) becomes

8ms = ger/2— pu'2e31/272, (68)
On writing R for e#/2, so that u’ = 2R’|R, we find that equation (68) gives
1—2ms/R = R'2e,

and hence
dR?
Adrd = —— .
4 1—2mg/R

Also, from equation (67), we obtain
,_ pr [ 2ms/R2 )
v'=R (1—2ms/R ’
and it follows that
&dt? = (1—2 mg/R) dt2.

Comparison with the Schwarzschild metric shows that the total mass of the
sphere is given by M = m;.
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Inside the sphere equation (12) of Paper I, namely

’

m' = 2mpu’ed+/2,
signifies that
m' = 4mpR°R’, (69)

where R = ¢#/2. From the definition of , it follows that m = o when R vanishes.
Hence, at any given time ?, equation (69) implies that

R=ER,
M = Mg = f dm = %—WPR33,

R=0

which is the required formula.

33
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