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ABSTRACT

We present time-dependent models of the remnant accretion discs created during compact

object mergers, focusing on the energy available from accretion at late times and the com-

position of the disc and its outflows. We calculate the dynamics near the outer edge of the

disc, which contains the majority of the disc’s mass and determines the accretion rate on to

the central black hole. This treatment allows us to follow the evolution over much longer

time-scales (100 s or longer) than current hydrodynamic simulations. At late times the disc

becomes advective and its properties asymptote to self-similar solutions with an accretion rate

Ṁd ∝ t−4/3 (neglecting outflows). This late-time accretion can in principle provide sufficient

energy to power the late-time activity observed by Swift from some short-duration gamma-ray

bursts. However, because outflows during the advective phase unbind the majority of the re-

maining mass, it is difficult for the remnant disc alone to produce significant accretion power

well beyond the onset of the advective phase. Unless the viscosity is quite low (α � 10−3),

this occurs before the start of observed flaring at ∼30 s; continued mass inflow at late times

thus appears required to explain the late-time activity from short-duration gamma-ray bursts.

We show that the composition of the disc freezes-out when the disc is relatively neutron rich

(electron fraction Ye ≃ 0.3). Roughly 10−2 M⊙ of this neutron-rich material is ejected by

winds at late times. During earlier, neutrino-cooled phases of accretion, neutrino irradiation

of the disc produces a wind with Ye ≃ 0.5, which synthesizes at most ∼10−3 M⊙ of 56Ni.

We highlight what conditions are favorable for 56Ni production and predict, in the best cases,

optical and infrared transients peaking ∼0.5–2 d after the burst, with fluxes a factor of ∼10

below the current observational limits.

Key words: accretion, accretion discs – black hole physics – neutrinos – gamma-rays: bursts.

1 IN T RO D U C T I O N

The most popular model for the creation of short-duration gamma-

ray bursts (GRBs) is either binary neutron star (NS/NS) or black

hole–neutron star (BH/NS) coalescence (Paczyński 1986, 1991;

Eichler et al. 1989; Narayan, Piran & Shemi 1991). Support for the

merger hypothesis comes from their durations of �2 s, observations

of well-localized short GRBs in galaxies without strong star forma-

tion (Berger et al. 2005; Gehrels et al. 2005; Hjorth et al. 2005), and

the lack of a detectable coincident supernovae (Hjorth et al. 2005;

Bloom et al. 2006; Soderberg et al. 2006; Ferrero et al. 2007), as is

found in the case of long (�2 s) GRBs (Galama et al. 1998; Hjorth

et al. 2003; Stanek et al. 2003).

Previous theoretical studies of the merger process have focused

on one of two stages. The first is the dynamical portion in which the

⋆E-mail: bmetzger@astro.berkeley.edu

less massive companion is tidally disrupted by the more massive

BH (Lee & Kluźniak 1995, 1998, 1999; Kluźniak & Lee 1998;

Janka et al. 1999; Rosswog, Speith & Wynn 2004) or NS (Ruffert,

Janka & Schäfer 1996; Ruffert & Janka 1999; Oechslin & Janka

2006). The details of whether a dynamical instability (Lai, Rasio

& Shapiro 1994; Rasio & Shapiro 1994) or Roche lobe overflow

occurs depends on the mass ratio and the nuclear equation of state

(EOS; Bildsten & Cutler 1992; Uryū & Eriguchi 1999).

Nevertheless, generally ∼0.01–0.1 M⊙ of material remains in a

remnant disc following the dynamical stage. The accretion of this

material on to the central object gives rise to the second, disc por-

tion of the merger. The energetics and time-scale of the accretion

phase are reasonably consistent with observations of short GRBs, as

was shown by models of steady-state, azimuthally symmetric, ver-

tically averaged discs (Popham, Woosley & Fryer 1999; Narayan,

Piran & Kumar 2001; DiMatteo, Perna & Narayan 2002; Kohri

& Mineshige 2002; Chen & Beloborodov 2007). More recently,

these discs have been modelled with time-dependent calculations in
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782 B. D. Metzger, A. L. Piro and E. Quataert

one-dimensional (1D; Janiuk et al. 2004), two-dimensional (2D;

Lee, Ramirez-Ruiz & Page 2004, 2005) and three-dimensional (3D;

Setiawan, Ruffert & Janka 2004, 2006). The typical time interval

that present multidimensional calculations can simulate is on the

order of the burst duration or less (∼1–2 s for 2D and ∼50 ms for

3D).

Recent observations of short GRBs by Swift, however, indi-

cate continued activity from the central engine on much longer

time-scales. X-ray flares with durations of ∼100 s after a delay of

∼30 s have been seen from several bursts (Barthelmy et al. 2005;

Villasenor et al. 2005; La Parola et al. 2006; Campana et al. 2006).

Stacked light curves of many bursts indicate continued activity

on a similar time-scale (Lazzati, Ramirez-Ruiz & Ghisellini 2001;

Montanari et al. 2005). In one extreme case, GRB 050724 dis-

played an X-ray flare 12 h post-burst. This flaring activity has been

attributed to a number of different sources, including fragmentation

of a rapidly rotating core (King et al. 2005), magnetic regulation

of the accretion flow (Proga & Zhang 2006), fragmentation of the

accretion disc (Perna, Armitage & Zhang 2005; although this ex-

planation may have difficulty reproducing the observed time-scales,

Piro & Pfahl 2007), differential rotation in a post-merger millisec-

ond pulsar (Dai et al. 2006) and an infalling tidal tail of mate-

rial stripped from the disrupted NS (Lee & Ramirez-Ruiz 2007;

Rosswog 2007).

In order to determine whether the late-time activity from short

GRBs is consistent with a compact merger origin, the disc evolu-

tion should be followed for time-scales much longer than the initial

viscous time. With this aim, we perform time-dependent calcula-

tions modelling the disc as an annulus that contains the majority of

the mass. This simplification allows us to study the disc evolution

for arbitrarily long time-scales, and to readily determine important

properties such as the disc’s composition and when it becomes ad-

vective. We are also able to survey much of the parameter space of

initial disc mass and angular momentum. In Section 2 we discuss

the initial conditions for discs formed from compact object mergers.

This is followed by Section 3, in which we summarize the main as-

sumptions of our ring model. In Section 4 we present the results of

our calculations and summarize the main properties of the models.

We then calculate outflows from our disc solutions in Section 5.

We investigate the composition of the outflows and argue that they

generally consist of neutron-rich isotopes, but can produce 56Ni in

some circumstances. The presence or lack of an optical transient

from short GRBs therefore provides an important constraint on pro-

genitor models. We conclude in Section 6 with a discussion of our

results. In Appendix A we summarize the Green’s function solution

to the viscous spreading of a ring, which is important for connecting

our ring model to the true extended disc geometry. In Appendix B

we present analytic self-similar solutions that reproduce many of

the features of our numerical solutions.

2 IN I T I A L C O N D I T I O N S

The dynamical phase of NS/NS or BH/NS mergers has been studied

extensively using a number of different numerical techniques and

methods for including general relativity (GR). Here we summarize

some of the most relevant features for our study (for a more detailed

review, see Lee & Ramirez-Ruiz 2007).

When the lighter companion NS is first tidally disrupted, a debris

disc is formed within only a few dynamical time-scales. The initial

disc mass, Md,0, is generally larger for more asymmetric mass ratios

(i.e. small q, where q is the ratio of the lighter to the heavier binary

component). For example, Shibata & Taniguchi (2006) find that for

a NS/NS merger with q = 0.7 that Md,0 = 0.03 M⊙, but for q =

0.9 the disc is much less massive with Md,0 = 10−3 M⊙. Another

trend is that including strong gravity gives less massive remnant

discs. The BH spin is also important, with larger spin favoring disc

formation (Rasio et al. 2005) and the production of a tidal tail. These

have masses of ≃0.01–0.05 M⊙ and may provide prolonged mass

inflow (Lee & Ramirez-Ruiz 2007), but for simplicity this will

be ignored here. Taken together, these simulations generally find

Md,0 ≃ 0.01–0.3 M⊙, with the disc containing a substantial fraction

of the angular momentum of the disrupted companion.

In the standard picture of NS–NS mergers, the resulting hyper-

massive NS collapses to a BH shortly following the merger. How-

ever, simulations show that when (and if) collapse actually occurs

depends on the mass of the central NS and its ability to transport

angular momentum to the surrounding disc (Shibata, Taniguchi &

Uryū 2005; Shibata & Taniguchi 2006; Shibata et al. 2006). In

fact, if the NS remains supported by differential rotaton for several

seconds (Baumgarte, Shapiro & Shibata 2000; Duez et al. 2004,

2006; Morrison, Baumgarte & Shapiro 2004) or loses sufficient

mass via a centrifugally driven outflow (e.g. Thompson, Chang &

Quataert 2004; Dessart et al. 2008a), the NS itself may power the

GRB (e.g. Price & Rosswog 2006). In this paper we assume that

the central object promptly collapses to a BH; our model, however,

would be reasonably applicable for the case of a central NS as well,

the primary difference being that the significant neutrino flux from

the newly formed NS and from the boundary layer between the disc

and the NS could modify the composition and thermal properties of

the disc.

We present some characteristic numbers to motivate our choice

of initial conditions. Consider a binary with masses M and m (M >

m), where the latter is the NS (with radius R) that is tidally disrupted.

The disruption radius, at, is estimated to be (Kopal 1959, adding

Fishbone’s 1973 10 per cent strong gravity correction)

at ≃ 2.4R

(

M + m

m

)1/3

. (1)

The characteristic orbital period at this radius is

Pt ≃ 23.4

(

R3

Gm

)1/2

≃ 2 × 10−3m
−1/2
1.4 R

3/2
6 s, (2)

where m1.4 = m/1.4 M⊙ and R6 = R/106 cm, with an orbital angular

momentum of

Jt = [G(M + m)at]
1/2 m

≃ 6 × 1049(1/q + 1)2/3m
3/2
1.4 R

1/2
6 erg s,

(3)

where q = m/M. The disrupted NS also contains spin angular mo-

mentum. This is negligible since the NS is not strongly affected

by tidal coupling (Bildsten & Cutler 1992). Even a rapidly rotat-

ing NS (≃5 ms) has an associated angular momentum of merely

∼1048 erg s.

Once disrupted, a considerable fraction of the NS is either lost

from the system or immediately swallowed by the BH. The remain-

ing material forms a thick torus surrounding the central BH. Its

associated viscous time-scale can be estimated by assuming that

the majority of the torus’ mass lies at a single radius, rd,0. Taking

the angular momentum of the disc to be Jd ≃ (GMrd,0)1/2 Md,0, we

estimate

rd,0 ≃ 3 × 107M−1
3 M−2

0.1

(

J49

2

)2

cm, (4)

where M3 = M/3 M⊙, M0.1 = Md,0/0.1 M⊙ and J49 =

Jd/1049 erg s. For a disc with half-thickness H, the viscous

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 781–797
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Accretion discs formed from compact mergers 783

time-scale is

tvisc,0 = α−1

(

rd

H

)2(

r3
d

GM

)1/2

≃ 6 × 10−2α−1
0.1M

−1/2
3 r

3/2
7

(

H

0.5rd

)−2

s, (5)

where α = 0.1α0.1 is the standard dimensionless viscosity (Shakura

& Sunyaev 1973), r7 = rd,0/107 cm, and we have scaled to an initial

ratio of H/rd = 0.5, consistent with our numerical solutions. The

initial viscous time tvisc,0 is roughly the time at which the central BH

begins accreting in earnest. The strong dependence of tvisc,0 on disc

mass and radius demonstrates that the initial evolution of the disc

is sensitive to the outcome of the dynamical phase of the merger.

But as we will show, the late time evolution is much less sensitive

to initial conditions and is well described by self-similar solutions.

3 PH Y S I C S O F T H E EX PA N D I N G R I N G
M O D E L

Given these initial conditions, one would like to know how the disc

then evolves. Modelling the entire disc requires resolving time-

scales over ∼4–6 orders of magnitude. This makes it expensive to

carry out simulations for long periods of time. We consider instead

a simplified model that captures most of the features of interest. At

any given time, t, the disc can be broken into three regions depending

on the local viscous time, tvisc, which increases with radius, roughly

as tvisc ∼ r3/2. At small radii, tvisc < t, and the disc comes into

steady state. This is the region most often modelled in previous

studies (Popham et al. 1999; Narayan et al. 2001; DiMatteo et al.

2002; Kohri & Mineshige 2002; Chen & Beloborodov 2007). The

radii where tvisc ∼ t contain the majority of the disc’s mass and

angular momentum. Therefore, this region determines the viscous

evolution of the rest of the disc, including the mass accretion rate

that is fed to the interior steady-state region. Motivated by this fact,

we focus on this radius and model the disc as a ring. Exterior to

this point is a third region where tvisc > t, but this contains a small

amount of mass and is negligible for the viscous evolution.

3.1 Dynamical equations

Our ring model treats the disc as a single annulus that is evolved

forward in time. In this picture, the properties of the ring, such

as its surface density � and temperature T, are representative of

the location where �r2 peaks. The main drawback of this method

is that the material in the disc is in fact distributed spatially in

radius. Thus, although the mass of the disc in the vicinity of rd

is ≃π�r2
d, the total mass of the disc (integrated over all radii) is

Md = Aπ�r2
d, where A is a factor of order unity that accounts for

the distinction between the total mass of the disc and the mass of the

material near rd. Similarly, we write the total angular momentum

of the disc as Jd = B(GMrd)1/2 πr2
d�. At early times the constants

A and B depend on the initial conditions of how matter is spatially

distributed; however, at times much greater than the initial viscous

time (given by equation 5), material initially concentrated at a given

radius becomes spread out in a manner determined by the viscosity.

As described in detail in Appendix A, we choose the constants A and

B by setting the solution of our simplified ring model at late times

equal to the Green’s function solution for a spreading ring with a

viscosity ν ∝ r1/2 (as is appropriate for the radiatively inefficient

disc at late times). This fixes A = 3.62 and B = 3.24.1 Conveniently

A/B ≃ 1, so that it is a good approximation to take Jd ≃ (GMrd)1/2

Md.

The time evolution of the disc is determined by the conservation

equations. Conservation of mass is

d

dt

(

Aπ�r2
d

)

= −Ṁd, (6)

where Ṁd is in general the total mass-loss rate, which could include

both accretion and a wind (for now we ignore the effects of a wind).

Conservation of angular momentum is

d

dt

[

B(GMrd)1/2π�r2
d

]

= −J̇ , (7)

where J̇ is the angular momentum loss rate. Equations (6) and (7)

provide two coupled equations that can be solved for the dependent

variables rd and �.

The accretion rate must depend on the characteristic mass and

viscous time-scale of the ring, so we use

Ṁd = f Md/tvisc, (8)

where tvisc = r2
d/ν and ν is the viscosity. The factor f is set like

A and B to match the exact solution of a spreading ring with ν ∝

r1/2 (Appendix A), which gives f = 1.6.2 Requiring a no-torque

boundary condition at a radius r∗, we take

f = 1.6/
[

1 − (r∗/rd)1/2
]

. (9)

In contrast, a steady-state disc obeys Ṁd = 3πν� (ignoring the

no-torque condition), which instead gives f = 3/A ≃ 0.83.

For the viscosity, we use an α prescription:

ν = αcsH, (10)

where cs = (P/ρ)1/2 is the isothermal sound speed. The EOS in-

cludes contributions from radiation pressure, gas pressure, relativis-

tic degeneracy pressure and neutrino pressure as in DiMatteo et al.

(2002).

3.2 Energetics

For the energy equation, we take

qvisc = q−
ν + qadv, (11)

where qvisc is the viscous heating, q−
ν is the neutrino cooling (using

the prescriptions given by DiMatteo et al. 2002, which includes

neutrino optical-depth effects), qadv is the advective heat flux, and

all q values correspond to half the disc thickness.

For a disc rotating at the Keplerian frequency � = (GM/r3
d)1/2,

qvisc =
9

8
ν�2� =

9

8f A

GMṀd

πr3
d

[

1 −

(

r∗

rd

)1/2
]

, (12)

where the prefactor 9/(8fA) ≃ 0.2 is different from the steady-state

value of 3/8. The advective term, qadv, is set as in DiMatteo et al.

(2002), with the only difference being that the radial velocity is the

expansion rate of the ring’s radius:

Vr =
drd

dt
=

2Ṁ

Aπrd�
, (13)

where we have taken J̇ = 0.

1 In fact, when the total angular momentum is conserved, the viscous evo-

lution is independent of A/B as long as A/B is nearly constant with time.
2 Although we set tvisc = r2/ν, any prefactors that could go into this pre-

scription would just be absorbed into a redefinition of f.
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784 B. D. Metzger, A. L. Piro and E. Quataert

Fusion to α particles produces heating in addition to qvisc, with

qnucl = 6.8 × 1028ρ10

dXα

dt
H , (14)

where all quantities are expressed in cgs units, ρ10 = ρ/1010 g cm−3

and Xα is the mass fraction of α particles. Note that in our case

qnucl > 0 since α particles are synthesized as the disc expands (in

contrast to studies that follow cooling from photodisintegration as

material moves inward). In our calculations we do not include qnucl

in solving equation (11) because we were not able to find reasonable

solutions when doing so (for reasons explained in Section 4.1).

3.3 Composition

An advantage of the ring model is that other properties of the disc,

such as its composition, can be cast into differential equations and

integrated along with equations (6) and (7). Since the neutron con-

tent of the disc is particularly important for determining the proper-

ties of the disc’s outflows, we evolve the electron fraction Ye using

dYe

dt
= −Yere−p + (1 − Ye)re+n, (15)

where Ye = Xp/(Xn + Xp), Xp and Xn are the proton and neutron

mass fraction, respectively, and re−p and re+n are the electron and

positron capture rates, respectively (Beloborodov 2003b). We have

neglected the effect of neutrino absorptions on the evolution of Ye

in equation (15). Although absorptions are important at early times

when the disc is optically thick, we are primarily concerned with

the late-time value of Ye, which does not depend sensitively on the

neutrino irradiation (see Section 4.2).

As the disc evolves, the protons and neutrons eventually burn to

form α particles. At these times the disc is sufficiently cold that the

positron and electron capture rates are negligible (i.e, 1/re−p ≫ tvisc)

and Ye has frozen-out. This fixes the difference between the free

neutron and proton mass fractions:

Xn − Xp = 1 − 2Ye. (16)

Since the rates for reactions that synthesize and destroy α particles

are all fast in comparison to the viscous time, we determine the

composition using nuclear statistical equilibrium (NSE) between

protons, neutron and α particles. This is expressed by the Saha

relation (Shapiro & Teukolsky 1983)

X2
pX

2
n = 1.57 × 104Xαρ

−3
10 T

9/2
10 exp

(

−
32.81

T10

)

. (17)

NSE is a good assumption because the disc temperature is generally

� 0.5 MeV (see Fig. 2), except at very late times or for very low disc

masses (e.g. the Md,0 = 0.03 M⊙ case, for which we do not calculate

the nuclear composition anyways). By combining equations (16)

and (17) with mass conservation, Xp + Xn + Xα = 1, we solve for

all of the mass fractions at a given ρ, T and Ye.

4 T I M E - E VO LV I N G S O L U T I O N S

We next present the results of integrating equations (6), (7) and (15)

forward in time. For simplicity, we typically assume that J̇ = 0. A

convenient property of our formalism is the ease with which these

complications can be included (for example, we consider the ef-

fects of winds at the end of Section 4.1). The disc properties are

determined by the initial conditions Md,0, Jd and Ye,0, and by the

viscosity α. For the majority of our study we set the initial Ye,0 =

0.1, which is characteristic of the inner neutron star crust (Haensel

Figure 1. Example disc models showing the evolution of the disc radius, rd,

disc mass, Md, and accretion rate, Ṁd, as a function of time. We compare

Md,0 = 0.03 (solid lines), 0.1 (dotted lines) and 0.3 M⊙ (dashed lines)

solutions; all use J49 = 2 and α = 0.1. The inner radius is r∗ ≃ 2.3rg ≃

1.02 × 106 cm (corresponding to a 3 M⊙ BH with a spin of a ≃ 0.9).

& Zdunik 1990a,b; Pethick & Ravenhall 1995). An additional im-

portant parameter is r∗, which is set by the spin of the central BH. In

most of our calculations we take r∗ ≃ 2.3rg ≃ 1.02 × 106 cm, corre-

sponding to the innermost stable circular orbit of a 3 M⊙ BH with

spin a ≃ 0.9; when calculating the properties of disc outflows in

Section 5, however, we also consider the case of a non-rotating (a =

0) BH. We consider the general evolution of the disc in Section 4.1,

and then focus on the composition in Section 4.2.

4.1 Disc evolution and energetics

At any given time, a ring model is in one of three phases: (1) early

time, optically thick to neutrinos and advectively dominated, (2)

mid-time, optically thin to neutrinos and geometrically thin, and

(3) late time, radiatively inefficient accretion flow (RIAF).3 This is

analogous to the different regions of steady-state, hyperaccreting

accretion discs (see e.g. Chen & Beloborodov 2007), but now the

transitions occur with time instead of radius. The phases that a cer-

tain ring model samples during the course of its viscous expansion

depends on tvisc,0. A more compact disc (a shorter tvisc,0) will exhibit

all three phases, while larger discs may only exhibit phases (2) and

(3), or even just (3).

We present a number of figures that are helpful in understanding

these three phases and how they are affected by changing Md,0. Fig. 1

shows the radius rd, mass Md and accretion rate Ṁd as a function

of time, for Md,0 = 0.3, 0.1 and 0.03 M⊙. Fig. 2 compares the mid-

plane temperature and scaleheight for these same models. Figs 3

and 4 show key results describing the energetics of the Md,0 = 0.3

3 An optically thick, geometrically thin stage occurs between stages (1) and

(2); however, this phase is brief and is not dynamically very different from

phase (2), so we do not consider it separately in our discussion.
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Accretion discs formed from compact mergers 785

Figure 2. Comparison of the mid-plane temperatures and scaleheight for

the three models from Fig. 1. In the lowest mass model, the ring is always

advectively dominated, thus H/rd is constant.

Figure 3. The cooling rates and neutrino luminosity for the Md,0 = 0.3 M⊙
model from Fig. 1. For the cooling rates we compare the neutrino (solid line)

and advective (dashed line) rates, normalized to the viscous heating. The

implied heating from the creation of α particles is plotted as a dotted line,

but is not accounted for in the disc evolution. The neutrino luminosities

are from the entire disc (solid line) and the ring (dashed line). The former

luminosity is estimated by integrating over a steady-state disc model at each

time given Ṁd(t).

Figure 4. The same as Fig. 3, but for Md,0 = 0.1 M⊙.

Figure 5. Pressure contributions for Md,0 = 0.3 M⊙ (top panel), 0.1 M⊙
(middle panel) and 0.03 M⊙ (bottom panel). The pressures are all normal-

ized to the total pressure and include the ion pressure (solid lines), radiation

pressure (dotted lines), degenerate electron pressure (dashed line) and neu-

trino pressure (dot–dashed line).

and 0.1 M⊙ solutions, respectively, while Fig. 5 shows the different

contributions to the total pressure in the disc as a function of time.

Note that we fix the total angular momentum in these calculations

(J49 = 2) and thus a larger Md,0 corresponds to a smaller rd,0 and a

shorter tvisc,0.

The first transition the discs make is from an optically thick,

advective disc to a thin, neutrino-cooled disc; i.e. from phase (1)

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 781–797
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786 B. D. Metzger, A. L. Piro and E. Quataert

to (2). This is only exhibited by the Md,0 = 0.3 M⊙ model and is

seen most clearly at early times in Fig. 2 when H/rd ≃ 0.5 and in

Fig. 3 when qadv ≫ q−
ν . Fig. 5 shows that this phase is ion pressure

(ideal gas) dominated. A simple estimate determines what initial

disc mass is required for phase (1) to occur, i.e. for the initial disc

to be optically thick and advective. The disc is advective for radii

inside of which the neutrino diffusion time out of the disc exceeds

the inflow time. Setting this radius equal to the initial radius of the

disc (equation 4), we find that there is a critical disc mass below

which the disc never experiences phase (1),

Md,crit ∼ 0.2α
−1/10
0.1 M

−7/10
3

(

J49

2

)9/10 (

H

0.5rd

)−3/5

M⊙, (18)

where we have dropped scalings with f and A since they appear

raised to the 1/10 power. This estimate is consistent with the fact

that our Md,1 = 0.1 M⊙ model is not advective at early times, as

seen in Figs 2 and 4. In this case only phases (2) and (3) are seen,

i.e. the disc is initially thin and neutrino cooled and later transitions

to being advective.

Once the models reach the late-time, RIAF phase, or phase (3),

they asymptote to self-similar solutions, independent of the initial

disc mass. In this phase, the disc has qadv > q−
ν and is radiation

pressure dominated. We derive analytic self-similar solutions in

Appendix B2 for this limit and show that rd ∝ t2/3, Md ∝ t−1/3

and Ṁd ∝ t−4/3. The RIAF solution occurs external to an ‘ignition

radius’, which we estimate as the location where the pair capture

cooling rate balances ∼1/2 of the viscous heating for a thick disc,

rign ≃

3 × 107α−2
0.1M

−3/5
3

(

H/rd

0.4

)−14/5 (

Ṁd

0.1 M⊙ s−1

)6/5

cm, (19)

where we have scaled H/rd to ≈0.4, a value appropriate for the

transition between the thin and thick disc regimes. We combine

this with the analytic results for rd(t) and Ṁd(t) in the RIAF limit

(equations B7 and B6)4 to estimate the time when the disc transitions

to being thick, which yields

tthick ∼ 0.1α
−23/17
0.1 M

−13/17
3

(

J49

2

)9/17

s. (20)

Equation (20) is only applicable if the disc is thin at early times.

For sufficiently small initial disc masses, less than

Md,thick ∼ 0.1α
2/17
0.1 M

−7/17
3

(

J49

2

)14/17

M⊙, (21)

this is no longer true, and the disc is always a RIAF at its outer

radius.

Figs 3 and 4 show that at approximately the same time as the disc

transitions from being thin to thick, protons and neutrons are fused

to He. Although the nuclear heating rate qnuc is shown in Figs 3 and

4, this heating was not included in our time-dependent calculations

so that we could obtain solutions at late times. The nuclear heating

rate is sufficiently large, i.e. qnucl � qvisc, that the disc is not able to

accommodate this added energy (it is already thick with H ≃ r due

to viscous heating alone). This probably implies that the burning

contributes to driving a powerful wind (as described by Lee &

Ramirez-Ruiz 2007).

However, such a wind already begins at this time by virtue of the

disc being advective (as discussed in Section 5.2). In Appendix B3,

4 We use these solutions rather than the thin-disc ones because the numerical

results follow these more closely (Fig. B1).

Figure 6. The radius rd, disc mass Md and mass accretion rate reaching

the central BH, Ṁ in, for different parametrizations of mass loss during the

advective phase. We initialize a disc with Md,0 = 0.1 M⊙ (and all other

parameters fixed as in Fig. 1) and compare solutions with no wind (solid

line), p = 0.5 (dotted line; see equation B8) and p = 1 (dashed line).

we present analytic self-similar solutions for advective discs with

mass loss and show that this significant mass loss causes Md and

Ṁd to decline much more rapidly with time than is shown in Fig. 1.

This is shown explicitly in Fig. 6, where we present disc mod-

els calculated using the mass and angular momentum loss pre-

scriptions described in Appendix B3; such losses are assumed to

occur only when the disc is thick, between ∼ max (r∗, rign) and

∼ rd. Fig. 6 compares time-dependent solutions with no wind (solid

line), a wind with p = 0.5 (dotted line; see equation B8), and a wind

with p = 1 (dashed line).5 The loss of angular momentum does

not appreciably slow the radial expansion of the disc, but it does

substantially accelerate the decline in the disc mass and accretion

rate (see also equations B12 and B13). If the models with winds are

accurate, significant accretion is only likely to last for a few viscous

times once the disc enters the late-time advective phase. Continued

central engine activity at much later times could result from late-

time infall of tidally stripped NS material (e.g. Lee & Ramirez-Ruiz

2007).

As an additional comparison, we present the effect of varying Jd

in Fig. 7. The main trend is that a higher Jd has a larger initial radius

for a given Md, and therefore a longer viscous time and smaller

accretion rate. The late time behavior is more sensitive to Jd than

the initial Md, as predicted by the self-similar solutions, but it still

does not affect the late-time disc radius (see equation B7). We do

not plot our results for different α since they are generally consistent

with the analytic scalings above and in Appendix B.

4.2 Composition

The composition of the disc is important for determining the obser-

vational effects of any outflows. To this end, we plot the composition

5 See Appendix B2 for the definition of p.
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Accretion discs formed from compact mergers 787

Figure 7. Similar to Fig. 1, but now taking the angular momentum to be

J49 = 2 (solid lines), 4 (dotted lines) and 6 (dashed lines). All solutions take

Md,0 = 0.3 M⊙ with all other variables the same as in Fig. 1.

of our Md,0 = 0.3 M⊙, J49 = 2 disc as a function of time in the upper

panel of Fig. 8. In the bottom panel we plot the relevant time-scales

for setting the composition, namely the viscous time-scale, tvisc

(solid line), the neutronization time-scale tn = 1/re−p (dotted line),

Figure 8. The composition and important reaction time-scales as a function

of time, for the Md,0 = 0.3 M⊙ model from Fig. 1. In the top panel we plot

the electron fraction, Ye, and the mass fraction of protons, neutrons and α

particles (see inset key). In the bottom panel we show the viscous time, tvisc

(thick, solid line), the neutronization time, tn = 1/re−p (dotted line), and

the α particle photodisintegration time, tphoto (dashed line).

Figure 9. Contours of late-time electron fraction in the expanding disc as

a function of initial disc mass Md,0 and radius rd,0, for two different initial

compositions. Relatively compact discs come into β equilibrium and reach

an electron fraction independent of the initial Ye, while low mass, more

extended discs retain their initial composition. Fig. 8 shows the evolution of

Ye with time for one particular disc solution.

and the time-scale for α particle photodisintegration, tphoto (dashed

line). At early times tn ≪ tvisc, so that an equilibrium value of Ye ≃

0.23 is reached almost immediately. As the disc leaves the optically

thick phase and becomes thinner, degeneracy pressure plays a larger

role. This enhances neutron production, with a minimum Ye ≃ 0.05.

As the neutrino cooling subsides and the disc becomes thick again,

Ye increases. Before Ye can reach ≃0.5, it freezes-out at a value of

Ye ≃ 0.3 once tn > tvisc.

Besides the neutron abundance, Fig. 8 also highlights the produc-

tion of α particles. Initially, the reactions needed to convert neutrons

and protons to helium as well as photodisintegration of helium all

happen on time-scales much shorter than the disc evolution time-

scale (as an example, we plot the helium photodisintegration time-

scale in the bottom panel of Fig. 8), so that we can estimate the α

particle mass fraction using chemical balance (equation 17). Once

the α particle photodisintegration time-scale becomes sufficiently

long (tvisc < tphoto), chemical equilibrium no longer applies and

Xp = 0, Xn = 1 − 2Ye ≃ 0.4 and Xα = 2Ye ≃ 0.6.

Fig. 9 shows how the late-time, frozen-out value of Ye in the

disc depends on the initial disc mass Md,0 and radius rd,0, for two

different initial electron fractions, Ye,0 = 0.1 and 0.5. The former

is relevant for the discs created from NS–NS or BH–NS mergers

(the focus of this paper), while a larger Ye,0 ≃ 0.5 is appropriate

for discs created during the accretion-induced collapse (AIC) of a

white dwarf to a neutron star (e.g. Woosley & Baron 1992; Dessart

et al. 2006). Fig. 9 shows that for sufficiently compact discs, the

disc reaches a modestly neutron-rich composition, with Ye ≃ 0.3–

0.4, independent of the initial composition. This is because, as

highlighted in Fig. 8, the time-scale to come into β equilibrium is

shorter than the viscous time. For discs with a small initial mass

and/or a large initial radius (the lower right-hand corner of each

panel), tn > tvisc and the disc retains its initial composition (set

by the tidally disrupted progenitor and the subsequent dynamical

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 781–797
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788 B. D. Metzger, A. L. Piro and E. Quataert

stage of the merger). Finally, neutrino irradiation of the outer disc

by the inner disc can increases the freeze-out electron fraction, but

we estimate this changes the freeze-out value of Ye by at most

∼20 per cent.6

5 D ISC W IN D S

Having described the evolution of the accretion disc as a function of

time, we now discuss the properties of outflows from these hyperac-

creting discs. Winds driven from deep within the BH potential well

could produce relativistic jets and power late-time central engine

activity. Outflows driven from larger radii dominate the system’s

mass loss and may power supernova-like optical transients through

the decay of radioactive isotopes that are synthesized in the wind (Li

& Paczyński 1998; Kulkarni 2005). In both cases, the mass-loss rate

and nuclear composition are critical for determining the observable

signature.

The type and character of the outflow depends on the disc’s

thermodynamic state and changes as it passes through the different

stages of evolution described in the previous section. In Section 5.1

we discuss early times when winds are due to neutrino irradiation

of the thin, efficiently neutrino-cooled portions of the disc. We then

consider thermally driven winds during thick, radiatively inefficient

accretion in Section 5.2. This dominates the mass loss at late times

and blows away most of the remaining disc. In Section 5.3 we

summarize the nuclear composition of the outflows during each

phase. We predict an ejected 56Ni mass of at most ∼10−3 M⊙
(Section 5.4). Its decay may power transient emission detectable

following some short GRBs.

5.1 Neutrino-heated thin-disc winds

A wind with a mass loss rate Ṁw driven from a thin disc at ra-

dius r must absorb a net power greater than Ėb = GMṀw/2r

to become unbound from the central BH. In principle, Ėb may be

supplied by dissipation of the turbulence that produces the accre-

tion shear stresses. ‘Viscous’ heating of this kind only efficiently

drives an outflow if a substantial fraction of the accretion power is

dissipated in the disc’s upper atmosphere, where the cooling time-

scale is long compared to the wind’s outward advection time-scale.

However, local radiation magnetohydrodynamic (MHD) simula-

tions to date suggest that very little energy dissipation occurs in

the corona (e.g. Krolik, Hirose & Blaes 2007). Instead, heating in

the atmosphere above a thin, neutrino-cooled disc is likely domi-

nated by neutrino irradiation. We therefore focus on the neutrino-

driven mass-loss rate, which sets a minimum Ṁw, and which can be

reliably estimated. Neutrino-driven outflows from hyperaccreting

discs have also been studied by Daigne & Mochkovitch (2002),

Levinson (2006), Barzilay & Levinson (2008) and Metzger,

Thompson & Quataert (2008, hereafter M08b); Dessart et al.

(2008b) calculate the neutrino-driven mass loss from the central

NS following a NS–NS merger under the assumption that collapse

to a BH is not prompt.

The neutrino-driven mass-loss rate is calculated by equating Ėb

to the total neutrino heating rate in the disc’s atmosphere. For the

6 Our calculations employ the pair-capture cooling prescription of DiMatteo

et al. (2002), which assume Ye = 0.5 and ultrarelativistic electrons; we find,

however, that including the effects of degeneracy and arbitrary electron

energies on the cooling changes the asymptotic electron fraction by at most

a few per cent.

radii and entropies that characterize the winds, heating via electron

neutrino absorption on baryons (p + ν̄e → n + e+ and n + νe →

p + e−) dominates other forms of neutrino heating (e.g. ν − ν anni-

hilation and ν − e− scattering; see Qian & Woosley 1996, hereafter

QW96). Since the neutrino absorption cross-section, σ νN ≃ 5 ×

10−44 〈ǫ2
ν〉 MeV−2 cm2, increases with neutrino energy, neutrinos

radiated from near the inner radius r∗ dominate. Assuming that the

νe and ν̄e luminosities and spectra are approximately equal and can

be approximated as originating from a point source at small radii,

the neutrino heating rate through a surface density � at radius r is

q+
ν =

LνσνN�

4πmNr2
≃ 2 × 1039L52〈ǫ

2
10〉�18r

−2
6 erg s−1 cm−2, (22)

where r = 106 r6 cm, Lν = 1052 L52 erg s−1, 〈ǫ2
ν〉 = 100〈ǫ2

10〉 MeV2

and � = �18 1018 g cm−2. This expression assumes that the

absorbing layer is optically thin, i.e. that τ ν ≡ �σ νN/mN ≃

3�18〈ǫ
2
10〉 < 1.

First, consider neutrino heating in comparison to viscous heating

in the mid-plane. This ratio is largest when the disc is marginally

optically thick (τ ν ≃ 1), peaking at a value of

q+
ν

qvisc

∣

∣

∣

∣

τν≃1

≃ 0.5

(

ǫ

0.1

)(

f

1.6

)(

A

3.6

)3/5

〈ǫ2
10〉

2/5J
2/5
49 M

−6/5
3 , (23)

where ǫ ≡ Lν/Ṁdc
2 is the disc’s radiative efficiency. Thus, al-

though we neglected neutrino heating in Section 4, it may become

somewhat important when τ ν ∼ 1 and should be included in a more

detailed calculation.

We now consider a wind that emerges from the disc in the z

direction, parallel to the rotation axis. Away from the disc mid-

plane, neutrino heating dominates over viscous heating, balanc-

ing cooling (q+
ν = q−

ν ) at a slightly lower temperature, Tν ≃

3.3L
1/6

52 〈ǫ2
10〉

1/6r
−1/3
6 MeV. Moving further out in the hydrostatic at-

mosphere, the temperature slowly decreases below Tν . Because of

the strong temperature dependence of the pair capture cooling rate

(q−
ν ∝ T6), a ‘gain region’ of net neutrino heating (i.e. q+

ν > q−
ν )

develops above a height zgain. This net heating drives an outflow.

The thermal power deposited in the upper disc atmosphere Ėν

is the specific heating rate q+
ν /� (equation 22) multiplied by the

mass of the atmosphere in the gain region Mgain ≃ 2πH(zgain)r2

ρ(zgain), where H(zgain) is the scaleheight near the base of the gain

region. Although the mid-plane of a neutrino-cooled disc is gen-

erally dominated by non-relativistic gas pressure (see Fig. 5), the

gain region has a sufficiently low density that it is instead domi-

nated by radiation pressure Prad = (11/12)aT4. Its scaleheight is

H (zgain) ≃ (Prad/ρgz)|zgain , where gz is the gravitational acceler-

ation in the z direction. Since H(zgain) is less than the mid-plane

scaleheight H, zgain ≃ H and gz ≃ GMH/r3. The atmosphere in

the gain region is roughly isothermal so we set T(zgain) ≈ Tν . By

combining these estimates and equating Ėν with Ėb we find that the

neutrino-driven mass-loss rate from a thin disc is

Ṁν |Sa≫SN
≈ 10−6L

5/3

52

〈

ǫ2
10

〉5/3
r

5/3
6 M−2

3 (H/r)−1 M⊙ s−1, (24)

analogous to that derived by QW96 for protoneutron star winds. The

assumption that the atmosphere is radiation dominated is only valid

if the asymptotic entropy in relativistic particles Sa exceeds that

in non-relativistic nucleons SN ≃ 6 + ln(T
3/2
MeV/ρ10) kB baryon−1,

where T = TMeV MeV. By dividing the energy gained by a nucleon

in the wind ≃ GMmN/2r by the gain region temperature T(zgain),
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Accretion discs formed from compact mergers 789

we estimate

Sa ≃ 60L
−1/6

52

〈

ǫ2
10

〉−1/6
r

−2/3
6 M3 kB baryon−1 (25)

as the asymptotic wind entropy.

Although equation (24) does not strictly hold when Sa ∼ SN,

QW96 show that Ṁν scales the same way with Lν , 〈ǫ2
ν〉, M and r,

but with a larger normalization of

Ṁν |Sa∼SN
≈ 10−5L

5/3

52

〈

ǫ2
10

〉5/3
r

5/3
6 M−2

3 (H/r)−1 M⊙ s−1. (26)

The mass-loss rate is higher for low-entropy winds because neutrino

heating peaks further off the disc surface, which reduces the binding

energy and gravitational acceleration of matter in the gain region.

Using the numerical disc wind calculations described in M08b we

have verified that equation (26) holds to within a factor of ≃2 when

Sa ∼ SN.

In deriving equations (24) and (26), we have implicitly assumed

that the time-scale for neutrinos to heat matter in the gain region

theat ≡ (Uth�/ρq+
ν )|zgain , where Uth ≃ 3Prad is the thermal energy

density, is short compared to tvisc, the time-scale over which the

disc properties appreciably change. Equating Sa (equation 25) to

the entropy in relativistic particles ∝ T3/ρ, we find that

ρ(zgain) ≃ 108r
−1/3
6 L

2/3

52 〈ǫ2
10〉

2/3M−1
3 g cm−3. (27)

Then, using equations (22) and (27), we have that7

theat ≃
3Prad

ρ(q+
ν /�)

∣

∣

∣

∣

zgain

≃ 0.1 s L−1
52 r6〈ǫ

2
10〉

−1M3. (28)

For most of the disc solutions considered in this paper, we find that

theat � tvisc during the thin-disc phase; thus, equations (24) and (26)

are reasonably applicable near rd.

Fig. 10 compares the accretion rate Ṁd (solid line) with the

neutrino-driven mass-loss rate Ṁν . In order to determine Lν and

〈ǫ2
ν〉, we calculated steady-state disc models (e.g. DiMatteo et al.

2002) with the accretion rate set at each time according to our

ring model with J49 = 2 and Md = 0.3 M⊙. We plot the neutrino-

driven mass-loss rate Ṁν (equations 24 and 26) at small (dotted

line) and large (short-dashed line) radii. This shows that the mass

loss is dominated by large radii where the majority of the mass lies,

as expected since Ṁν ∝ r5/3. The vertical dot–dashed line marks

where the disc transitions to being thick (equation 20), after which

neutrino heating no longer dominates the wind mass loss.

Outflows that are launched from small radii, near r∗, have the

greatest potential to produce relativistic jets and to power high en-

ergy emission. However, as we now argue, these neutrino-driven

winds are too massive to become highly relativistic. Our calcula-

tion above focused on purely thermal, neutrino-driven winds, which

accelerate matter to only a fraction of the escape speed (and thus are

mildly relativistic). However, in the presence of a strong, large-scale

open poloidal magnetic field, a more powerful, magnetically driven

outflow is possible. Magnetocentrifugal support in the wind’s hy-

drostatic atmosphere may further enhance mass loss (e.g. Levinson

2006), but equation (24) still represents the minimum mass loading

on field lines which thread a neutrino-cooled disc. Fig. 10 shows

that Ṁν(r∗) ∼ 10−4–10−2 M⊙ s−1 during the thin disc phase. The

luminosities of the prompt emission and late-time X-ray flares from

short GRBs, however, do not typically exceed Lγ ∼ 1050 erg s−1 (and

are often much lower; Nakar 2007). Thus, even assuming a modest

radiative efficiency for the outflow of ǫw ∼ 0.1, the Lorentz factor Ŵ

7 Equation (28) is also approximately equal to the outward advection time-

scale of the wind in the heating region.

Figure 10. The accretion rate Ṁd (solid line) and neutrino-driven mass-loss

rates Ṁν for our J49 = 2 and Md,0 = 0.3 M⊙ model, focusing on the phase

of thin, efficiently neutrino-cooled accretion. The neutrino-driven mass-loss

rate Ṁν (interpolated between equations 24 and 26) is shown at the inner

disc radius (r∗ = 106 cm; dotted line) and at the outer disc radius (near

rd; short-dashed line). The disc is advective to the right of the vertical line

(equation 20), at which point the mass loss will no longer be dominated by

neutrino irradiation.

of a neutrino-heated disc wind must obey Ŵ ≃ Lγ /[ǫwṀν(r∗)c2]�

5, which is inconsistent with existing compactness constraints on

short GRBs (Nakar 2007). A more likely source for the relativis-

tic outflows that power short GRBs and their late-time flares are

nearly baryon-free field lines which thread the BH’s event horizon

(e.g. McKinney 2005). In addition, in Section 5.2 we argue that

when the disc becomes advection dominated and neutrino irradia-

tion effectively ceases, jet production may be more likely.

5.2 Radiatively inefficient thick-disc winds

At late times (t ∼ tthick; equation 20) the disc transitions from thin and

neutrino cooled to being advective. At this point a neutrino-driven

outflow is unlikely to dominate the mass loss, in part because the

neutrino luminosity precipitously drops (Figs 3 and 4). In addition,

because RIAFs possess a positive Bernoulli parameter, a powerful

viscously driven outflow is likely (Blandford & Begelman 1999;

Stone & Pringle 2001; Proga & Begelman 2003).

In Section 4.1 we showed that the disc becomes radiatively ineffi-

cient external to an ‘ignition radius’ rign ∝ Ṁ
6/5
d (equation 19). The

outer disc, near rd, thickens first (when rd ∼ rign at t ∼ tthick) and

radiatively inefficient conditions move inwards as Ṁd decreases.

In the simplest picture, one might expect that the innermost radii

become an RIAF only once Ṁd drops from its value at t ∼ tthick by

an additional factor ∼ (r∗/rd)5/6. In fact, the entire disc probably

become radiatively inefficient on a time-scale similar to tthick if the

accretion rate which reaches small radii abruptly decreases once

the outer disc thickens (Fig. 6). Hence, at a time tthick, a significant

portion of the accreting matter may be redirected into an outflow,

with only a fraction ∼ (r∗/rd) reaching small radii and accreting on

to the BH (Stone & Pringle 2001).
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790 B. D. Metzger, A. L. Piro and E. Quataert

X-ray binaries typically produce radio jets upon transitioning

from their ‘high-soft’ (radiatively efficient) to ‘low-hard’ (radia-

tively inefficient) states (e.g. Remillard & McClintock 2006). In

analogy, once the inner disc becomes an RIAF, conditions seem to

favour the production of relativistic jets (see also Lazzati, Perna &

Begelman 2008).8

Even if only a fraction (r∗/rd) of the mass remaining when the

disc thickens actually reaches the origin, the total energy supply

available would be

Ejet ≡ ǫjetMd(tthick)c2

[

r∗

rd(tthick)

]

≃ 3 × 1050

(

ǫjet

0.1

)(

r∗

106 cm

)

α
6/17
0.1 M

−4/17
3

(

J49

2

)8/17

erg,

(29)

where ǫjet is the fraction of the accretion energy used to power a

jet and we have estimated Md(tthick) and rd(tthick) using the self-

similar thick-disc solutions (equations B5) and B7, respectively).

Equation (29) shows that the accretion energy available from near

r∗ following the RIAF transition is more than sufficient to power

the late-time X-ray flares observed following some short GRBs. If

this is the case, tthick sets a characteristic time-scale for late-time

central engine activity. If α � 10−3, tthick may be large enough

to explain the ∼30 s delay until flaring observed for some short

GRBs (e.g. Berger et al. 2005; Villasenor et al. 2005). However,

very late time energy injection, such as the Chandra flare ob-

served two weeks after GRB 050709 (Fox et al. 2005), appears

to require an alternative explanation. In addition, given observa-

tional evidence for α ∼ 0.1 in a number of environments (King,

Pringle & Livio 2007), it may be more natural to associate Ejet

and tthick with the energy and duration, respectively, of the short

GRB itself, rather than the late-time central engine activity (see

Section 6).

5.3 Outflow nuclear composition

The outflow nuclear composition has important consequences for

the observable signature of compact object mergers. Non-relativistic

outflows are sufficiently dense to synthesize heavy isotopes (Pruet,

Thompson & Hoffman 2004; Surman, McLaughlin & Hix 2006),

which may power transient emission via radioactive decay. The iso-

topic yield depends on the speed, thermodynamic properties and the

asymptotic electron fraction Ya
e in the outflow.9 Although relativis-

tic winds from the inner disc are unlikely to synthesize anything

heavier than He (Lemoine 2002; Beloborodov 2003b), Ya
e is im-

portant in this case as well. A neutron-rich outflow may alter the

jet’s dynamics and the prompt and afterglow emission from that

of the standard GRB fireball model (e.g. Derishev, Kocharovsky

& Kocharovsky 1999; Beloborodov 2003a; Rossi, Beloborodov &

Rees 2006).

Fig. 11 delineates different regimes of outflow properties and

composition (as given by Ya
e) as a function of the wind launching

radius r and accretion rate Ṁd. We fix α = 0.1 and M = 3 M⊙.

The time-dependent evolution of the ring radius rd is shown for

a solution with J49 = 2 and Md,0 = 0.3 M⊙ (solid line). At each

time a given steady-state disc profile can be read off of this plot

8 This is in stark contrast to jets powered by neutrino annihilation along the

polar axis, which require a high radiative efficiency.
9 The asymptotic electron fraction is germane because heavy nuclei primarily

form after freeze-out from β equilibrium.

Figure 11. Asymptotic electron fraction Ya
e for disc winds as a function of

the wind launching radius r and accretion rate Ṁd (for α = 0.1 and M =

3 M⊙). The solid line indicates the location of the ring radius rd for our

fiducial solution with Md,0 = 0.3 M⊙ and J49 = 2. The short dashed line

is the ‘ignition’ radius rign (equation 19). Exterior to this (marked ‘Thick

Disc’) the disc is advective with a viscously driven wind of composition

Ya
e ≃ Ymid

e < 0.5. Interior to rign (marked ‘Thin Disc’) a neutrino-driven

wind occurs. The dotted line shows r = rν with Q = 2 (equation 30) and

determines where the neutrino absorptions necessary to unbind matter alter

the wind composition, so that Ya
e ≃ Ymid

e < 0.5 (Ya
e ≃ Yν

e ) exterior (interior)

to rν . The Ṁd above which τ (r∗) > 1 is plotted for BH spins of a = 0

and 0.9. Above this line, the ν̄e and νe spectra differ and Yν
e < 0.5, while

below this their spectra are similar and Yν
e ≃ 0.5. In the region where

r < rign, τ ν (r∗) < 1 and r < rν (i.e. the middle/lower left-hand trapezoid),

Ya
e ≃ Yν

e ∼ 0.5; these conditions are favorable for 56Ni production (see

Section 5.4).

as a horizontal line that extends from the far left and ends on rd.

Therefore, outflows from radii interior to rd contribute to the disc’s

total nucleosynthetic yield.

The ignition radius rign (equation 19) is shown in Fig. 11 with a

short dashed line. For r � rign the disc is an RIAF and marked in

the figure as ‘Thick Disc’. In this case, a viscously driven outflow

dominates (Section 5.2). Since outflows from RIAFs escape the disc

in roughly the accretion time-scale, these winds retain the mid-plane

electron fraction (M08b), so that Ya
e ≃ Ymid

e ≪ 0.5 (because the disc

itself freezes-out neutron rich, as summarized in Section 4.2 and

Fig. 9).

For r � rign, the disc is efficiently neutrino cooled and marked

in Fig. 11 as ‘Thin Disc’. The absorption of neutrinos, which heats

the outflow and unbinds it from the BH may also alter its nucle-

onic composition. This drives Ya
e to a value set by the neutrino

radiation field Yν
e , which in general is different from Ymid

e . A sim-

ple criterion was discussed by M08b for determining when Ya
e ≃

Yν
e . A typical nucleon in the accretion disc at radius r must absorb

an energy ≃ GMmN/2r to become unbound from the BH, so that

Nν ≃ GMmN/2r〈ǫν〉 neutrinos must be absorbed per nucleon. If we

take Nν > Q ∼ 2–3, then a typical nucleon has changed its identity

(p → n or n → p) at least several times.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 781–797
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Accretion discs formed from compact mergers 791

This implies that all purely neutrino-driven outflows from radii

smaller than

rν ≡
GMmp

2Q〈ǫν〉
≃ 107M3〈ǫ10〉

−1(Q/2)−1 cm, (30)

where 〈ǫν〉 ≡ 10〈ǫ10〉 MeV, achieve Ya
e ≃ Yν

e , independent of the

disc’s mid-plane composition.

We plot rν with Q = 2 as a dotted line in Fig. 11, where 〈ǫν〉

is calculated from Ṁd using our steady-state disc solutions (see

Section 5.1). For r � rν , any neutrino-driven outflow enters equilib-

rium with the neutrino radiation field (i.e. Ya
e ≃ Yν

e ). For r � rν the

outflow approximately retains the mid-plane electron fraction (i.e.

Ya
e ≃ Ymid

e ).

Although we have established the conditions under which Ya
e is

determined by neutrino absorptions, we must now address what

sets Yν
e itself. If the rate of neutrino absorptions exceeds the rate of

degenerate pair captures before the wind falls out of β equilibrium,

Yν
e is

Y ν
e ≡

(

1 +
Lν̄e

Lνe

〈ǫν̄e 〉 − 2� + 1.2�2/〈ǫν̄e 〉

〈ǫνe 〉 + 2� + 1.2�2/〈ǫνe 〉

)−1

, (31)

where � = 1.293 MeV is the neutron–proton mass difference, and

Lνe/Lν̄e and 〈ǫνe 〉/〈ǫν̄e 〉 are the mean νe/ν̄e luminosities and ener-

gies, respectively, from a centrally concentrated source (Qian et al.

1993; QW96). Equation (31) demonstrates that the νe and ν̄e spectra

are crucial for setting Yν
e .

Since the disc’s luminosity and temperature peak at just a few

rg, Yν
e is primarily determined by conditions at small radii. At early

times, the accretion disc may be optically thick near r∗ and so

the νe and ν̄e spectra depend on the temperatures at νe and ν̄e

neutrinospheres, respectively. Since there are more neutrons than

protons in the disc, the optical depth to νe through the disc is higher

than to ν̄e; thus, the temperature at the ν̄e neutrinosphere is higher

than at the νe neutrinosphere. This implies Lν̄e ≫ Lνe , 〈ǫν̄e 〉 ≫ 〈ǫνe 〉

and thus Yν
e ≪ 0.5. Using three-dimensional calculations of the

merger of NSs with zero spin, Rosswog & Liebendörfer (2003)

find that at ∼15 ms following merger, Lν̄e ≃ 3.5Lνe , 〈ǫνe 〉 ≃ 9 and

≃15 MeV, which implies Yν
e ≃ 0.21, consistent with our arguments

(see also Surman et al. 2008). We conclude that when the disc is

optically thick near r∗, a neutron-rich outflow is again the most

likely outcome. The critical accretion rate at which τ ν(r∗) = 1 is

shown in Fig. 11 with a long dashed line for both a = 0 and 0.9.

Once the disc becomes optically thin near r∗, the difference be-

tween the νe and ν̄e spectra is much less pronounced. This occurs

because (1) the neutrinos and antineutrinos originate from regions

with the same temperature; (2) any net lepton flux out of the disc

must remain modest (i.e. Lνe/〈ǫνe 〉 ≃ Lν̄e/〈ǫν̄e 〉) and (3) the differ-

ence between the e− and e+ capture cross-sections for kT ≫ � −

me c2 is small. Taking 〈ǫνe 〉 ∼ 〈ǫν̄e 〉 ≫ �, equation (31) shows that

Yν
e ≃ 0.5, a value in the range required to produce 56Ni (which we

discuss further in Section 5.4). Indeed, M08b used the steady-state,

optically thin α-disc calculations of Chen & Beloborodov (2007)

to calculate the neutrino radiation fields carefully, and showed that

Yν
e � 0.5 over the majority of the disc (see their fig. 1). Although the

precise spectra extracted from an α-disc calculation should be taken

with caution, the conclusion that the νe and ν̄e spectra are similar

for optically thin accretion (and Yν
e ≃ 0.5) is probably robust.

Fig. 11 illustrates that under most conditions the outflows from

hyperaccreting discs are neutron rich. Neutron-rich material ejected

during the initial dynamical phase of compact object mergers has

long been considered a promising source for producing Galactic

r-process elements, whose precise astrophysical origin remains un-

certain (Lattimer & Schramm 1974; see, however, Qian 2000). In

addition, Surman et al. (2008) find that winds driven from the rem-

nant accretion disc at early times (when it is optically thick; upper

left-hand quadrant of Fig. 11) are sufficiently neutron rich to pro-

duce successful r process. The outflows driven from the advective

disc at late times, however, are unlikely to produce r-process ele-

ments, given their modest entropies and electron fractions of Ye �

0.3 (Figs 8 and 9). Instead, this modest Ye material will be synthe-

sized to form intermediate-mass neutron-rich isotopes (Hartmann,

Woosley & El Eid 1985).

5.4 56Ni production and optical transients

As summarized in Fig. 11, most of the material in the outflow driven

from a hyperaccreting disc will be neutron rich. Non-relativistic

neutron-rich ejecta are difficult to detect because isotopes syn-

thesized from low Ye material are themselves very neutron rich

and typically possess very short half-lives, on the order of seconds

(e.g. Freiburghaus, Rosswog & Thielemann 1999). Thus, most of

the radioactive energy is released at high optical depths and suffers

severe adiabatic losses before the photons can diffusively escape.

By contrast, ejecta with Ya
e ≃ 0.5 are easier to detect because they

can produce a significant quantity of 56Ni (Hartmann et al. 1985),

an isotope better suited to powering observable emission because

its half-life ≃6 d is comparable to the time-scale on which the out-

flow becomes optically thin. From Fig. 11 we see that outflows in a

modest range of parameter space (middle/lower-left trapezoid) are

capable of synthesizing 56Ni. One caveat to this conclusion is that

it only applies if the winds are primarily neutrino driven. If the out-

flow is instead magnetocentrifugally driven by a moderately strong

open poloidal magnetic field (e.g. Levinson 2006; Xie, Huang & Lei

2007), then Ya
e ≪ 0.5 can result, even if Yν

e ≃ 0.5 (M08b). In what

follows we assume that the wind’s are primarily neutrino driven.

Under this assumption, Fig. 12 shows the total 56Ni mass, MNi =

(XNi/0.4)MYe=0.5, produced in outflows from hyperaccreting discs

as a function of the disc’s initial mass Md,0 and radius rd,0, where

MYe=0.5 is the total mass loss with Ya
e ≃ 0.5 and XNi is the average

56Ni mass fraction synthesized in the wind. We calculate MYe=0.5

by integrating the neutrino-driven mass loss (equations 24 and 26)

across the Ya
e ≃ 0.5 region in Fig. 11, using rd(t) and Ṁd(t) from

the disc evolution calculations described in Section 4.

Pruet et al. (2004) present calculations of XNi which are

parametrized in terms of the asymptotic entropy Sa, mass-loss

rate Ṁw and asymptotic velocity va of an outflow with Y a
e ≃

0.51.MYe=0.5 is dominated by outflows from radii ∼3 × 106–107 cm

when Ṁd ∼ 0.1–1 M⊙ s−1 (corresponding to L52 ∼ few); equa-

tion (25) thus gives Sa ∼ 10–30kB baryon−1 for the ejecta with

Ya
e ≃ 0.5. Purely neutrino-driven winds achieve asymptotic veloci-

ties which are typically below the escape speed of the central object

(e.g. Thompson, Burrows & Meyer 2001); thus, the asymptotic ki-

netic energy is most likely dominated by energy released during the

formation of heavy elements. Because ∼8 MeV baryon−1 is released

in producing Fe-peak elements, we estimate that va ≃ 0.1–0.15c.

Applying these wind parameters to fig. 3 of Pruet et al. (2004), we

estimate that XNi ∼ 0.2–0.5, thereby justifying our scaling for XNi

in Fig. 12.

Fig. 12 shows that for large initial disc masses (Md,0 � 0.1 M⊙),

the ejected Ni mass, ∼3 × 10−4–10−3 M⊙, can be appreciable.

Discs with moderate initial radii rd,0 ∼ 107 cm are optimal for pro-

ducing 56Ni because they are sufficiently large to contain the radius

rν ∼ 107 cm and yet are sufficiently compact to have a large initial

accretion rate, which maximizes the neutrino luminosity and thus

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 781–797
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792 B. D. Metzger, A. L. Piro and E. Quataert

Figure 12. Contours of total 56Ni mass MNi ≡ (XNi/0.4)MYe=0.5 (in units

of M⊙) produced in the neutrino-driven outflows as a function of the initial

disc mass Md,0 and initial ring radius rd,0, where MYe=0.5 is the total mass

loss with Ya
e ≃ 0.5 (based on the arguments in Fig. 11) and XNi is the

average 56Ni mass fraction synthesized in the wind. The upper and lower

panels correspond to non-rotating (a = 0) and rapidly spinning (a = 0.9)

BHs, respectively.

the neutrino-driven mass loss. Conveniently, initial disc parameters

from many compact object merger simulations (see Section 2) are

in the range required to produce ∼10−4–10−3 M⊙ of Ni.

The decay of MNi ∼ 10−4–10−3 M⊙ can reheat the (adiabatically

cooled) ejecta sufficiently to produce detectable transient emission.

In order to explore this possibility, we calculate the light curves

of ejecta heated by Ni decay (‘macronovae’) using the method of

Kulkarni (2005). This simplified one-zone model accounts for the

fraction of the gamma-rays produced by the Ni decay which are

absorbed by the expanding material (Colgate, Petschek & Kriese

1980) and assumes blackbody emission at the photosphere, neglect-

ing Comptonization.

Fig. 13 shows the V- and J-band luminosities as a function of

time since the merger for an outflow with Ni mass MNi = 10−3 M⊙
which is expanding at va = 0.1c. The V-band light-curve peaks

earlier because the temperature at the photosphere decreases as

the material expands. Somewhat after the peak in the light curves,

recombination will decrease the opacity well below that considered

here; thus our calculations are not quantitatively reliable at these

times. The total mass Mtot ejected during the merger event, most

of it neutron rich, is likely to be significantly larger than MNi; this

provides additional opacity for the Ni-rich material. To explore

the effect of this additional material on the detectability of the Ni

decay, the light curves in Fig. 13 are shown for three values of

Mtot : 10−3 M⊙ (solid line), 10−2 M⊙ (dotted line) and 10−1 M⊙
(dashed line). As Fig. 13 shows, larger Mtot: (1) delays the time

to peak emission (tpeak is roughly ∝ M
1/2
tot ); (2) increases the total

fluence of the event by trapping a higher fraction of the gamma-ray

emission and (3) increases the peak wavelength of the emission,

pushing it into the near-infrared (IR) for large Mtot. We conclude

that long wavelength (λ � µm) observations at t ∼ 1 d are the most

promising for the detection of a Ni decay-powered macronova.

Hjorth et al. (2005) place an upper limit of MV > 27.5 at t = 3.9 d

on any emission associated with the short GRB 050509B (redshift

Figure 13. Luminosity of Ni decay-powered ‘macronovae’ as a function

of time since merger for Ni mass MNi = 10−3 M⊙ and ejecta velocity

va = 0.1 c. Light curves are shown for three values of the total ejected mass

Mtot = 10−3 M⊙ (solid line), 10−2 M⊙ (dotted line) and 10−1 M⊙ (dashed

line). The luminosities in V and J band (0.44 and 1.26 µm, respectively) are

shown with thick and thin lines, respectively. The V-band upper limit on

emission following GRB 050509B from Hjorth et al. (2005) is shown with

a filled triangle.

z ≃ 0.22); we mark this constraint in Fig. 13 with an arrow. For

Mtot = 0.1 M⊙ this constrains the ejected Ni mass to be MNi �

10−2 M⊙ (see also Kulkarni 2005). As Fig. 12 illustrates, compact

object mergers are very unlikely to produce this much Ni, so the

absence of a detection thus far is unsurprising.

6 C ONCLUSI ON AND DI SCUSSI ON

We have calculated the time-dependent evolution of accretion discs

formed from compact mergers, and the properties of their outflows.

Since most of the disc mass resides at large radii, we approximate

the disc as a ring at a given radius and calculate the dynamics and

composition of the ring as a function of time. This ring model is

calibrated to correctly reproduces the Green’s function solution for

a viscously spreading ring with viscosity ν ∝ r1/2 (appropriate for

a thick disc; see Appendix A). With this simplified model, we have

studied the full parameter space of remnant accretion discs (differ-

ent initial masses, compositions etc.) and can follow the viscous

evolution for arbitrarily long time-scales.

The energetics of the ring at a given time can be described by one

of three models: (1) optically thick to neutrinos and advective, (2)

optically thin to neutrinos and geometrically thin and (3) optically

thin to neutrinos and advective. A massive, compact disc (with a

short initial viscous time tvisc,0; equation 5) will exhibit all three of

these accretion phases, evolving from (1) to (3) as a function of time

(Figs 1–4). Less massive discs, on the other hand, only pass through

phases (2) and (3), or even just (3). Note that these phases refer to

the energetics of the disc near the outer radius. At a given time, the

disc may also undergo similar transitions as a function of radius;

e.g. a disc that is advective at large radii will be neutrino cooled and

geometrically thin inside the ignition radius rign (equation 19).

Neutrino-driven winds during the early-time optically thick and

neutrino-cooled (thin disc) phases unbind so much mass that field

lines connected to the disc cannot produce sufficiently relativistic

material to power short-duration GRBs (Section 5.1 and Fig. 10).

An alternative source for the relativistic material needed to produce

short GRBs are nearly baryon-free magnetic field lines that thread
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Accretion discs formed from compact mergers 793

the BH’s event horizon (e.g. McKinney 2005). In addition, when

the inner disc becomes advective (Ṁd �0.07 α
5/3
0.1 M⊙ s−1 for a =

0), conditions appear particularly suitable for the formation of rela-

tivistic jets (by analogy to X-ray binaries, which produce jets when

making a similar transition; e.g. Remillard & McClintock 2006;

see Lazzati et al. 2008 for a similar argument in the context of

long-duration GRBs).

Once the disc has transitioned to a late-time advective phase

(phase 3 above), the properties of the disc become well described

by self-similar solutions. Ignoring for the moment outflows from

the disc, these solutions are rd ∝ t2/3, Md ∝ t−1/3 and Ṁd ∝ t−4/3.

Power-law variations in the disc properties are a generic feature of

a viscously evolving disc that conserves total angular momentum.

These scalings are not, however, likely to be applicable in practice

because outflows during the advective phase unbind most of the

remaining material (Sections 4.1 and 5.2). Energy produced by

fusion to He and heavier elements also contributes to driving an

outflow (Figs 3 and 4). Such outflows remove a significant fraction

of the angular momentum of the disc. This leads to a much more

rapid decrease in the disc mass and accretion rate at late times

(Appendix B3 and Fig. 6). Significant accretion on to the central

black hole will thus only last for a few viscous times after the onset

of the advective phase.

At the outer edge of the disc, the transition from a neutrino-

cooled thin disc to the late-time advective phase occurs at a time

tthick ∼ 0.1 α
−23/17
0.1 (J49/2)9/17 s (equation 20). The rapid decrease

in Ṁd after the onset of the advective phase implies that the inner

disc becomes advective at a similar time (Section 5.2 and Fig. 6).

Quantitatively, we find that for powerful winds with p = 1 (see

equation B8), the inner disc becomes advective at t ∼ 0.2, 5 and

100 s, for α = 0.1, 0.01 and 0.001, respectively (for our fiducial

model with an initial mass of 0.1 M⊙ and an initial radius of

≃3 × 107 cm). Thus, for α ∼ 10−3, the time-scale for the inner

disc to become advective is comparable to the onset of observed

flaring at ∼30 s in some short GRBs (e.g. Berger et al. 2005). Given

the slow decline in disc mass with time before tthick, there is am-

ple accretion energy available in the disc at this point to power the

observed flaring. However, there is observational evidence for α ∼

0.1 in a number of astrophysical discs (King et al. 2007); we thus

doubt that tthick is large enough to coincide with the onset of ob-

served flaring. Instead tthick is likely to be ∼0.1–1 s, comparable to

the duration of the short GRB itself. In this case, the rapid decrease

in the disc mass and accretion rate in the advective phase imply that

the remnant accretion disc alone does not contain sufficient mass

at ∼30 s to power the observed late-time activity from short GRBs,

nor is there any physical reason to expect a sudden change in the

disc or jet properties at this time.

A more likely source of late-time flaring in compact object merger

models is a continued inflow of mass at late times, such as is pro-

duced by the infalling tidal tail found in Lee & Ramirez-Ruiz’s

(2007) NS–NS merger simulations (see also Rosswog 2007). Simi-

larly, the BH–NS merger simulations of Faber et al. (2006a,b) show

that ∼0.03 M⊙ of material is ejected into highly eccentric orbits

during the merger, which returns to the BH on a time-scale �1 s.

However, final conclusions regarding the quantity and ubiquity of

late-time fall-back from NS–NS and BH–NS mergers must await

full-GR simulations which include BH spin and realistic EOSs.

The second major focus of this paper has been on the com-

position of the accretion disc and its outflows as a function of

time. For initial disc properties expected in compact object mergers

(Section 2), the disc typically comes into β equilibrium given the

high temperatures and densities at small radii. As material spreads to

larger radii, however, the composition of the disc freezes out before

it becomes advective at late times; at freeze-out the disc is modestly

neutron rich, with an electron fraction Ye ≈ 0.3 (Section 4.2 and

Fig. 9). This neutron-rich material – ∼10−2 M⊙ for typical initial

disc parameters – is blown away once the disc enters the advective

phase at ∼tthick. These outflows are particularly interesting given

the low Solar system abundance of material produced in NSE at

Ye ∼ 0.3 (Hartmann et al. 1985). In a separate paper, we will study

this nucleosynthesis and its implications in more detail.

Although outflows from compact object merger accretion discs

are neutron rich in most circumstances, neutrino-driven winds from

radii ≃106–107 cm at accretion rates Ṁd ∼ 0.03–1 M⊙ s−1 have

electron fractions Ye ≃ 0.5, precisely that required to synthesize

significant amounts of 56Ni (Fig. 11). We have calculated the total

Ni mass ejected by compact object merger discs as a function of

their initial mass and radius (Section 5.4 and Fig. 12). Discs with

initial masses �0.1 M⊙ can produce up to ∼10−3 M⊙ of 56Ni. The

radioactive decay of this Ni as the outflow expands to large radii will

produce an optical and infrared transient peaking ∼0.5–2 d after the

merger, with a peak flux of νLν ≃ 1040 erg s−1 (Fig. 13). Because

the Ni mass is likely to be a small fraction of the total mass of the

ejecta (most of which is neutron rich), this transient is best detected

at ∼1 µm. As Fig. 13 shows, current observational limits on SN-

like transients coincident with short GRBs are about a factor of

∼10 above our predictions. However, somewhat deeper limits from

a moderately closer burst could start to put interesting constraints

on short GRB progenitors. It is also possible that the decay of some

neutron-rich isotopes could heat the outflow and contribute to the

late-time thermal emission (although most such isotopes have very

short half-lives). This possibility should be investigated in future

calculations using a nuclear reaction network.

Although we have focused on short GRBs throughout this paper,

many of our results can be applied more broadly. For example,

long-duration GRBs show late-time activity and flaring similar to

that seen in short GRBs (e.g. Falcone et al. 2007). For the reasons

described above, this activity is probably produced by a continued

inflow of mass at late times (fallback from the stellar progenitor’s

envelope) rather than solely by the viscous evolution of the small-

scale disc. As a final application of our results, we note that the

AIC of a white dwarf to a neutron star is expected to produce a

compact disc of ∼0.1–0.5 M⊙ outside the newly formed neutron

star’s surface (Dessart et al. 2006). The calculations presented here

describe the evolution of this remnant disc, with the one caveat that

the composition of the disc in the AIC context may be strongly

affected by neutrino irradiation from the newly formed neutron star.
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A P P E N D I X A : C A L I B R AT I O N O F TH E R I N G
M O D E L

The surface density � of an axisymmetric disc in a Keplerian po-

tential with constant total angular momentum evolves according to

a diffusion equation (e.g. Frank, King & Raine 2002):

∂�

∂t
=

3

r

∂

∂r

[

r1/2 ∂

∂r
(ν�r1/2)

]

, (A1)

where ν is the kinematic viscosity. Assuming that ν depends only

on radius as a power law, viz: ν = ν0(r/R0)n, equation (A1) is

linear and, for an initial surface density distribution �(r, t = 0) =

(M0/2πR0)δ(r − R0) which is narrowly peaked about the radius R0,
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Accretion discs formed from compact mergers 795

the solution (for n < 2) is given by

�(r, t)

=
M0(1 − n/2)

πR2
0x

(n+1/4)τ
exp

[

−(1 + x2−n)

τ

]

I1/|4−2n|

(

2x1−n/2

τ

)

,
(A2)

where M0 is the initial disc mass, x ≡ r/R0, τ ≡ t[12ν0(1 −

n/2)2/R2
0] and Im is a modified Bessel function of order m. For small

argument y ≪ 1, Im(y) takes the asymptotic form Im ≃ (y/2)m/Ŵ(m +

1), where Ŵ is the Gamma function; thus, for late times or small

radii such that τ ≫ 2x1−n/2, equation (A2) reduces to

�(r, t)|τ≫2x1−n/2

=
M0

πR2
0

(1 − n/2)

Ŵ[(5 − 2n)/(4 − 2n)]

1

τ [(5−2n)/(4−2n)]xn
exp

[

−(1 + x2−n)

τ

]

.

(A3)

Most of the mass in the disc is located near the radius where the

local mass Md ∝ �r2 peaks; using equation (A3), at late times

this radius is found to be rpeak = R0τ
1/(2−n). Hence, equation (A3)

becomes valid near rpeak for τ ≫ 1.

The constant A, which relates the total disc mass at late times

from the exact solution of equation (A1) to the mass defined by

π�(rpeak)r2
peak, can be calculated from equation (A3) to be

A(τ ≫ 1) ≡

∫ ∞

0
2π�r dr

π�(rpeak)r2
peak

∣

∣

∣

∣

∣

τ≫1

=
2e

2 − n
. (A4)

Similarly, the constant B, which relates the total disc angular mo-

mentum at late times from the exact solution to that estimated by

π�r2
peak (GMrpeak)1/2, is given by

B(τ ≫ 1) ≡

∫ ∞

0
2π�r3/2 dr

π�(rpeak)r
5/2
peak

∣

∣

∣

∣

∣

τ≫1

=
2e

2 − n
Ŵ

(

5 − 2n

4 − 2n

)

. (A5)

From mass continuity, the radial velocity is given by

vr =
−3

�r1/2

∂

∂r

(

ν�r1/2
)

=
−3ν0

R0

1

�x1/2

∂

∂x

(

�xn+1/2
)

, (A6)

which, using equation (A3), gives the accretion rate at small radii

Ṁ in = −2π�rvr|τ≫2x1−n/2

=
M0

R2
0/ν0

3(1 − n/2)

Ŵ[(5 − 2n)/(4 − 2n)]
exp(−1/τ )τ−[(5−2n)/(4−2n)].

(A7)

Equation (A7) is easily checked by noting that
∫ ∞

0
Ṁ indt = M0,

which shows that the entire initial disc eventually accretes on to the

central object. In Section 3.1 we introduced the following prescrip-

tion for evolving the disc mass:

Ṁd =
f Md

tvisc

, (A8)

where, in terms of the viscosity prescription adopted above, tvisc =

r2
d/ν = tvisc,0(rd/R0)2−n and tvisc,0 ≡ R2

0/ν0 is the initial viscous time.

Assuming that the total disc angular momentum remains constant,

J ∝ Mdr
1/2
d = M0R

1/2
0 , the solution to equation (A8) is given by

Md(t) = M0[1 + (4 − 2n)f (t/tvisc,0)]−1/(4−2n). (A9)

In our evolutionary calculations we set f so that the accretion rate

from the exact solution to equation (A1) (Ṁ in; equation A7) matches

the solution to equation (A8) at late times (i.e. in the self-similar

limit). This requires

f = 3(1 − n/2)Ŵ[(5 − 2n)/(4 − 2n)]4−2n. (A10)

Figure A1. Comparison of the accretion rate (solid), disc mass (short

dashed) and disc radius (where the local disc mass peaks; dotted) as calcu-

lated from our simplified ring model to that derived from the exact solution

of the diffusion equation for a δ function initial mass distribution (equa-

tion A2); we assume ν ∝ r1/2, as applies for a thick disc. The parameter f ≃

1.6 (equation A10) adopted in our model is chosen to ensure that the accre-

tion rates match at late times (i.e. Ṁ in/Ṁd → 1). Also shown is the ratio

A(t)/B(t) (equations A4 and A5), a measure of the relative distribution of

mass and angular momentum, which asymptotes to Ŵ[(5 − 2n)/(4 − 2n)] ≃

1.12 at late times.

For an advection-dominated disc, ν = α cs H ∝ � R2 ∝ r1/2; thus,

n = 1/2, f ≃ 1.602, A ≃ 3.62 and B ≃ 3.23. For a neutrino-cooled,

optically thin disc which is dominated by gas pressure, T ∝ r−3/10

and ν ∝ r6/5; thus, n = 6/5, f ≃ 1.01, A ≃ 6.80 and B ≃ 6.09.

In Fig. A1 we show Ṁ in/Ṁd as a function of t/tvisc,0 for n =

1/2 in order to compare the disc evolution derived from the exact

solution of equation (A1) to that calculated from our simplified

model. Fig. A1 also shows the ratio of the total disc mass Mtot ≡
∫ ∞

0
2π�rdr calculated from equation (A2) to the disc mass Md

(equation A9) of the simplified model, as well as the ratio of rpeak

(the radius where �r2 peaks, using equation A2 for �) to the radius

determined by angular momentum conservation: rd = R0(Md/M0)2.

Fig. A1 shows that, although the accretion rate in the two models

differ at very early times (the initially narrowly concentrated ring

takes a short period of time to spread to small radii), they approach

one another to �20 per cent by t � 0.1tvisc,0. Likewise, the disc

mass and radii from the exact solution and simplified model are

quite similar at all times.

The numerical values for A and B given in equations (A4) and

(A5) and employed in our calculations apply only to the mass and

angular momentum distribution in the disc at late times (τ ≫ 1).

Initially, the disc is entirely concentrated at a single radius and

A(t = 0) = B(t = 0) = 1; thus, A(t) and B(t) evolve significantly

from early times until the disc enters the self-similar limit and so one

might worry that the early-time description of the disc’s evolution

depends sensitively on the initial mass distribution. Our model only

assumes, however, that the ratio A(t)/B(t) remains constant, which
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is a good approximation. To illustrate this, Fig. A1 shows A(t)/B(t)

calculated from the exact solution (equation A2) for n = 1/2. Note

that A(t)/B(t) increases from unity to its asymptotic value A/B =

Ŵ[(5 − 2n)/(4 − 2n)], which is ≃1.12 for n = 1/2.

APPENDIX B: A NA LY TIC SELF-SIMILAR
S O L U T I O N S

The late-time evolution of our disc calculations asymptote to power

laws that are well approximated by analytic self-similar solutions.

We derive these here to aid in interpreting our numerical results.

Presentation is divided between neutrino-cooled, thin-disc solutions

and late-time advective solutions. One could just as well derive anal-

ogous results for discs that are optically thick to neutrinos. We forgo

this here since the initial viscous time is always sufficiently long

that these solutions are never applicable to our numerical results.

We conclude by presenting self-similar solutions for advective discs

with substantial mass loss, since these differ significantly from the

solutions without mass loss.

B1 Neutrino-cooled, thin-disc solutions

In the neutrino-cooled, thin-disc limit, the cooling is dominated

by Urca, and the pressure is given by ideal gas. Combining local

energy balance and continuity, Ṁd = f Aπν�, allows us to solve

for the temperature and column density as functions of radius. We

substitute these into the angular momentum equation, B(GMrd)1/2 π

r2
d� = Jd, to solve for Md as a function of Ṁd and Jd. We then assume

the solutions have a self-similar form of Md ∝ t−β , so that Ṁd =

−dMd/dt = βMd/t . In this way we solve for β = 5/8, Ṁd(t), and

subsequently any other variable of interest. The results are

Md

= 1.3 × 10−2f
−5/8

1.6

(

A3.6

B3.2

)

α
−3/4
0.1 M

−1/4
3

(

J49

2

)

t−5/8 M⊙,
(B1)

Ṁd

= 2.7 × 10−2f
−5/8

1.6

(

A3.6

B3.2

)

α
−3/4
0.1 M

−1/4
3

(

J49

2

)

t−13/8 M⊙ s−1

(B2)

and

rd = 4.1 × 108f
5/4

1.6 α
3/2
0.1 M

−1/2
3 t5/4 cm, (B3)

where f 1.6 = f /1.6, A3.6 = A/3.6, B3.2 = B/3.2 and t is measured in

seconds, and the prefactors have been scaled to match our numerical

results. The first thing to notice is that both Md and Ṁd are rather

insensitive to the choice of f as long as it is near unity, and A and B

only appear as a ratio, which is also nearly unity. This provides con-

fidence in using this parametrization, and these specific values for

the corresponding parameters, when the disc is not well-described

by n = 1/2. This analysis also demonstrates the relative dependence

on α. In Fig. B1 we compare these scaling (dotted lines) with the

numerical calculations. This shows that these solutions are only

applicable for a short time. At times when t < tvisc the evolution is

much flatter and is dominated by initial conditions. At later times

the disc becomes advective and the solutions of the next section

apply.

B2 Late-time advective solutions

In this limit, self-similar solutions can be found in an analogous

way. The viscous energy release is carried by advection with the

Figure B1. Comparison of the numerical disc solutions (solid lines) with

the analytic solutions for the thin, neutrino-cooled (dotted lines) and thick,

advective limits (dashed lines). The numerical solution is the 0.3 M⊙ disc

from Fig. 1.

internal energy dominated by relativistic particles, so that

9

8f Aπ
�2Ṁ = Vr

H

r

11

6
aT 4. (B4)

Combining this with mass continuity, gives the column depth as a

function of radius, �(r) = (16/9Aπα)(Ṁ/r2�). We then use this

relation with B(GMrd)1/2Md = Jd and Ṁd = βMd/t , to find β =

1/3 and the self-similar solutions

Md = 3.7 × 10−2

(

A3.6

B3.2

)

α
−1/3
0.1 M

−2/3
3

(

J49

2

)

t−1/3 M⊙, (B5)

Ṁd = 1.2 × 10−2

(

A3.6

B3.2

)

α
−1/3
0.1 M

−2/3
3

(

J49

2

)

t−4/3 M⊙s−1 (B6)

and

rd = 2.3 × 108α
2/3
0.1 M

1/3
3 t2/3cm. (B7)

These advective results are even more insensitive to A, B and f than

the thin-disc results. Equations (B5)–(B7) are plotted in Fig. B1

as dashed lines. The numerical calculations follow these solutions

very closely for times later than tthick (given by equation 20).

Equations (B5)–(B7) can also be derived ignoring equation (B4),

but assuming that the scaleheight is fixed at H/r ≃ 0.6. This

introduces the additional dependencies Md ∝ (H/r)−2/3, Ṁd ∝

(H/r)−2/3 and rd ∝ (H/r)4/3, but gives nearly identical prefactors.

B3 Advective solutions with mass loss

In Section 5.2 we described how advective discs are likely to lose

a substantial fraction of their mass to viscously driven outflows.

Because the outflow removes angular momentum as well – at least

the specific angular momentum of the mass that is lost – the disc

need not expand as rapidly to large radii. In addition, the disc mass

and accretion rate decrease much more rapidly at late times than in

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 781–797
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the self-similar solutions described in the previous subsection. To

quantify this effect, we follow Blandford & Begelman (1999) and

assume that only a fraction ∼(r∗/rd)p of the available material is

accreted on to the central BH. The remainder is lost to an outflow.

Thus the outflow rate at any time is given by

Ṁout =

[

1 −

(

r∗

rd

)p]

f Md

tvisc

. (B8)

We further assume that the angular momentum loss rate from the

disc is given by

J̇ = −CṀout (GMrd)1/2 , (B9)

where C is a constant that depends on the torque exerted by the

outflowing mass on the remaining disc. If the outflow produces no

net torque, an assumption that appears at least qualitatively consis-

tent with the relatively small-scale magnetic fields seen in global

MHD disc simulations (e.g. Stone & Pringle 2001), then the angular

momentum loss is only that due to the specific angular momentum

of the outflow, and (Kumar, Narayan & Johnson 2008)

C =
2p

2p + 1
. (B10)

We solve equations (6), (7), (B8) and (B9), assuming A/B = 1 and

ν ∝ r1/2 (as appropriate for a thick disc). The solution depends on

the relative magnitude of 1 − C and C(r∗/rd)p . For C(r∗/rd)p ≪

1 − C, which is true at nearly all times if equation (B10) is appli-

cable, then

rd ≃ rd,0

[

1 + 3f (1 − C)

(

t

tvisc,0

)]2/3

, (B11)

Md ≃ Md,0

[

1 + 3f (1 − C)

(

t

tvisc,0

)]−1/[3(1−C)]

(B12)

and

Ṁin ≃ f
Md,0

tvisc,0

(

r∗

rd,0

)p

×

[

1 + 3f (1 − C)

(

t

tvisc,0

)]−[1+3(1+2p/3)(1−C)]/[3(1−C)]

.(B13)

Note that if p = C = 0 (i.e. no mass or angular momentum loss),

then these self-similar solutions reduce to those of the previous

subsection. However, for the case p = 1 consistent with a number

of global advective disc simulations (e.g. Hawley & Balbus 2002),

and in the absence of a net torque on the disc, C = 2/3 and these

solutions correspond to rd ∝ t2/3, Md ∝ t−1 and Ṁin ∝ t−8/3 (see also

Fig. 6). This shows that the disc mass and accretion rate decrease

subsantially more rapidly in time than in the absence of an outflow,

while the disc expands outward at roughly the same rate. If there is a

net torque on the disc such that C ≃ 1, then equations (B11)–(B13)

are not applicable. Instead, for C(r∗/rd)p ≫ 1 − C, the solution is

given by (for p �= 0 and t ≫ tvisc,0)

rd(t) ≃
[

(3 + 2p)f rp
∗ r1.5

d,0

]1/(1.5+p)

(

t

tvisc,0

)1/(1.5+p)

(B14)

and

Md(t) ≃ Md,0 exp[−D(t/tvisc,0)p/(1.5+p)], (B15)

where

D =

[

1.5 + p

p (3 + 2p)1.5/(1.5+p)

]

[

f r1.5
d,0

(f r
p
∗ r1.5

d,0)1.5/(1.5+p)

]

. (B16)

For p = 1 and for rd,0 ∼ r∗, these solutions become rd(t) ∼

rd,0(t/tvisc,0)2/5 and Md(t) ∼ Md,0 exp [−1.15 (t/tvisc,0)2/5]. The ra-

dius of the disc thus increases significantly more slowly, and the

mass of the disc decreases much more rapidly, than in the self-

similar solutions without mass loss.

The numerical solutions including mass-loss during the advective

phase shown in Section 4.1 (Fig. 6) assume that equation (B10) is

applicable and are indeed well described by the self-similar solu-

tions given in equations (B11)–(B13) at late times.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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