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TIME-DEPENDENT NUMERICAL MODELING OF LARGE-SCALE
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Abstract. We calculate self-consistent time-dependent models of astrophysical processes.
We have developed two types of our own (magneto) hydrodynamic codes, either the
operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic
flows, or the finite volume unsplit code based on the Roe’s method for explosive events
with extremely large discontinuities and highly supersonic outbursts. Both the types of
the codes use the second order Navier-Stokes viscosity to realistically model the viscous
and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate
systems as well as to a special non-orthogonal geometric system that fits to modeling of
astrophysical disks. We describe mathematical background of our codes and their imple-
mentation for astrophysical simulations, including choice of initial and boundary conditions.
We demonstrate some calculated models and compare the practical usage of numerically
different types of codes.
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1. Introduction

Attempting to realistically model astrophysical processes leads to extreme phys-

ical and geometric situations, and hence to extreme demands on the mathematical

efficiency and accuracy of computational algorithms. One of the major problems is
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the vast dimension of modeled systems that however cannot simply be re-scaled due

to the necessity to include an ultimate propagation speed of pressure perturbations

(related to the sound speed in a given medium). Another common problem is the

extreme disproportionality either in geometry or in physical characteristics. For ex-

ample, in case of various types of circumstellar disks (see Section 2.1) we have to

extend the radial computational domain up to several hundreds of stellar radii (the

order of 1010 km), while the vertical scale-height of the disk in the region very close

to the star is approximately 5 orders of magnitude smaller. This region is however

crucial for feeding the disk with mass and angular momentum, therefore it can-

not be excluded or marginalized off the computation. In thermonuclear supernovae

(type Ia) the size of the problem is of the order 103 km while the thickness of the

physically most important region, the combustion (detonation) wave where most of

thermonuclear reactions occur, is of the order of 10−3m. To model the interactions

of expanding envelopes of supernovae, we have to deal with an extreme jump in

velocity and pressure that reaches up to several tens of orders of magnitude within

quite narrow discontinuity (shock wave). Moreover, we can solve almost none of the

problems in Cartesian geometry, and we usually have to employ the spherical coordi-

nates (for stars, expanding envelopes, and stellar winds), the cylindrical coordinates

(in the case of rotational symmetry and circumstellar disks) or even more specific

coordinate systems (see Section 3).

To overcome these difficulties, one has developed various tools that are widely used

in (not only) astrophysical community. Regarding the methods of numerical grids,

moving meshes, static or adaptive mesh refinement, or methods of artificial broaden-

ing of very thin or small however physically crucially important regions are employed.

Various numerical principles of the computational codes also fit to computation of

various physical kinds of problems. Within the purpose of our hydrodynamic calcu-

lations we basically distinguish two such computational kinds. Either the relatively

smooth flow of gas, i.e., where the sharp or even discontinuous jumps in pressure

do not exceed 2–3 orders of magnitude, or discontinuous flows where these jumps

may be much higher. The latter is principally associated with highly supersonic

flows where for example in an expanding envelope of supernova the values of Mach

number may reach 102–103.

We demonstrate two different astrophysical problems: the relatively smooth hydro-

dynamic solution of circumstellar outflowing disks and the extremely discontinuous

interaction of the expanding envelope of supernova with an asymmetrical circumstel-

lar environment. We have developed and used two classes of hydrodynamic codes

that are based on the following methods: 1) the operator-split (ZEUS-like) time-

dependent finite volume Eulerian scheme on staggered grid for (relatively) smooth

hydrodynamic calculations [9], [11], [12], [13], [28] of circumstellar disks, and 2) our

634



own version of the single-step (unsplit, ATHENA-like) time-dependent finite vol-

ume Eulerian hydrodynamic algorithm based on the Roe’s method [23], [27], [29]

for highly discontinuous flows in expanding envelopes of supernovae [13] (we have

programmed all the codes in FORTRAN 95). We model the circumstellar outflow-

ing disks in a special coordinate system (“flaring geometry”, see Section 3), using

however alternatively both the types of hydrodynamic codes. We can successfully

calculate the interaction of supernova envelope with circumstellar environment in

the Cartesian grid using merely the second code type.

We have properly tested our codes within the test problems (Riemann-Sod shock

tube, Kelvin-Helmholtz instability) and used them for calculations of the 1D and

2D circumstellar disk structure and for the study of interactions of expanding en-

velopes of supernovae with asymmetrically distributed circumstellar environment.

In the paper we describe the main numerical principles of both types of the hy-

drodynamic codes (see Sections 4.1 and 4.2). We also demonstrate the results on

selected astrophysical simulations and compare the convenience of the codes and of

the corresponding numerical principles in Sections 5.1 and 5.2.

2. Basics of analytical solution of simulated

astrophysical processes

In this section we provide the basic description of solved astrophysical problems.

In Section 2.1 we introduce the basic hydrodynamic equations in the explicit form

used in our calculations. We do not involve magnetohydrodynamic terms, since

they are not employed in the calculations referred in this paper. In the following

Sections 2.2 and 2.3 we describe the basic physical background of simulated astro-

physical problems.

2.1. Explicit form of hydrodynamic equations. The following nonlinear sys-

tem of equations represents the fundamental conservation laws of mass, momentum

and energy, forming thus the base of the hydrodynamic calculations. We strictly keep

hereinafter the following notation: the capital letters R and V denote radial distance

and velocity in cylindrical and in special non-orthogonal “flaring disk” coordinate

systems introduced in Section 3 (where R and V denote the norms of the vectors

while the vectors themselves are denoted in general using bold capitals), while we

use the small letters r and v for the same quantities in Cartesian and in spherical

coordinate systems.

Continuity equation (mass conservation law) in the general form is

(2.1)
∂̺

∂t
+∇ · (̺V ) = 0,
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where ̺ is the mass density, t is the time, V is the vector of velocity, and the operator

of divergence takes the particular form according to the coordinate system used.

Equation of motion (conservation of momentum or angular momentum) generally is

(2.2)
∂(̺V )

∂t
+∇ · (̺V ⊗ V ) = −∇P − ̺∇Φ+ fvisc + frad,

where P is the scalar pressure, Φ is the gravitational potential, fvisc and frad are

the contributions of viscous and radiative force densities. The energy equation in

the full form (where E is the total energy)

(2.3)
∂E

∂t
+∇ · (EV ) = −∇ · (PV + q) + f · V , E = ̺ε+

̺V 2

2
,

is involved only in processes, where the kinetic or heat energy is dominantly generated

within the system itself (we usually regard such systems as adiabatic). In equation

(2.3), P denotes the complete pressure tensor (including non-diagonal viscosity),
q is the vector of the flux of thermal energy (heating or cooling), f is the sum of

all external force densities, and ε is the specific internal (heat) energy. The set of

hydrodynamic equations is closed by the equation of state, whose explicit adiabatic

or isothermal form, respectively, is

(2.4) P = (γ − 1)
(
E − ̺V 2

2

)
, P = ̺a2,

where γ denotes the adiabatic index (ratio of specific heats) and a is the isothermal

speed of sound.

2.2. Determining equations of viscous and heat effects in circumstellar

disks. The axisymmetric kinematics of the disks requires intrinsically cylindrical or

even the special “flaring disk” geometry (see Section 3, see also [11]). In order to

express equation (2.1) in terms of constant mass-loss rate Ṁ of a stationary system,

we introduce the (vertically) integrated column (surface) density Σ =
∫
∞

−∞
̺ dz.

The cylindrical form of equation (2.1) thus becomes Ṁ = 2πRΣVR, where VR is

the radial velocity component of the gas flow. We introduce also the disk vertical

scale-height H defined as H = a/Ω, where Ω = Vϕ/R is the angular velocity, while

Vϕ is the azimuthal (“rotational”) velocity component of the gas flow (considered

approximately as Keplerian, i.e., V 2
ϕ = GM⋆/R, whereG is the gravitational constant

and M⋆ is the mass of the central star). In case of constant temperature T (with

a ∼
√
T = const.), the vertical flaring angle of the disk grows with distance as

H ∝ R3/2 (see Fig. 1). Assuming the vertical hydrostatic equilibrium dP/dz = −̺gz
in the stationary disk structure (where gz is the vertical component of gravitational
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acceleration), we obtain by its integration the approximate vertical density profile of

the thin circumstellar disk [10], [14],

(2.5) ̺ ≈ ̺eq exp
(
− z2

2H2

)
, ̺eq =

Σ√
2πH

,

where we obtain the latter relation for the density ̺eq in the disk equatorial plane

(midplane) by integrating the equation of the surface density Σ. Conservation of

angular momentum dJ/dt = G, where the torque G is produced by the Rϕ com-

ponent GRϕ,visc of the viscous stress tensor, gives the explicit azimuthal momentum

component equation (see also [11], [12])

(2.6)
∂

∂t
(R̺Vϕ) +

1

R

∂

∂R

(
R2̺VRVϕ − αa2R3̺

∂ lnVϕ

∂R
+ αa2R2̺

)
= 0,

where the last two terms represent the viscous torque GRϕ,visc. Inclusion of both

the viscosity terms means the second order Navier-Stokes viscosity, while inclusion

of only the last term describes the first order Navier-Stokes viscosity [12]. The first

order Navier-Stokes viscosity is most frequently used in literature. The second order

term increases the efficiency of viscosity in case of Keplerian azimuthal velocity up

to the factor 3/2, it also prevents the physically implausible transition to a backward

(negative) azimuthal motion of some disk regions in calculations. The α parameter

of viscosity [25] is defined as the ratio of the assumed turbulent velocity and the

sound speed, α = Vturb/a ∼ ν/(λa), where ν is the standard kinematic viscosity and

λ is the mean free path of turbulent eddies (or fluid parcels) of the gas. We examine

in our models the radial variations α ∼ α0R
−n with a free parameter 0 < n < 0.2,

where 0.01 < α0 < 1 is the disk base viscosity (near the stellar surface).
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Figure 1. Stationary model of the circumstellar viscous disk density profile, highlighted by
the contour lines (marked by the corresponding density). The “flaring” shape
of the disk in the vertical sense is demonstrated. We denote by Req the stellar
equatorial radius which may in case of rapidly rotating stars differ from the stellar
polar radius up to the factor 3/2 (cf. Fig. 2).
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The temperature structure of the disk material is dominantly affected by the irra-

diation flux from the central star, therefore we regard it as isothermal (which means

that the system is in a radiative equilibrium, maintained primarily by an external

source of energy). The heat generated by the viscosity also plays a role in the cores of

very dense disks, but except extremely massive disks this contribution is only minor.

The detail description of the energy physics is very complicated exceeding thus the

scope of this paper. It has to take into account all the effects of rotational distortion

of the central star, density ̺, opacity, and chemical composition of the irradiated

disk gas and the effects of radiative cooling in the optically thin layers. We calculate

numerically all these effects using special programs or subroutines that are involved

in the main hydrodynamic code. We introduce here only the fundamental equation

of the local temperature gradient (assuming radiative and thermal equilibrium) [17],

[18], [19] along a “line-of-sight” direction n,

(2.7)
dT (R, z)

dn
=

3F(R, z)

16σT 3(R, z)

dτ(R, z)

dn
,

where F is the local sum of (frequency integrated) irradiative and viscous heat flux
(reduced by radiative cooling) and σ is the Stefan-Boltzmann constant. The gradient

of the optical depth τ along the same “line-of-sight” direction n is dτ/dn = −κ̺ n̂,

where κ is the opacity of the material with assumed chemical composition, and n̂ is

the unit vector in the direction n.

2.3. Hydrodynamics and similarity conditions in expanding supernova

envelope. The basic analytical solution of the supernova (SN) explosive event fol-

lows the idea of homologous (v ∝ r/t) energy-conserving hydrodynamic expansion,

using the Sedov-Taylor blast wave solution with different density profiles of an inter-

nal gas and surrounding medium [24], [33]. Gravitational force is quite unimportant

except for the very interior layers. The radiative losses are almost negligible in the

early phase of expansion comparing to the kinetic energy of the gas, we thus re-

gard the process as adiabatic. The scaling parameters are the energy of explosion

ESN, mass Mej of the expanding ejecta, and initial stellar radius R⋆. Since the

main aim of our study is the interaction between the expanding SN-remnant sphere

and the surrounding circumstellar media, which may be spherically symmetric (stel-

lar winds, pre-explosion gaseous shells) or asymmetric (circumstellar disks, disk-like

density enhancements, bipolar lobes), we neglect a pre-explosion SN interior density

distribution, which is completely transformed during the explosion and, on the other

hand, is of little influence on the structure of the studied interaction.

During the expansion of a highly supersonic ejecta into the surrounding medium

a strong shock wave is driven ahead at the radius R(t). The high pressure behind
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the forward shock drives a reverse shock backward into the ejecta, while the relative

velocity of this reverse shock is much lower than the velocity of the ejecta themselves

[4], [5], [30]. Contact discontinuity separates the SN-remnant and circumstellar me-

dia and propagates between the two shock waves. In the reference frame that is

co-moving with the forward shock, omitting viscosity and assuming constant adia-

batic exponent γ (which is astrophysically relevant), we can rewrite the (spherical)

adiabatic hydrodynamic equations (2.1), (2.2), and (2.3) on both sides of the shock

front into the simple conservative form [33],

(2.8) ̺1v1 = ̺0v0, ̺1v
2
1 + P1 = ̺0v

2
0 + P0,

γ

γ − 1

P1

̺1
+

v21
2

=
γ

γ − 1

P0

̺0
+

v20
2
,

where the upstream and downstream quantities are respectively labeled with sub-

scripts 0 and 1. The same velocities in the laboratory frame are D− v0 and D− v1,

where we denote by D the propagation speed of the forward shock. In the early phase

after explosion we approximate the process as a free expansion with the internal ve-

locity v of the gas proportional to the radius r. Assuming the density profile ̺in in

the envelope as a (time-dependent) power law and the density of the surrounding

(static) medium ̺out as an alternate power-law, we obtain the fundamental relations

(2.9) v =
r

t
, ̺in(t) = Ar−ntn−3, ̺out = Br−ω ,

where A, B, n, ω are particular constants. Equation (2.9) gives the corresponding

pressure relations Pin(t) = Ãr2−ntn−5 and Pout = B̺̃γout, Pout ≪ Pin, where Ã and B̃

are different constants, Pout is the pressure in the surrounding medium, and Pin is

the pressure in the expanding SN envelope. The subsequent analytical approach

requires a formalism of a similarity solution (see, e.g., [4], [20], [24], [33]) which leads

to the constraints ω < 3 and n > 5. The basic solution is also described in [13].

3. Flaring disk coordinates

3.1. Equations of coordinate transformation, differential operators. We

have developed the unique coordinate system that basically fits the geometry of

circumstellar disks, adapting vertical hydrostatic equilibrium as well as the open-

ing angle of the “flaring disk” geometry [11], [13]. The radial R and azimuthal ϕ

coordinates are identical with standard the cylindrical coordinate system, and the

coordinate θ is defined as the elevation angle calculated in positive and negative

direction from the equatorial plane. However, the real shape of the disks limits the

elevation angle to θ ∈ 〈−π/4, π/4〉 in a maximum case, therefore we do not specify
the boundary condition θ = π/2. Figure 2 illustrates the system in the R-θ plane.
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Transformation equations and the transformation of the unit basis vectors (denoted

using the “hat” symbol) are

x = R cosϕ, y = R sinϕ, z = R tan θ,(3.1)

x̂ = R̂ cosϕ− ϕ̂ sinϕ, ŷ = R̂ sinϕ+ ϕ̂ cosϕ, ẑ =
R̂ sin θ + θ̂

cos θ
,(3.2)

where the expressions for the unit vectors x̂ and ŷ are identical with the standard

cylindrical coordinate system. The derivation of the transformation equation for the

vector ẑ is illustrated in Fig. 3. The configuration of the unit basis vectors shows

that the transformation equation θ̂ = −R̂ sin θ+ẑ cos θ holds for the lower and upper

half-space with either negative or positive z and θ coordinates.
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Figure 2. Schematic chart of the flaring disk coordinate system in R-θ plane. Intersection of
the coordinate surface Sθ containing a point P with the R-θ plane is highlighted
by the thick dashed line. The parameters Req, Rmax, and θmin (or θmax) are
entered into the code. The rotationally oblate central star is depicted by a light
gray ellipse.

Angular and time derivatives of the unit basis vectors R̂ and ϕ̂ are the same as in

standard cylindrical system, angular and time derivatives of the unit basis vector θ̂

are

(3.3)
∂θ̂

∂ϕ
= −ϕ̂ sin θ,

∂θ̂

∂θ
= −R̂+ θ̂ sin θ

cos θ
,

∂θ̂

∂t
= − R̂θ̇

cos θ
− ϕ̂ϕ̇ sin θ − θ̂θ̇ tan θ,
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Figure 3. Left panel : Configuration of radial and “vertical” unit basis vectors of the stan-
dard cylindrical and the flaring coordinate system at an arbitrary point P in the
“lower” half-space of the disk, i.e., with negative z and θ coordinates. The unit
basis vector R̂ is identical for both the systems while the vectors ẑ and θ̂ form the
bases of the standard cylindrical and the flaring coordinate system, respectively.
The thick dashed line denotes the coordinate surface Sθ (where the coordinate
θ is constant). Right panel : As in the left panel, at an arbitrary point P ′ in
the “upper” half-space of the disk, i.e., with positive coordinates z and θ. Other
principles and the notation are the same as in Fig. 2.

the transformation Jacobian is J = R2/ cos2 θ. Metric tensors g (in variables R,

ϕ, θ) are

(3.4) (gij) =




1

cos2 θ
0

R sin θ

cos3 θ

0 R2 0

R sin θ

cos3 θ
0

R2

cos4 θ




, (gij) =




1 0 − sin 2θ

2R

0
1

R2
0

− sin 2θ

2R
0

cos2 θ

R2




.

The volume bounded by the coordinate surfaces (with constant R2, R1, ϕ1, ϕ2,

θ1, θ2) is

(3.5) V =
R3

2 −R3
1

3
(ϕ2 − ϕ1)(|tan θ2| − |tan θ1|).

The areas of the corresponding grid cell surfaces (the subscripts refer to the coordi-

nate that is constant on a given surface) are

SR = R2(ϕ2 − ϕ1)(|tan θ2| − |tan θ1|),(3.6)

Sϕ =
R2

2 −R2
1

2
(|tan θ2| − |tan θ1|),

Sθ =
R2

2 −R2
1

2

(ϕ2 − ϕ1)

cos θ
.

The gradient of a scalar function f = f(R,ϕ, θ) is

(3.7) ∇f = R̂
∂f

∂R
+ ϕ̂

1

R

∂f

∂ϕ
+ θ̂

cos θ

R

∂f

∂θ
.
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The gradient of an arbitrary vector field A(R,ϕ, θ) is the matrix ∇A with elements

(∇A)11 =
∂AR

∂R
R̂R̂, (∇A)12 =

∂Aϕ

∂R
R̂ϕ̂, (∇A)13 =

∂Aθ

∂R
R̂θ̂,(3.8)

(∇A)21 =
( 1

R

∂AR

∂ϕ
− Aϕ

R

)
ϕ̂R̂,

(∇A)22 =
( 1

R

∂Aϕ

∂ϕ
+

AR

R
− Aθ sin θ

R

)
ϕ̂ϕ̂,

(∇A)23 =
1

R

∂Aθ

∂ϕ
ϕ̂θ̂, (∇A)31 =

(cos θ
R

∂AR

∂θ
− Aθ

R

)
θ̂R̂,

(∇A)32 =
cos θ

R

∂Aϕ

∂θ
θ̂ϕ̂, (∇A)33 =

(cos θ
R

∂Aθ

∂θ
− Aθ sin θ

R

)
θ̂θ̂.

The divergence of an arbitrary vector field A(R,ϕ, θ) (noting that R̂ · θ̂ = − sin θ) is

(3.9) ∇ ·A =
1

R

∂(RAR)

∂R
+

1

R

∂Aϕ

∂ϕ
+

cos θ

R

∂Aθ

∂θ
− sin θ

R

[∂(RAθ)

∂R
+ cos θ

∂AR

∂θ

]
.

The curl of a vector A(R,ϕ, θ), where the cross products of different basis vectors

are

(3.10) R̂× ϕ̂ =
R̂ sin θ + θ̂

cos θ
, ϕ̂× θ̂ =

R̂+ θ̂ sin θ

cos θ
, θ̂ × R̂ = ϕ̂ cos θ,

takes the explicit form

(3.11) ∇×A = R̂
{ tan θ

R

[∂(RAϕ)

∂R
− ∂AR

∂ϕ

]
+

1

R

( 1

cos θ

∂Aθ

∂ϕ
− ∂Aϕ

∂θ

)}

+ ϕ̂
{cos θ

R

[
cos θ

∂AR

∂θ
− ∂(RAθ)

∂R

]}

+ θ̂
{ 1

R cos θ

[ ∂

∂R
(RAϕ)−

∂AR

∂ϕ

]
+

sin θ

R

( 1

cos θ

∂Aθ

∂ϕ
− ∂Aϕ

∂θ

)}
.

The Laplacian operator in the flaring disk system becomes

(3.12) ∆ =
1

R

∂

∂R

(
R

∂

∂R

)
+

1

R2

∂2

∂ϕ2
+

cos θ

R2

∂

∂θ

(
cos θ

∂

∂θ

)
− 2 sin θ cos θ

R

∂2

∂R∂θ
.

3.2. Velocity and acceleration. The position vector r and the velocity vector

V = dr/dt = VRR̂+ Vϕϕ̂+ Vθθ̂ in this coordinate system is

r = xx̂+ yŷ + zẑ =
R̂R+ θ̂R sin θ

cos2 θ
,(3.13)

V = R̂
(Ṙ+Rθ̇ tan θ

cos2 θ

)
+ ϕ̂Rϕ̇+ θ̂

(Ṙ tan θ

cos θ
+

Rθ̇

cos3 θ

)
.(3.14)
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The components of the acceleration vector a = dV /dt = aRR̂+ aϕϕ̂+ aθθ̂ are

(3.15) aR =
R̈+Rθ̈ tan θ + 2θ̇(Ṙ +Rθ̇ tan θ) tan θ

cos2 θ
−Rϕ̇2,

aϕ = Rϕ̈+ 2Ṙϕ̇, aθ =
1

cos θ

[
R̈ tan θ +

Rθ̈ + 2θ̇(Ṙ+Rθ̇ tan θ)

cos2 θ

]
.

Using equations (3.13) and (3.15), we express the components of the velocity vector

as

(3.16) Ṙ = VR − Vθ sin θ, ϕ̇ =
Vϕ

R
, θ̇ =

(Vθ − VR sin θ) cos θ

R
.

The components of the vector a in terms of the velocity vector components (noting

that dV /dt = ∂V /∂t+ V ·∇V ) are

aR =
∂VR

∂t
+ VR

∂VR

∂R
+

Vϕ

R

∂VR

∂ϕ
+ Vθ

cos θ

R

∂VR

∂θ︸ ︷︷ ︸
(~V ·~∇)VR

−
V 2
ϕ + V 2

θ

R
+

VRVθ sin θ

R
,(3.17)

aϕ =
∂Vϕ

∂t
+ VR

∂Vϕ

∂R
+

Vϕ

R

∂Vϕ

∂ϕ
+ Vθ

cos θ

R

∂Vϕ

∂θ︸ ︷︷ ︸
(~V ·~∇)Vϕ

+
VRVϕ

R
− VϕVθ sin θ

R
,(3.18)

aθ =
∂Vθ

∂t
+ VR

∂Vθ

∂R
+

Vϕ

R

∂Vθ

∂ϕ
+ Vθ

cos θ

R

∂Vθ

∂θ︸ ︷︷ ︸
(~V ·~∇)Vθ

−V 2
θ sin θ

R
+

VRVθ sin
2 θ

R
.(3.19)

The underbraced terms on the right-hand sides (RHS) of equations (3.17)–(3.19)

express the nonlinear advection while the other terms represent the fictitious forces.

We express the velocity vector components VR, Vϕ, Vθ from equations (3.1) and

(3.16) in terms of the cylindrical velocity vector components VR,cyl, Vϕ,cyl, Vz :

(3.20) VR = VR,cyl + Vz tan θ, Vϕ = Vϕ,cyl, Vθ =
Vz

cos θ
.

In case of perfect vertical hydrostatic balance, Vz = 0, equations (3.17)–(3.19) be-

come identical to standard cylindrical coordinates, which is an essential simplifica-

tion of the mathematical complexity. The advantage of flaring coordinates, however,

lies in the similarity of the grid shape to the described astrophysical system, thus

enabling us to efficiently and smoothly calculate the hydrodynamics within the ex-

tremely narrow inner part of the disk.
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4. Numerical methods

4.1. Operator-split finite volume scheme for smooth hydrodynamics.

Equations (2.1)–(2.3) are discretized using time-explicit operator-splitting (see equa-

tion (4.2)) and finite volume method on staggered radial grids [6], [15], [16], when

the two parallel grids A for vectors and B for scalars are shifted by half of the spatial

step in each direction (see also [11]). The advection fluxes are calculated on the

boundaries of the grid cells [15], [16], [22] using van Leer monotonic interpolation

[31], [32] (equation (4.10)). We write the full equations (2.1)–(2.3) (where we denote

the RHS terms as source terms) and their left-hand sides (LHS, usually designated as

advection scheme), respectively, in compact conservative form schematically as [11]

(4.1)
dU

dt

∣∣∣
full

= L(U),
∂U

∂t

∣∣∣
adv

= −∇ · F (U).

The vector U = ̺, ̺V , E = (u1, . . . , u5) represents in equation (4.1) the (density

of) conservative quantities—mass, momentum, and energy, respectively, the vector

F (U) = ̺V , ̺V ⊗V , EV represents the flux of the same quantities (the distinction

of total and partial derivatives is rather formal in this section, since both are solved

numerically using the same finite difference method). The operator L represents all
the mathematical functions (all the terms except the explicit time-derivatives) of the

conservative quantities. The operator L can be split into parts, L = L1 + L2 + . . .,

where each part represents a single term in the equations. We can thus sub-divide

each time-step into m time-substeps which correspond to m RHS terms in each

equation:

(4.2) (u1 − u0)/∆t = L1(u
0),

(u2 − u1)/∆t = L2(u
1),

...

(um − um−1)/∆t = Lm(um−1),

where Li represent finite-difference approximations of Li, the superscripts refer to

the time-substep and ∆t is the interval of the time-step [11]. This scheme is of

course an approximation of the exact solution, however, numerical experiments [21],

[27] have shown that the multi-step procedure is more accurate than a single-step

computation based on data calculated entirely in the previous time-step.

As already indicated in equation (4.1), the complete solution is within each time-

step grouped into two global steps, the source and the advection (transport) steps.

Within the source step, we solve the following finite-difference approximations of the
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full set of hydrodynamic equations (introduced in standard cylindrical system) in

the axisymmetric (∂/∂ϕ = 0) Lagrangian form [28]:

d̺

dt

∣∣∣
source

= 0,(4.3)

d

dt
ΠR

∣∣∣
source

= ̺
V 2
ϕ

R
− ∂P

∂R
− ̺

GM⋆R

(R2 + z2)3/2
− ∂Q

∂R
,(4.4)

dJ

dt

∣∣∣
source

= GRϕ,visc,(4.5)

d

dt
Πz

∣∣∣
source

= −∂P

∂z
− ̺

GM⋆z

(R2 + z2)3/2
− ∂Q

∂z
,(4.6)

dE

dt

∣∣∣
source

= − 1

R

∂

∂R
[R(PVR + qR)]−

∂

∂z
(PVz + qz) + VRGRϕ,visc +Ψ,(4.7)

where ΠR and Πz are the radial and the vertical momentum density components.

Using the angular momentum J in equation (4.5) instead of azimuthal momentum

component Πϕ, the solution experiences much greater stability [21] and the Coriolis

force is automatically involved. The last term Ψ on the RHS of equation (4.7) repre-

sents the irreversible conversion of mechanical energy into heat (positive dissipation

function),

(4.8) Ψ = 2ηEijE
ij +

(
ζ − 2

3
η
)(∂Vk

∂xk

)2
, where Eij =

1

2

(∂Vi

∂xj
+

∂Vj

∂xi

)

is the Cauchy strain tensor and the term EijE
ij denotes the inner product of two

tensors Eij , cf. [19]. In case of isothermal solution (see Section 2.2 for explanation)

equation (4.7) drops out.

We employ in equations (4.4) and (4.6) the artificial viscosity Q in the explicit

form [2], [21] that in the defined regions such as the compressive zones of shock

waves acts as a bulk viscosity (we demonstrate here, e.g., the radial “piece” while

the azimuthal “piece” is analogous)

(4.9) QR,i,j,k = ̺i,j,k∆VR,i,j,k[−C1ai,j,k + C2min(∆VR,i,j,k, 0)],

where ∆VR,i,j,k = VR,i+1,j,k − VR,i,j,k is the forward difference of the radial velocity

component, a is the sound speed and the lower indices i, j, k denote the ith, jth,

and kth grid cell. The second term scaled by a constant C2 = 1.0 is the quadratic

artificial viscosity [2] used in compressive zones. The linear term with C1 = 0.5 is

used for damping numerical oscillations in stagnant regions of the flow [21].

We demonstrate the principle of the spatial derivative of the quantity u (located,

e.g., on B-mesh) on the 1D example: we introduce left-side and right-side difference
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quotients, ∆A
−
= (uB

i −uB
i−1)/(x

B
i −xB

i−1) and ∆
A
+ = (uB

i+1−uB
i )/(x

B
i+1−xB

i ), located

at ith (or jth, kth in case of another coordinate directions) position of the grid. For

the complete spatial differentiation we employ the (cell average) van Leer derivative

[31], [32],

(4.10) dBvL =





〈∆−∆+〉 =

2∆−∆+

∆− +∆+
, if ∆−∆+ > 0,

0, if ∆−∆+ < 0.

x
A
i−1 x

A
ix

B
i−1

u
B,n
i−1

1

2
V

A,n+a
i ∆t

I
A,n+a
i
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′A
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Figure 4. Left panel : scheme of the 1D van Leer derivative (equation (4.10)) whose slope
(solid line denoted as dBvL) must fall on cell edges between the volume averages
of the same quantity in two neighboring zones. Adapted from [31]. Right panel :
1D predictor step (equation (4.11)). A quantity u is advected on a cell edge in a
half-time step t+∆t/2 along the van Leer derivative (solid line denoted as dBvL).
The solid cell boundary depicts the fluid parcel advected in time ∆t/2 while the
dashed cell (with primed coordinates) is fixed in space. The position of the linear
interpolant I is denoted by IAi . The corrector step (equation (4.12)) then advects
the quantity in the center of the B-mesh cell in time t+∆t. Adapted from [11].

In the advection step (second equation in (4.1)) we use the two-step predictor-

corrector algorithm for the calculation of time derivatives [7], [8], [22]. The interme-

diate (predictor) step is represented by the quantity I (interpolant). In case of the

scalar quantity u (centered on the B-mesh) advected in the ith direction we have

(4.11) IA,n+a
i,j,k = uB,n

i−1,j,k + d
B
vL

(
xA
i − xB

i−1 −
V A,n+a
i,j,k ∆t

2

)
,

where the superscript n+ a represents the partially updated nth time-step, xA and

xB are the coordinates of the ith A-mesh and B-mesh point (see Fig. 4). The

local advection velocity V A is partially updated from the interpolant values I of the
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momentum and density while it is updated once again at the end of the time-step.

The subsequent corrector step is [6], [15], [16]

(4.12) uB,n+1
i,j,k = uB,n

i,j,k −
∆t

ΩB
i,j,k

(IA,n+a
i+1,j,kV

A,n+a
i+1,j,kS

A
i+1,j,k − IA,n+a

i,j,k V A,n+a
i,j,k SA

i,j,k),

where ΩB
i,j,k denotes the volume of the grid cell (control volume) centered on B-mesh

at the grid point i, j, k and SA
i,j,k (control surface) denotes the area of the correspond-

ing grid cell surface with normal vector oriented in the direction i. Equation (4.12)

thus represents the numerical finite volume form of the advection scheme (equa-

tion (4.1)). The multidimensional advection is usually solved using the directional

splitting which may involve a series of two or three one-dimensional partial updates,

when each of them runs in different direction [28]. Each predictor step must lead

to the exact location of the interpolant for the subsequent corrector step (we note

that only the advected components of vector quantities are located at the A-mesh

points while all the other components are treated as scalars). A detailed description

of all parts of the calculation is very extensive and it is thus beyond the scope of this

paper. For other numerical details as well as for the complete demonstration of the

code structure including all routines and the MHD extension see [11].

4.2. Single-step (unsplit) finite volume scheme for calculation of ex-

tremely discontinuous flows with high Mach number. Following the princi-

ples of Roe’s method [23], [29], we basically distinguish the vectors W of primitive

and U of conservative (either for adiabatic or isothermal solution) hydrodynamic

variables,

(4.13) W =




̺

V

P


 , U =




̺

Π

E


 .

The 3D Cartesian advection scheme (equation (4.1)) becomes the directionally split

form,

(4.14)
∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0,

where F , G, and H are the vectors of fluxes whose explicitly written components

are

(4.15) F =




̺Vx

̺V 2
x + P

̺VxVy

̺VxVz

(E + P )Vx




, G =




̺Vy

̺VyVx

̺V 2
y + P

̺VyVz

(E + P )Vy




, H =




̺Vz

̺VzVx

̺VzVy

̺V 2
z + P

(E + P )Vz




.

647



The linearized form of the conservation law can be written as

∂U

∂t
+AC

1 (U)
∂U

∂x
+AC

2 (U)
∂U

∂y
+AC

3 (U)
∂U

∂z
,(4.16)

∂W

∂t
+AP

1 (W )
∂W

∂x
+AP

2 (W )
∂W

∂y
+AP

3 (W )
∂W

∂z
,(4.17)

where the Jacobian matrices are AC
1 = ∂F/∂U , AC

2 = ∂G/∂U , AC
3 = ∂H/∂U ,

while AP
1 (W ),AP

2 (W ),AP
3 (W ) directly follow from the equations written in terms

of W . We introduce for simple illustration the Cartesian adiabatic hydrodynamic

system expanded explicitly in the primitive variablesW = (̺, Vx, Vy , Vz, P ):

∂̺

∂t
+ Vx

∂̺

∂x
+ ̺

∂Vx

∂x
+ Vy

∂̺

∂y
+ ̺

∂Vy

∂y
+ Vz

∂̺

∂z
+ ̺

∂Vz

∂z
= 0,(4.18)

∂V

∂t
+
(
Vx

∂

∂x
+ Vy

∂

∂y
+ Vz

∂

∂z

)
V +

1

̺

(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
P = 0,(4.19)

∂P

∂t
+ γP

(∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

)
+
(
Vx

∂

∂x
+ Vy

∂

∂y
+ Vz

∂

∂z

)
P = 0,(4.20)

while in the isothermal case equation (4.20) drops out.

The detailed demonstration of the complete Roe algorithm is highly beyond the

scope of this paper, however, it is fully described, e.g., in [3], [23], [29]. The basic

equation showing the computation of Roe fluxes is (in 1D simplification), see [27],

[26],

(4.21) FRoe
i−1/2 =

1

2

[
fL
i−1/2 + fR

i−1/2 +
∑

α

Lα
· (uL

i−1/2 − uR
i−1/2)|λα|Rα

]
,

where fL, fR, uL, uR, are the volume-averaged fluxes (f) and variables (u) at

the left and right cell interfaces at a half-timestep, λα are the eigenvalues of Roe

matrices given in equations (4.25) and (4.33), and Lα, Rα, are the rows and columns

of the left and right eigenmatrices (equations (4.26), (4.27), (4.30), (4.34), (4.38))

corresponding to λα. The time-updated values of U and W are calculated via the

standard finite volume method [27]. In the next two paragraphs we demonstrate the

explicit form of the Roe matrices in the “flaring disk” coordinates that can be used

for modeling shocks in the disks, e.g., in case of disk-wind or disk-disk interactions or

in case of binary or even multiple systems containing a compact component (neutron

star).

4.3. Eigensystems of the flaring disk coordinates using Roe’s method:

adiabatic hydrodynamics. For adiabatic hydrodynamics in the flaring disk coor-

dinate frame with the conservative variables U = (̺,ΠR,Πϕ,Πθ, E) = (u1, . . . , u5)
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we write equation (4.14) in the vector form [29],

(4.22)
∂U

∂t
+ ξ, ξ′

∂F

∂R
+

1

R

∂G

∂ϕ
+

cos θ

R
η, η′

∂H

∂θ
= ζ, ζ′S,

where F , G,H are the vectors of fluxes in the R, ϕ, θ directions, respectively, and S

is the vector of geometric source terms that results from curvilinearity of the system.

The factors ξ = 1, ξ′ = sin θ stand at particular R, θ components of the flux F ,

factors η = 1, η′ = sin θ stand at particular θ,R components of the flux H, factors

ζ = 1, ζ′ = sin θ stand at particular R, θ components of the geometric source term S.

The vectors F , G, H written in the flaring disk coordinates are

(4.23) F , G, H =




u2−4, u3, u4−2

u2−4u2

u1
+ γ1

[
u5 −

u2
2 + u2

3 + u2
4

2u1

]
,

u3u2

u1
,

u4−2u2

u1

u2−4u3

u1
,

u2
3

u1
+ γ1

[
u5 −

u2
2 + u2

3 + u2
4

2u1

]
,

u4−2u3

u1

u2−4u4

u1
,

u3u4

u1
,

u4−2u4

u1
+ γ1

[
u5 −

u2
2 + u2

3 + u2
4

2u1

]

[
γu5 − γ1

u2
2 + u2

3 + u2
4

2u1

](u2−4

u1
,

u3

u1
,

u4−2

u1

)




,

where u2−4 = u2−u4, u4−2 = u4−u2, and γ1 = γ−1, demonstrating the swapping of

components of momentum [26], [27]. The adiabatic conservative Jacobian matrices

are AC = ∂(F ,G,H)/∂U , where we hereafter denote µ = cos θ, V ′ = VR − Vθ sin θ,

and H = (E + P )/̺ is the enthalpy (noting that the factor sin θ in the terms u2−4

and u4−2 is not differentiated), are

AC
1 =




0 1 0 − sin θ 0

γ1
V 2

2
− VRV

′ V ′ − γ2VR −γ1Vϕ V ′′ − γVθ γ1

−VϕV
′ Vϕ V ′ −Vϕ sin θ 0

−VθV
′ Vθ 0 V ′ − Vθ sin θ 0

γ1
V ′V 2

2
− V ′H H − γ1VRV

′ −γ1VϕV
′ −H sin θ − γ1VθV

′ γV ′




,

(4.24) AC
2 =

1

R




0 0 1 0 0

−VϕVR Vϕ VR 0 0

γ1 − V 2
ϕ

V 2

2
−γ1VR −γ3Vϕ −γ1Vθ γ1

−VϕVθ 0 Vθ Vϕ 0

γ1
VϕV

2

2
− VϕH −γ1VRVϕ H − γ1V

2
ϕ −γ1VϕVθ γVϕ




,
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AC
3 =

µ

R




0 − sin θ 0 1 0

−VRV
′′ V ′′ − VR sin θ 0 VR 0

−VϕV
′′ −Vϕ sin θ V ′′ Vϕ 0

γ1
V 2

2
− VθV

′′ V ′ − γVR −γ1Vϕ V ′′ − γ2Vθ γ1

γ1
V ′′V 2

2
− V ′′H −H sin θ − γ1VRV

′′ −γ1VϕV
′′ H − γ1VθV

′′ γV ′′




,

where V ′′ = Vθ − VR sin θ. The corresponding eigenvalues are

AC
1 : λC

1 = (V ′ − a, V ′, V ′, V ′, V ′ + a),

AC
2 : λC

2 =
1

R
(Vϕ − a, Vϕ, Vϕ, Vϕ, Vϕ + a),(4.25)

AC
3 : λC

3 =
µ

R
(V ′′ − a, V ′′, V ′′, V ′′, V ′′ + a),

where a is the adiabatic speed of sound, a2 = γP/̺. The corresponding right eigen-

vectors of AC
1 are the columns of the matrix

(4.26) RC
1 =




1 0 0 1 1

VR − a 0 sin θ VR VR + a

Vϕ 1 0 Vϕ Vϕ

Vθ 0 1 Vθ Vθ

H − V ′a Vϕ µ2Vθ
V 2

2
H + V ′a




,

while the matrices RC
2 and RC

3 are derived analogously. The corresponding left

eigenvectors LC
1 are the rows of the matrix

(4.27) LC
1 =




γ1V
2/2 + V ′a

2a2
−γ1V

′ + a

2a2
−γ1Vϕ

2a2
−γ1V

′′ − a sin θ

2a2
γ1
2a2

−Vϕ 0 1 0 0

−Vθ 0 0 1 0

1− γ1V
2

2a2
γ1V

′

a2
γ1Vϕ

a2
γ1V

′′

a2
−γ1
a2

γ1V
2/2− V ′a

2a2
−γ1V

′ − a

2a2
−γ1Vϕ

2a2
−γ1V

′′ + a sin θ

2a2
γ1
2a2




with analogous expressions for matrices LC
2 and LC

3 .
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For a comparison we introduce the same adiabatic system (4.18) in primitive

variablesW = (̺, VR, Vϕ, Vθ, P ) = (w1, . . . , w5) in the flaring disk coordinates:

∂̺

∂t
+

1

R

[∂(R̺V ′)

∂R
+

∂(̺Vϕ)

∂ϕ

]
+

µ

R

(
̺δV ′′ + V ′′

∂̺

∂θ

)
= 0,(4.28)

∂VR

∂t
+ V ′

∂VR

∂R
+

Vϕ

R

∂VR

∂ϕ
+

µ

R
V ′′

∂VR

∂θ
+

1

̺

∂P

∂R
= 0,

∂Vϕ

∂t
+ V ′

∂Vϕ

∂R
+

Vϕ

R

∂Vϕ

∂ϕ
+

µ

R
V ′′

∂Vϕ

∂θ
+

1

̺R

∂P

∂ϕ
= 0,

∂Vθ

∂t
+ V ′

∂Vθ

∂R
+

Vϕ

R

∂Vθ

∂ϕ
+

µ

R

(
V ′′

∂Vθ

∂θ
+

1

̺

∂P

∂θ

)
= 0,

∂P

∂t
+

γP

R

[∂(RV ′)

∂R
+

∂Vϕ

∂ϕ
+ µδV ′′

]
+ (γV )′

∂P

∂R
+

Vϕ

R

∂P

∂ϕ
+

µ(γV )′′

R

∂P

∂θ
= 0,

where (γV )′ = VR − γVθ sin θ, (γV )′′ = Vθ − γVR sin θ, and δV ′′ = ∂θVθ − sin θ∂θVR.

In isothermal case (analogously to the Cartesian set (4.18)–(4.20)) the last equation

(4.28) drops out. The adiabatic primitive matrices AP
1 , A

P
2 , and AP

3 , become

AP
1 =




V ′ ̺ 0 −̺ sin θ 0

0 V ′ 0 0
1

̺
0 0 V ′ 0 0

0 0 0 V ′ 0

0 ̺a2 0 −̺a2 sin θ (γV )′




, AP
2 =

1

R




Vϕ 0 ̺ 0 0

0 Vϕ 0 0 0

0 0 Vϕ 0
1

̺
0 0 0 Vϕ 0

0 0 ̺a2 0 Vϕ




,

AP
3 =

µ

R




V ′′ −̺ sin θ 0 ̺ 0

0 V ′′ 0 0 0

0 0 V ′′ 0 0

0 0 0 V ′′
1

̺
0 −̺a2 sin θ 0 ̺a2 (γV )′′




.(4.29)

The corresponding eigenvalues λP
1 , λ

P
2 , λ

P
3 of the matrices A

P
1 , A

P
2 , A

P
3 are identical

with equation (4.25). The right and left eigenvectors, RP
1 and L

P
1 , are the respective

columns and rows of the matrices

(4.30) RP
1 =




1 1 0 0 1

−a

̺
0 0 sin θ

a

̺
0 0 1 0 0

0 0 0 1 0

a2 0 0 0 a2




, LP
1 =




0 − ̺

2a
0

̺ sin θ

2a

1

2a2

1 0 0 0 − 1

a2

0 0 1 0 0

0 0 0 1 0

0
̺

2a
0 −̺ sin θ

2a

1

2a2




,
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with analogously defined matrices for other directions. The vectors of adiabatic con-

servative and primitive geometrical source terms are SC = −(̺V ′, ̺V V ′, ̺V ′H)T/R,

SP = −(̺V ′, 0, ̺a2V ′)T/R.

4.4. Eigensystems of the flaring disk coordinates using Roe’s method:

isothermal hydrodynamics. In isothermal hydrodynamics in the flaring disk co-

ordinate frame with the conservative variables U = (̺,ΠR,Πϕ,Πθ) = (u1, . . . , u4),

the vectors of fluxes F , G, H for R, ϕ, θ directions, respectively, have the form

(4.31) Fiso,Giso,Hiso =




u2−4, u3, u4−2

u2−4u2

u1
+ C2u1,

u3u2

u1
,
u4−2u2

u1

u2−4u3

u1
,
u2
3

u1
+ C2u1,

u4−2u3

u1

u2−4u4

u1
,
u3u4

u1
,
u4−2u4

u1
+ C2u1




,

where C is the isothermal speed of sound. The isothermal conservative Jacobian

matrices AC
iso = ∂(Fiso,Giso,Hiso)/∂U are

AC
1,iso =




0 1 0 − sin θ

−VRV
′ + C2 VR + V ′ 0 −VR sin θ

−VϕV
′ Vϕ V ′ −Vϕ sin θ

−VθV
′ Vθ 0 V ′ − Vθ sin θ


 ,(4.32)

AC
2,iso =

1

R




0 0 1 0

−VϕVR Vϕ VR 0

−V 2
ϕ + C2 0 2Vϕ 0

−VϕVθ 0 Vθ Vϕ


 ,

AC
3,iso =

µ

R




0 − sin θ 0 1

−VRV
′′ V ′′ − VR sin θ 0 VR

−VϕV
′′ −Vϕ sin θ V ′′ Vϕ

−VθV
′′ + C2 −Vθ sin θ 0 Vθ + V ′′


 .

The corresponding eigenvalues are

AC
1,iso : λC

1,iso = (V ′ − C, V ′, V ′, V ′, V ′ + C),(4.33)

AC
2,iso : λC

2,iso =
1

R
(Vϕ − C, Vϕ, Vϕ, Vϕ, Vϕ + C),

AC
3,iso : λC

3,iso =
µ

R
(V ′′ − C, V ′′, V ′′, V ′′, V ′′ + C).
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The right and left eigenvectors, RC
1,iso and LC

1,iso, are the respective columns and

rows of the matrices

RC
1,iso =




1 0 0 1

VR − C 0 sin θ VR + C

Vϕ 1 0 Vϕ

Vθ 0 1 Vθ


 ,(4.34)

LC
1,iso =




1 + V ′/C

2
− 1

2C
0

sin θ

2C
−Vϕ 0 1 0

−Vθ 0 0 1
1− V ′/C

2

1

2C
0 − sin θ

2C




,(4.35)

in the radial direction (R) with analogously defined matrices for other directions.

The isothermal hydrodynamic equations expressed in terms of primitive variables

W = (̺, VR, Vϕ, Vθ) = (w1, . . . , w4) take the form

∂̺

∂t
+ ̺

(∂V ′

∂R
+

1

R

∂Vϕ

∂ϕ
+

µ

R
δV ′′

)
+ V ′

∂̺

∂R
+

Vϕ

R

∂̺

∂ϕ
+

µ

R
V ′′

∂̺

∂θ
= −̺V ′

R
,(4.36)

∂VR

∂t
+ V ′

∂VR

∂R
+

Vϕ

R

∂VR

∂ϕ
+

µ

R
V ′′

∂VR

∂θ
+

C2

̺

∂̺

∂R
= 0,

∂Vϕ

∂t
+ V ′

∂Vϕ

∂R
+

Vϕ

R

∂Vϕ

∂ϕ
+

µ

R
V ′′

∂Vϕ

∂θ
+

C2

̺R

∂̺

∂ϕ
= 0,

∂Vθ

∂t
+ V ′

∂Vθ

∂R
+

Vϕ

R

∂Vθ

∂ϕ
+

µ

R
V ′′

∂Vθ

∂θ
+

µ

R

C2

̺

∂̺

∂θ
= 0.

The adiabatic primitive matrices AP
1 , A

P
2 , and AP

3 become

AP
1,iso =




V ′ ̺ 0 −̺ sin θ
C2

̺
V ′ 0 0

0 0 V ′ 0

0 0 0 V ′




, AP
2,iso =

1

R




Vϕ 0 ̺ 0

0 Vϕ 0 0
C2

̺
0 Vϕ 0

0 0 0 Vϕ




,(4.37)

AP
3,iso =

µ

R




V ′′ −̺ sin θ 0 ̺

0 V ′′ 0 0

0 0 V ′′ 0
C2

̺
0 0 V ′′


 .

The corresponding eigenvalues λP
1,iso, λ

P
2,iso, λ

P
3,iso, of the matrices AP

1,iso, A
P
2,iso,

AP
3,iso, are identical with equation (4.33). The right and left eigenvectors, R

P
1,iso and
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LP
1,iso, are the respective columns and rows of the matrices

(4.38) RP
1,iso =




1 0 0 1

−C

̺
sin θ 0

C

̺
0 0 1 0

0 1 0 0


 , LP

1,iso =




1

2
− ̺

2C
0

̺ sin θ

2C
0 0 1 0

0 0 0 1
1

2

̺

2C
0 −̺ sin θ

2C




,

with the other directions analogous. The vectors of isothermal conservative and prim-

itive geometrical source terms are SC
iso = −(̺V ′, ̺V V ′)T/R, SP

iso = −(̺V ′, 0)T/R.

5. Results of time-dependent models

5.1. 2D models of the disks. We performed all the demonstrated models by

employing both the numerical methods introduced in Sections 4.1 and 4.2 on a flaring

disk grid, logarithmically scaled in the radial (R) direction, with the outer radius

of the computational domain extending up to 500Req. The necessity of using such

a relatively large domain results from the need of the model convergence by its passing

through the so-called sonic point (where the radial outflowing velocity VR equals the

speed of sound a), which is usually located at a distance of several hundred radii of

the star (an order of 1010 km). The results introduced in this section thus cover only

illustrative fragments of the total computational domain, e.g. Fig. 5. The number

of computational grid cells was 500 in the radial and 200 in the vertical direction,

involving the 2D parallelization using the MPI procedure. The physical time of the

convergence of the model was in this case of the order of 2 years (≈ 800 days) while

the computational time was approximately 1 week (the maximum number of parallel

processes used was 100).

We calculated the evolution of gas-dynamic density and temperature of the inner

disk self-consistently, i.e., within each time-step of the full hydrodynamic process

(including the calculation of viscous heat generation) we included the outcomes of

calculation of the irradiative heating from the outer source (central star) from sep-

arate subroutines (which are not described in this paper). The variations of the

density structure are thus affected by the variations of the temperature distribu-

tion within the heated gas, and vice versa, during the process of convergence of

computation (all other models published so far use either the fixed hydrodynamic

structure of the gas for calculation of thermal and radiative models, or they param-

eterize the temperature, calculating the time-dependent gas-dynamics). We input

the initial state of the disk assuming Keplerian rotation (Vϕ ∼ R−1/2), zero radial

outflow (VR = 0), and the vertically integrated density Σ ∼ R−2 [whose Σ(Req)
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Figure 5. Upper panel : Self-consistent time-dependent calculations of the density structure
of the inner part of a very dense circumstellar disk with mass-loss rate of ap-
proximately 10−6 solar masses per year [13] (where the parameter Req means
the stellar equatorial radius). The contours mark the density levels (from low to
high) 10−9, 10−8, 10−7, 10−6, 2.5×10−6 , 5×10−6 [kgm−3], and so on, with the
constant increment 2.5×10−6 kgm−3. Physical time of the model convergence is
approximately 2 years. Lower panel : Temperature structure of the same model
as in the upper panel [13]. The region of significantly increased temperature near
the disk midplane is generated by the viscous heating. The contours mark the
temperature levels 10 000K, 20 000K, and 50 000K. Thermal and radiative equi-
libria, electron and Kramers opacities, stellar equatorial and limb darkening, and
radiative cooling are taken into account [13].

value follows the continuity equation], while we obtain the initial vertical density

profile from equation (2.5). We parameterize the initial temperature distribution

as ∂T/∂R ∼ −pR−(p+1), selecting the slope parameter p between 0 and 0.7, and

∂T/∂z = 0. We use various boundary conditions for particular hydrodynamic quan-

tities at the inner (stellar) boundary: the density ̺ and the angular momentum J

are fixed (we assume there the non-varying Keplerian azimuthal velocity) while we

set there the free boundary condition for the radial momentum flow ΠR (the zero

vertical momentum flow Πz results from the vertical hydrostatic equilibrium). We

set the outer (right) boundary conditions as free for all the quantities. We assume

655



the lower and upper (left and right) boundary conditions in the vertical direction as

outflow boundary conditions (or alternatively periodic, which does not significantly

affect the computation) [11], [12].

5.2. Interactions of supernova expansion with circumstellar medium.

We perform a model of the interaction of an expanding SN envelope with the am-

bient circumstellar media including a dense equatorial disk. The computation was

performed on a Cartesian 2D grid with 300 grid cells in each direction, in a time

interval up to 63 hours since the SN event. Prior to the envelope expansion we

consider a strong shock (Sedov blast) wave in the SN progenitor interior that com-

pletely rearranges (homogenizes) its density structure [1]. The injected SN explosion

energy is 1044 J. We consider the initial internal pressure as a homogeneous pressure

of a photon gas (with γ = 4/3), Pini = E/(3V ) = E/(4πR3
⋆), i.e., of the order of

1011Pa, while the initially isothermal pressure of the ambient medium may be of the

order of 10−6Pa and lower. The magnitude of the jump in pressure discontinuity

thus grows up to 18 orders of magnitude (or even more) in the initial stage of in-

teraction. The early phase of the SN envelope evolution can be basically described

as adiabatic wave self-similar solution [4], [20], [24], where the time-dependent disk

density structure is basically described in Section 2.3. Numerical solution is calcu-

lated using the method described in Section 4.2 [13], [27] that has proven itself in

calculating such discontinuous, highly supersonic flows. We assume a stellar wind

density of the spherically symmetric ambient medium ̺ ∝ r−2 and the disk structure

is described in Sections 2.2 and 5.1. The models of density and expanding velocity

are plotted in Fig. 6.
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Figure 6. Left panel : Density structure from time-dependent calculation of adiabatic inter-
action between SN expansion ejecta and assymetric ambient medium, containing
dense circumstellar disk along the horizontal midplane. Physical time of per-
formed simulation: 63 hours since explosion. Right panel : Distribution of the
expansion velocity in the same model. Adapted from [13].
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6. Conclusions

We have developed two basic types of our own hydrodynamic (MHD) codes, em-

ploying two different numerical principles. Each of them fits to different nature of

hydrodynamic processes. The operator-split finite volume Eulerian code (Section 4)

fits to rather smooth hydrodynamic flows (where the pressure jump does not ex-

ceed some 2–3 orders of magnitude), while the unsplit finite volume scheme based

on Roe’s method (Section 4.2) was successfully used for calculations of processes

with extremely large discontinuities and flows with high Mach number. Most of

the astrophysical processes are successfully calculated on both types of the codes,

which significantly increases the reliability of the results. Both the codes use the

full Navier-Stokes viscosity to calculate realistic viscous and dissipative effects. We

have written both the types of the codes in the basic orthogonal geometries, i.e.,

Cartesian, cylindrical, and spherical, and they have been properly tested for typical

problems such as the Riemann-Sod shock tube, or the Rayleigh-Taylor instability,

etc. We also introduce the unique “flaring disk” non-orthogonal coordinate system,

which naturally fits to calculations of accretion or decretion astrophysical disks, into

which we have also transformed both types of these numerical codes.

Comparison of the two approaches basically described in Sections 4.1 and 4.2,

in terms of computational accuracy and speed, more or less corresponds to their

determination. Our tests and practical results confirm the general assumption that

the smooth hydrodynamics operator split approach is (up to 2 times) faster and gives

more accurate results for the problems that do not involve too strong shocks and that

comprise large spatial volumes. Its creation and its geometrical modifications as well

as implementations of additional subroutines and various physical source terms is

significantly easier than in case of the unsplit code. However, when the ratio L/a

(where L and a are the typical length scale of a system and the characteristic speed of

sound, respectively), which may roughly express the relaxation time, does not exceed

107–108 s (noting that in the disks L/a & 109 s), the computational efficiency of the

unsplit approach becomes comparable or even begins to dominate. In case of large

discontinuities when the density or pressure jumps exceed 2–3 orders of magnitude,

only the unsplit code is able to successfully calculate such a process, probably even

for unlimited jumps in these characteristics (we have already tested maximum of

some 40 orders of magnitude jump in pressure).
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