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Abstract: High-speed railway (HSR) is recognized as a green transportation mode with lower energy

consumption and less pollution emission than other transportation. At present, China has the largest

HSR network globally, but the maximum revenue of railway transportation corporations has not

been realized. In order to make HSR achieve a favorable position within the fierce competition

in the market, increase corporate revenue, and achieve the sustainable development of HSR and

railway corporations, we introduce the concept of revenue management in HSR operations and

propose an innovative model to optimize the price and seat allocation for HSR simultaneously. In the

study, we formulate the optimization problem as a mixed-integer nonlinear programming (MINLP)

model, which appropriately captures passengers’ choice behavior. To reduce the computational

complexity, we further transform the proposed MINLP model into an equivalent model. Finally,

the effectiveness of both the proposed model and solution algorithm are tested and validated by

numerical experiments. The research results show that the model can flexibly adjust the price and

seat allocation of the corresponding ticketing period according to the passenger demand, and increase

the total expected revenue by 5.92% without increasing the capacity.

Keywords: HSR; railway pricing; railway revenue management; elastic demand; sustainable

development of HSR

1. Introduction

High-speed railway (HSR) has many advantages, such as large transportation capacity, fast speed,

less land occupation, low energy consumption, low pollution, etc. As a green mode of transportation,

HSR has been developing rapidly in many countries, and this is particularly the case in China. In 2018,

China’s HSR operating mileage exceeded 29,000 km, ranking first in the world. Despite the rapid

development of HSR in China, the China Railway Corporation (CRC) still faces a significant debt

problem, due to the large investment in HSR construction. If the HSR operation continues to lose

money, it will have a huge impact on the sustainable development of HSR construction, slowing

down the development between cities and between urban and rural areas. Therefore, the revenue

management of HSR is crucial for the sustainable development and operation of HSR [1]. Developed

countries, such as France, Japan and Germany, have introduced the concept of revenue management in

their HSR operations to gain more revenue in order to realize long-term development [2]. However,

China’s HSR is relatively deficient in this aspect, which causes some problems in the seating rate as

it fluctuates with time for some rail lines leading to either insufficient or wasted seat capacity [3].

The maximum revenue of CRC has not been realized.

Pricing and seat allocation are the two core issues of revenue management. At present, the pricing

of China’s HSR is generally guided by the government, who uses the fixed price, and the fixed price
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cannot guide or regulate passenger flow. In terms of seat allocation, basically, the method of fixed seat

allocation is adopted, namely, determining the number of seats for each origin–destination (OD) pair

for each train throughout the sales period [4]. The fixed seat allocation method cannot be adjusted in

time according to time-varying demand, and, thus, the transportation capacity cannot be rationally

utilized. Existing pricing and seat allocation methods can hardly adapt to the dynamic market, which

is not conducive to maximize revenue and realize the development of HSR. Therefore, formulating

a scientific and reasonable HSR pricing mechanism and a flexible seat allocation system based on

revenue management has become a key issue to improve the utilization rate of transportation resources,

which needs to be solved urgently for the future development of China’s HSRs.

Revenue management means “selling the right product at the right time and selling it to the right

person at the right price” in order to maximize revenue [5]. Dynamic pricing refers to setting different

prices for the same product over time according to consumers’ different willingness to pay in different

time periods. Due to consumers’ heterogeneous valuations, dynamic pricing over time can occur as a

strategy to cater to consumers’ willingness to pay in different time periods to obtain more benefits [6].

As an important strategy in revenue management, dynamic pricing can play a critical role in guiding

and regulating demand. It has been studied in many areas, especially in the aviation field. In these

studies, one type of research is based on the assumption that the market is monopolistic [7,8]. In the

process of these studies, monopoly companies used different price policies to induce and guide demand

to achieve the maximum total expected revenue. Later, many studies were devoted to obtaining bid

price control strategies [9,10]. These studies used Markov Decision Process (MDP) model to describe

the dynamic airline revenue management problem and obtained bid-price control strategies.

Currently, most of the pricing studies on HSR are mainly borrowed from the aviation field, but

there are many differences between the two fields. For example, airlines are a point-to-point mode of

passenger transport, and the ticket prices between different OD pairs are mostly independent, which

can be determined separately [11]. However, each train has multiple stops, which can generate demand

between many different OD pairs, and this leads to the correlation of ticket prices among different

OD pairs. Besides, we need to determine a price for each OD, so the scale of the decision variable

for HSR is too large. Therefore, if the MDP model is applied to HSR, the solution to the problem

becomes very complicated, and so the Markov method is unsuitable for HSR pricing. Due to the

difficulty and complexity of the pricing of HSR, the optimal pricing problem of HSR has not been fully

studied and implemented compared with the airline industry [12]. Alexander [13] summarized the

railway passenger revenue management model before 2010. Crevier et al. [14] put forward a bi-level

programming model that can optimize service pricing and railway vehicle routes at the same time.

Lin [15] studied the pricing problem based on uncertain demand. However, most of the existing

railway pricing problems are still based on a single OD pair or single train, which leads to the poor

practical application of existing research.

Customer choice behavior plays an important role in estimating customer demand. Understanding

passengers’ choice behavior can help authorities improve their service levels. New ideas for the

sustainable development of HSR are also being investigated. A great deal of the literature studied the

factors influencing customer choice behavior, and they divided the factors into two aspects: Personal

attributes and trip attributes [16–25]. At present, more and more scholars are considering the impact of

passengers’ travel choice behavior [26–28]. These studies simulated the travel behavior of passengers

by constructing corresponding functions to predict demand and provided a good basis for future

optimal pricing research.

Another core issue of revenue management is seat allocation. You [29] studied the seat control

problem of two-class pricing on a multi-segment passenger train. Jiang et al. [30] proposed a dynamic

adjustment method for seat allocation. However, these studies attempted to solve the deterministic seat

allocation problem of railways on the basis of fixed ticket, while the uncertainty of passenger demand

has not been resolved. In practice, passenger demand is changing dynamically, so research based

on stochastic passenger demand is more in line with the actual situation. Wang et al. [4] considered
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passengers’ discrete random demand and proposed a stochastic seat allocation model to optimize the

train capacity utilization based on the random selection behavior of passengers. However, the research

was on the basis of fixed ticket prices. Existing studies on the seat allocation of HSR usually ignore the

adjustment of price to demand, which leads to the separation of seat allocation and ticket pricing.

In the past few decades, pricing and seat allocation issues have often been treated separately,

and there is a gap in the literature regarding joint pricing and seat allocation models [31,32]. However,

the two issues are interrelated and complementary, and it is necessary to optimize them jointly.

Weatherford [33] first stressed the importance of considering prices and suggested them as decision

variables for seat allocation problems. Cote et al. [34] proposed a joint model for solving pricing and

seat allocation problems in networks with competitors. They assumed that demand was deterministic

and focused on fare optimization. The research mentioned above only considered one time period and

did not consider the changes in demand caused by price changes.

On the railway side, there are even fewer studies on the joint optimization of the ticket price and

seat allocation. The joint optimization method for pricing and seat allocation developed in our work is

similar to that adopted by Hetrakul and Cirillo [31]. Hetrakul and Cirillo [31] proposed a latent class

choice-based model system to jointly optimize price and seat allocation considering multiple time

periods. Compared with Hetrakul and Cirillo [31], our research mainly has the following differences:

(1) They did not consider the situation of multiple train stop plans, but the situation in real life is

much more complicated; and (2) they treated the traffic demand of each day as a deterministic value.

In practice, passenger demands are complex and changeable. Hence, it is more practical to consider

the elastic demand of passengers. Therefore, our research takes into account the complex situation of

multiple trains and multiple stops and considers the elastic demand of passengers varying with price,

which is more in line with the actual situation.

In summary, due to the complexity of the solution, the current studies of optimal pricing for HSR

usually only consider the case of single train multi-OD pairs or multiple trains and single OD pair,

which is quite different from the actual situation. At present, due to the complex interaction between

ticket pricing and seat allocation, they are generally studied separately. However, pricing and seat

control problems are highly correlated in the revenue management problem, so these two decision

problems need to be considered jointly.

Unlike other studies, our research has the following innovations: (1) We comprehensively consider

multiple trains with multi-OD pairs, which is more realistic and challenging; (2) considering passenger’s

elastic demand, we propose an innovative model to simultaneously optimize the pricing and seat

allocation for HSR based on revenue management. The goal of our model is to maximize the expected

revenue; additionally, we construct an elastic function of demand with respect to prices, which is more

in line with reality.

This paper proceeds as follows: Section 2 lists the model assumptions and the variable definition

and presents the mathematical model formulation; Section 3 provides the algorithms to solve the

proposed model; Section 4 describes the numerical experiments; and Section 5 concludes the paper.

2. Research Methodology and Processes

2.1. Model Assumptions and Notations

A high-speed railway line consists of N stations and N − 1 sections, and operates H high-speed

trains. Each train has different stopping plans and serves the travel demand of W OD pairs on the

line. In order to attract more passengers, operating enterprises will adopt some pricing strategies—for

example, they will sell homogeneous seats at multiple prices at different stages of the pre-sale period.

Operating enterprises need to decide how to set ticket prices over time and how to optimize the

allocation of limited seat resources of each train in each ticketing period. The joint optimization

problem studied in this paper is to divide the ticketing period of HSR into K periods [31]. According

to the relationship between the passenger flow and the price between each OD pair in each period k
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(k = 1, 2, . . . , K), we set the ticket price and allocate the corresponding seat number for each OD pair at

each ticketing period to maximize the total revenue and make HSR achieve a favorable position within

the fierce competition of the market.

To simplify the problem, we make the following reasonable assumptions:

1. To reduce the complexity of the problem, we assume that passengers whose requests are fulfilled

will not cancel their reservations or change their tickets [1,4,31];

2. To avoid a large number of seats being sold at a low price in the early stage of the ticketing period

and make the subsequent ticket purchase request satisfied to stabilize revenue, we assume that

for each high-speed train, we can only sell the seat number allocated to the time slot during the

corresponding ticketing period at most.

To simplify the description of the problem, the notations in Table 1 will be used in the formulation.

Table 1. Notations.

Symbols Definition Unit

Collection variables

W
All origin–destination (OD) pairs in the transport service network which are composed
of the origin and the destination of the train stop, OD pairs (r, s) ∈W.

-

H
The set of all trains that leave on a certain day. Train collection between (r, s) Hrs ⊂ H,
any train h ∈ H.

-

α The discount set given in advance. -

Parameters

β The utility function parameter. -
η Demand elasticity function coefficient. -
µ

hrs
The 0-1 binary parameter denoting whether train h can provide services between (r, s). -

Variables

K Total number of ticketing periods (k = 1, 2, . . . , K). -
Ch Capacity of train h. passengers
nh The number of stops of train h. -
shj The jth stop of train h. -
λt

hrs
The number of tickets sold on day t before departure for train h between (r, s). -

ψt
hrs

The demand intensity of train h between (r, s) on day t before departure. %

⌢
p hrs

The highest price of train h between (r, s) set by the government, also known as the
published price.

¥

⌣
p

k

hrs
The lower limit of the ticket price of train h in the kth ticketing period between (r, s). ¥

⌢
p

k

hrs
The upper limit of the ticket price of train h in the kth ticketing period between (r, s). ¥

t
hrs

Travel time of train h between (r, s). h
v

hrs
The average value of time of passengers taking train h between (r, s). ¥/h

ck
hrs

Generalized cost function of passengers taking train h between (r, s) in the kth
ticketing period.

¥

m
hrs

The estimated number of tickets allocated by train h between (r, s). -
Ahrs(crs) The probability of passengers selecting train h between (r, s). %

qk
hrs

(

prs

)

Elastic passenger flow of train h in the kth ticketing period between (r, s). passengers

Sk
hrs

The expected sales volume of train h in the kthticketing period between (r, s). -

Rk
hrs

The expected revenue of train hin the kth ticketing period between (r, s). ¥

Mk
hrs

Passengers who are rejected in the kth ticketing period choose to continue to purchase
tickets during the (k + 1)th ticketing period.

passengers

Decision variables

pk
hrs

The ticket price of train h in the kth ticketing period between (r, s), also known as the
executive price.

¥

bk
hrs

The number of seats allocated to train h in the kth ticketing period between (r, s). -
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2.2. Model Formulation

2.2.1. Division of Ticketing Periods

The analysis of passenger ticket purchase behavior is the premise of effectively optimizing pricing.

First, we count the number of tickets sold each day during the pre-sale period according to the historical

ticket data, and then analyze the statistical results to obtain passengers’ ticket purchase rules.

For a given train h, ψt
hrs

can reflect the demand intensity of a certain day. The expression of ψt
hrs

is

as follows:

ψt
hrs

=















λt
hrs

∑T
t0=1 λ

t0

hrs















·100%. (1)

By averaging the demand intensity of all trains containing segment (r, s), the average demand

intensity of (r, s) on day t before departure is obtained. By studying the average demand intensity of

each section during the pre-sale period, we can analyze the ticket purchase rules of passengers and

divide the ticketing period accordingly.

2.2.2. Price Mechanism

Because HSR has to take into account certain social welfare, the government will set a price

ceiling, which is known as the published price
⌢
p hrs. The rule of ticket pricing for HSR is to discount

on the published price
⌢
p hrs to get the executive price, and the discount is the intermediate variable.

The published price
⌢
p hrs is known, and represents the highest price for train h between (r, s).

We will give an optional discount set α = {α1,α2, . . . ,αn} in advance, in which n represents the

number of optional discounts. Without loss of generality, we assume that: αmin ≤ α1 < α2 < · · · < αn ≤ 1.

The discount for the kth ticketing period is αk, αk ∈ α, then the executive price pk
hrs

of the

corresponding kth ticketing period is

pk
hrs

= αk
⌢
p hrs. (2)

In order to balance social benefits and transportation costs at the same time, we limit the fluctuation

of pk
hrs

within a certain range, namely

pk
hrs
∈

(

⌣
p

k

hrs,
⌢
p

k

hrs

)

. (3)

2.2.3. Passenger Choice Behavior and Elastic Demand

We introduce a model to describe the passengers’ choice behavior under a given OD pair (r, s) ∈W

in this section. There exists a set Hrs ⊂ H of trains for passengers to choose. When passengers arrive,

they need to choose one of the trains in the set Hrs ⊂ H on which to travel. Passengers’ choices will be

affected by a variety of factors, and they will take these factors into consideration comprehensively and

choose the train with the lowest generalized cost for them. We consider the generalized cost function

of train h between (r, s) to consist of two parts: The passengers’ travel time value and the ticket price

of the high-speed trains. Then, we define the generalized cost function of passengers on train h as

ck
hrs

= βthrsvhrs + pk
hrs

. (4)

The average travel time value and average ticket price of passengers of all trains in (r, s) are

vrs =

∑

h∈Hrs
m

hrs
t
hrs

v
hrs

∑

h∈Hrs
m

hrs

, (5)

prs =

∑

h∈Hrs
m

hrs
p

hrs
∑

h∈Hrs
m

hrs

. (6)
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The average passenger cost of all trains in (r, s) is defined as

crs = βvrs + prs. (7)

In the fully competitive passenger transport market, passenger demand is particularly sensitive

to price. When the price of a transport product or service changes, the market demand for the product

or service will also change accordingly. Therefore, the travel demand of passengers is considered to be

elastic demand. Note that the different trains of the same OD pairs have strong alternatives, so we are

more concerned with the elastic demand of all the high-speed passenger trains that serve the same OD

pair. The common elastic demand function for all high-speed trains in an OD pair (r, s) is denoted as

qrs(crs) = q0
rs exp













−η













crs

c0
rs

− 1

























. (8)

Equation (8) can be rewritten as

qrs

(

prs

)

= q0
rs exp













−η













βvrs + prs

c0
rs

− 1

























, (9)

where c0
rs is a reasonable value of crs (or the initial value formed under the current fixed price),

c0
rs = βvrs + p0

rs and p0
rs = c0

rs − βvrs are mutually determined; q0
rs is the demand corresponding to the

cost c0
rs (or the passenger flow value under the current fixed price), that is, q0

rs = qrs

(

p0
rs

)

.

The derivative of Equation (9) is:

d
[

qrs

(

prs

)]

dprs

= −
η

c0
rs

·qrs

(

prs

)

. (10)

Equation (10) is equivalent to:

d
[

qrs

(

prs

)]

dprs

·
prs

qrs

(

prs

) = −













prs

c0
rs













η. (11)

Since the left side of Equation (11) is the definition of the price elasticity coefficient, −
(

prs/c0
rs

)

η is

the price elasticity coefficient of the elastic demand function.

We use the Logit model to describe passengers’ travel choice behavior in this paper. The probability

of passengers selecting trains between OD pairs is obtained as follows [35]:

Ahrs(crs) =
exp
(

−θck
hrs

)

∑

j∈Hrs
exp
(

−θck
jrs

) , (12)

where θ is the conversion factor. Passengers’ choice behavior among different trains can be investigated

by the traffic questionnaire, such as the SP (Stated Preference) survey and RP (Revealed Preference)

survey, and θ needs to be estimated from historic data by using statistical analysis, such as the

maximum likelihood estimation method.

Through the Logit function mentioned above, the elastic demand function of train h can be

obtained, namely

qk
hrs

(

prs

)

= qrs

(

prs

)

·Ahrs(crs) = q0
rs exp













−η













βvrs + prs

c0
rs

− 1

























·Ahrs(crs), (13)

where prs =
{

p
hrs

∣

∣

∣h ∈ Hrs

}

, crs =
{

c
hrs

∣

∣

∣h ∈ Hrs

}

.
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2.2.4. Mathematical Model

µ
hrs

is the 0–1 binary parameter, denoting whether train h can provide a service in (r, s). If train h

stops at both station r and station s, µ
hrs

= 1, otherwise µ
hrs
= 0. When µ

hrs
= 1, bk

hrs
≥ 0; when µ

hrs
= 0,

bk
hrs

= 0.

Therefore, in the kth ticketing period, when the seat allocation variable of train h at (r, s) is bk
hrs

and the ticket price decision variable is pk
hrs

, the actual sales during the kth ticketing period depend on

the demand qk
hrs

(

prs

)

. If bk
hrs
≥ qk

hrs

(

prs

)

, all requested demand is accepted. If bk
hrs
< qk

hrs

(

prs

)

, the excess

demand above the number of assigned seats bk
hrs

is rejected all during the current ticketing period.

Some of the rejected passengers will be lost, while some of them will choose to continue to purchase

tickets during the next ticketing period, and this part of passenger flow can be obtained by Equation

(9); and let its value be Mk
hrs

, M0
hrs

= 0. In the kth ticketing period, the expected sales volume of train h

between OD pairs (r, s) is

Sk
hrs

= E
[

min
{

bk
hrs

,
(

qk
hrs

(

prs

)

+ Mk−1
hrs

)}]

, 1 ≤ k ≤ K, (r, s) ∈W, h ∈ H. (14)

In the kth ticketing period, the expected revenue of train h between (r, s) is

Rk
hrs

= pk
hrs

E
[

min
{

bk
hrs

,
(

qk
hrs

(

prs

)

+ Mk−1
hrs

)}]

, 1 ≤ k ≤ K, (r, s) ∈W, h ∈ H. (15)

Under the condition of existing fixed transportation capacity and uncertain demand, the joint

optimization model of pricing and seat allocation for HSR is defined as follows:

max

K
∑

k=1

∑

(r,s)∈W

∑

h∈Hrs

pk
hrs

E
[

min
{

bk
hrs

,
(

qk
hrs

(

prs

)

+ Mk−1
hrs

)}]

, (16)

s.t.

K
∑

k=1

∑

r≤shj,sh( j+1)≤s

bk
hrs
≤ Ch 1 ≤ j < nh, h ∈ H, (17)

⌣
p

k

hshishj
≤ pk

hshishj
≤
⌢
p

k

hshishj
1 ≤ i < j < nh, h ∈ H, 1 ≤ k ≤ K, (18)

(

µhshishj
− 1
)

bk
hshishj

= 0 1 ≤ i < j < nh, h ∈ H, 1 ≤ k ≤ K, (19)

bk
hshishj

∈ N 1 ≤ i < j < nh, h ∈ H, 1 ≤ k ≤ K. (20)

This is a mixed-integer nonlinear programming (MINLP) model. The objective function (16)

aims at maximizing the total expected revenue. The railway operation department needs to make

corresponding ticket price decisions and seat allocation decisions according to the time-dependent

demand to maximize the revenue. Constraint (17) indicates that the seat number allocated for each

train cannot exceed the capacity constraint of any two adjacent stations. Constraint (18) represents the

upper and lower limit constraints of the ticket price. Constraint (19) is used to judge whether train h

can provide passenger service in (r, s). Constraint (20) means that the seat number allocated to each

train must be a non-negative integer.

3. Solution Algorithm

To simplify the objective function and facilitate subsequent solutions, we transform the joint

optimization model built in Section 2 into the following equivalent model (I):

max

K
∑

k=1

∑

(r,s)∈W

∑

h∈Hrs

pk
hrs

bk
hrs

, (21)
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s.t.

K
∑

k=1

∑

r≤shj,sh( j+1)≤s

bk
hrs
≤ Ch 1 ≤ j < nh, h ∈ H, (22)

bk
hshishj

≤

(

qk
hshishj

(

pshishj

)

+ Mk−1
hshishj

)

1 ≤ i < j < nh, h ∈ H, 1 ≤ k ≤ K, (23)

⌣
p

k

hshishj
≤ pk

hshishj
≤
⌢
p

k

hshishj
1 ≤ i < j < nh, h ∈ H, 1 ≤ k ≤ K, (24)

(

µhshishj
− 1
)

bk
hshishj

= 0 1 ≤ i < j < nh, h ∈ H, 1 ≤ k ≤ K, (25)

bk
hshishj

∈ N 1 ≤ i < j < nh, h ∈ H, 1 ≤ k ≤ K, (26)

where function (21) maximizes the total expected revenue, Constraint (22) represents the maximum

seat capacity constraint of the train segment, Constraint (23) represents the ticket limit of each OD

pair, Constraint (24) is the ticket price constraint of the train, Constraint (25) judges whether the train h

provides passenger service in (r, s), and Constraint (26) is the non-negative integer constraint of seat

number allocation.

The optimization model we constructed requires the joint optimization of two variables: Ticket

price and seat allocation. In the heuristic algorithm, the Artificial Bee Colony (ABC) algorithm is

good at solving multivariable optimization problem [36]. Therefore, we will use the ABC algorithm to

solve this.

The ABC algorithm is a bionic intelligent computing method proposed by Karaboga [37], which

simulates a bee colony finding an excellent honey source. Compared to other heuristic algorithms, such

as genetic algorithms and particle swarm algorithms, the prominent advantage of the ABC algorithm is

that global and local searching are carried out in each iteration, so the probability of finding an optimal

solution is greatly increased, and the local optimization is avoided to a large extent [1]. In addition,

the ABC algorithm has fewer controlled parameters and is easy to realize. In recent years, it has been

gradually applied to the numerical optimization of functions, target recognition, neural network silk

training and other aspects, and has achieved good test results.

We use the ABC algorithm to solve model (I). A honey source is used to represent a price

combination for different ticketing periods. The published prices
⌢
p hrs are known, and the discount set α

is given in advance, according to Equation (2), the executive price set Phrs is also known. We randomly

generate SN initial price combinations: P1
hrs

,P2
hrs

, . . . ,PSN
hrs

, ∀Pδ
hrs
⊂ Phrs. δ = 1, 2, . . . , SN. SN is the

number of honey sources. Both the number of Employed Bees and the number of Onlooker Bees are

BN, BN = SN. The maximum number of iterations is omax, and the maximum number of search stops

for one honey source is Limit.

Pδ
hrs

=
(

pδ1
hrs

, pδ2
hrs

, . . . , pδk
hrs

, . . . , pδK
hrs

)

, (27)

where pδk
hrs

is the price of train h between (r, s) during the kth ticketing period in the δth price combination.

Then the elastic passenger flow can be calculated by Equation (13). We then substitute the

corresponding ticket price and elastic passenger flow into the model (I), and model (I) will become

the model with bk
hrs

as the decision variable. In this way, the transformed model can be changed from

MINLP model to mixed-integer linear programming (MILP) model by algorithm solving process.

We give bk
hrs

an initial value, if bk
hrs
< qk

hrs

(

prs

)

+ Mk−1
hrs

, the excess passenger flow is rejected in the

current ticketing period. If bk
hrs
≥ qk

hrs

(

prs

)

+ Mk−1
hrs

, the value of bk
hrs

is adjusted to be qk
hrs

(

prs

)

+ Mk−1
hrs

.

Calculate the expected revenue corresponding to each group of ticket price, and the nectar amount is

the expected revenue corresponding to the honey source.
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Then, the Employed Bees and the Onlooker Bees successively search in the neighborhood to find

new price combinations for each ticketing period. The neighborhood search process is as follows:

(

pδk
hrs

)′
= pδk

hrs
+ ϕ
(

pδk
hrs
− p

ρk

hrs

)

(28)

where
(

pδk
hrs

)′
is the updated price of train h between (r, s) during the kth ticketing period in the δth

price combination; ϕ is a random number between [−1, 1]; pδk
hrs

is the price of train h between (r, s)

during the kth ticketing period in the ρth price combination, ρ = {1, 2, . . . , BN}(ρ , δ); k ∈ 1, 2, . . . , K is

randomly determined.

The ticket prices obtained after the neighborhood search of the Employed Bees and the Onlooker

Bees are defined as the candidate honey sources. We calculate the nectar amount of each candidate

honey source and compare it with that of the corresponding original nectar amount and keep the

honey source with a higher nectar amount through greedy criterion. The probability of a honey source

being selected by the Onlooker Bees is

Pδ =
f itδ

∑SN
σ=1 f itσ

, (29)

where f itδ is the fitness value function of the δth honey source, which is proportional to the nectar

amount of the δth honey source.

If the number of times the honey source is searched by the Employed Bees and the Onlooker Bees

(the number of consecutive stays) exceeds Limit, and no honey source with higher fitness is found,

the honey source will be abandoned, and the corresponding Employed Bee will be changed into a

Scout Bee. Each iteration produces at most one Scout Bee, which randomly searches to generate a new

initial price honey source.

The specific steps of the algorithm are as follows:

Step 1: Select the line, according to the historical ticket sales data, obtain relevant information

about the line, and give the initial seat number of each OD pair at each ticketing period;

Step 2: Set the initial parameters of the ABC algorithm: SN, BN, Limit, omax, number of continuous

stays of each honey source trial = 0, and number of iterations iteration = 0;

Step 3: Randomly generate SN initial honey source, and calculate the nectar amount corresponding

to each initial honey source;

Step 4: Each Employed Bee collects a new honey source according to Equation (28). Calculate

the nectar amount corresponding to each new honey source, retain the honey source according to the

greedy criterion, and update the number of trial;

Step 5: Each Onlooker Bee selects a honey source according to Equation (29), and searches for a

new honey source according to Equation (28). Calculate the nectar amount corresponding to each new

honey source, retain the honey source according to the greedy criterion, and update the number of trial;

Step 6: If trial exceeds Limit, the Employed Bee corresponding to the honey source becomes a

Scout Bee, and the Scout Bee randomly searches to generate a new honey source;

Step 7: Record the nectar amount of all current honey sources, update the number of iterations

iteration = iteration + 1. If iteration > omax, end the iteration; otherwise, return to Step 4;

Step 8: Output the maximum nectar amount; the corresponding ticket price and seat allocation

combination scheme is required.

4. Results and Analysis

In this section, we provide numerical experiments to evaluate the model. We will describe the

experiment data in Section 4.1. The numerical results are presented in Section 4.2.
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4.1. Basic Data

Our model is applicable to all HSR pricing systems, and the Beijing–Shanghai line in China was

just chosen as an example to verify the validity of the model. At the same time, we consider the

situation of multiple trains and multiple stops, so we randomly select four trains with different stop

plans on the line to verify the accuracy of the model and algorithm. The trains we select are G21, G11,

G7, G3. All of the four trains depart from Beijing South Station, and stop at different intermediate

stations and finally arrive at Shanghai Hongqiao Station. As shown in Figure 1, in the rail network of

this case, there are eight stations on the line; namely, Beijing South, Tianjin South, Jinan West, Qufu

East, Xuzhou East, Nanjing South, Suzhou North and Shanghai Hongqiao. We take the average value

of the total passenger ticket revenue of the four trains from 5 June 2017 to 11 June 2017 as the case for

empirical analysis.

1 max

 

Figure 1. Case rail network diagram.

Through the analysis of the passenger ticket data from 1 August 2016 to 31 July 2017, we obtain

the purchase rules of different sections of passengers.

Because the average demand intensity curve of each segment has a high similarity, in order to

understand the commonality and characteristics of the ticket purchase rules of each segment, we select

the statistical results of some segments to display, as shown in Figure 2.

= . =0.8η

Ⅱ

Figure 2. Average daily demand intensity for partial OD pairs.
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It can be seen from Figure 2 that the ticket purchase rules of the passengers in the pre-sale period

have certain similarities; that is, the demand intensity is weak from 30 days to 11 days before departure.

However, it begins to increase slowly from 10 days to 3 days, and it increases rapidly in the last

1–2 days before departure, and peaks on the day of departure. According to this rule, the pre-sale

period is divided into the following four time periods: Eleven days to thirty days before departure

(k = 1); ten days to three days before departure (k = 2); two days to one day before departure (k = 3);

and the departure date (k = 4).

Taking a single seat type (second-class seat) into consideration, the total train capacity is set at

1066. The highest price is the published price, and the current price is 83% of the published price.

We set the price discount set α as {0.58, 0.61, 0.64, 0.67, 0.70, 0.73, 0.76, 0.79, 0.82, 0.85, 0.88, 0.91, 0.94,

0.97, 1.00}. The values of other parameters for the example are as follows: β = 2.8, η= 0.8, v
hrs

= 36,

θ = 0.012, SN = BN = 20, Limit = 20, omax = 500.

4.2. Computational Results

We use Python language programming to solve the model; the total revenue of the four trains is

¥ 2,247,980, which is 5.92% higher than the total revenue of ¥ 2,122,355.5 under the fixed price case.

Table 2 shows the optimal prices for each ticketing period. Taking G7 as an example, Figure 3 shows

the comparison of the ticket sales of each OD of the train under fixed price and time-dependent price

cases. Table 3 shows the comparison of the total passenger flow of partial OD of each train under fixed

price and time-dependent price cases. Figure 4 shows the comparison of the seat occupation rate of

each train segment under fixed price and time-dependent price cases. We attach different values to the

initial seat number, Table 4 gives a comparison of the price and seat allocation of G3 based on different

initial seat numbers and Table 5 gives a comparison of the percentage increase in total revenue based

on different initial seat numbers (in all the figures and tables, A–G represent Beijing South, Tianjin

South, Jinan West, Qufu East, Xuzhou East, Nanjing South and Suzhou North, respectively, and I

represents Shanghai Hongqiao). We define the existing fixed price and ticket allocation scheme as

the initial Scheme I for comparison, and the scheme that only optimizes the ticket price is defined as

Scheme II, and the scheme we propose in the paper is the existing Scheme III. Table 6 gives the results

of the ticket revenue under different schemes.

Figure 3. Comparison of ticket sales of each OD in each period of G7 under two schemes.
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Table 2. Prices for each ticketing period.

OD
Time-Dependent Prices/¥

Existing Fixed Prices/¥
k = 1 k = 2 k = 3 k = 4

AI 524 584 624 664 553
AG 496 553 590 628 523.5
BI 482 537 574 610 508.5
AF 420 468 500 532 443.5
CI 378 421 450 478 398.5
BF 373 416 444 472 393.5
CG 345 384 410 437 364
DI 326 363 388 413 344
DG 298 332 354 377 314
AE 293 326 348 371 309
CF 264 295 314 335 279
EI 264 295 314 335 279
BE 246 274 292 311 259
AD 231 258 275 293 244
DF 212 237 253 269 224
AC 175 195 208 221 184.5
EF 142 158 169 179 149.5
FI 128 142 151 161 134.5
BC 123 137 146 155 129.5
CE 123 137 146 155 129.5
FG 94 105 113 119 99.5
CD 56 63 67 71 59.5
AB 52 56 61 65 54.5
GI 33 36 38 41 34.5

Table 3. Total passenger flow of partial OD.

OD

AI AF CI CF AC FI

Fixed price

G21 673 194 50 14 45 157
G11 585 131 30 11 44 146
G7 660 198 51 20 84 121
G3 965 53 51

Time-dependent price

G21 532 107 38 13 49 105
G11 574 126 36 13 56 94
G7 769 144 48 15 57 111
G3 891 161 109

The model can determine the optimal ticket price for each OD in each ticketing period according

to the characteristics of passenger flow demand in different ticketing periods and the elastic changes of

passenger demand with price fluctuations. As can be seen from Table 2, the HSR tickets are sold at

fluctuating upward prices, and this is in line with the idea of revenue management. The core idea of

revenue management is to “sell the right products at the right time and at the right price to the right

people” [5]. In the early stage of the ticketing period, passengers are more sensitive to prices and have

greater demand elasticity. At this time, selling tickets at a lower price can attract more passengers to

purchase tickets to enhance revenue. On the other hand, the closer the departure time is, the lower the

sensitivity of passengers’ travel demand to price, and the smaller the demand elasticity, and, thus,

we set the ticket at a higher price so that the tickets with a higher price can be sold in the later stage of

the ticketing period, which can also achieve the effect of increasing revenue.
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Figure 4. Seat occupation rate of each segment of each train.

Table 4. Price and seat allocation of G3 under different initial seat numbers.

OD

AI AF FI

S P/¥ S P/¥ S P/¥

Scenario I

k = 1 125 524 6 420 2 128
k = 2 279 583 16 468 9 142
k = 3 268 623 51 500 19 152
k = 4 219 663 91 532 81 161

Scenario II

k = 1 125 504 2 404 1 123
k = 2 279 583 12 468 7 142
k = 3 263 623 50 500 17 152
k = 4 224 663 99 532 85 161

Scenario III

k = 1 125 524 2 420 1 128
k = 2 279 564 10 452 6 137
k = 3 233 623 52 500 16 152
k = 4 253 663 100 532 88 161

Scenario IV

k = 1 125 504 1 404 1 123
k = 2 279 564 8 452 4 137
k = 3 240 623 51 500 12 152
k = 4 246 663 103 532 92 161

Scenario V

k = 1 125 524 3 420 2 128
k = 2 279 583 9 468 5 142
k = 3 270 603 55 484 12 147
k = 4 210 663 95 532 90 161

Scenario VI

k = 1 125 524 4 420 3 128
k = 2 279 538 12 468 8 142
k = 3 264 623 45 500 7 152
k = 4 223 663 90 532 91 161

Note: S: Seat allocation; P: Price.
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Table 5. Total revenue under different initial seat numbers.

Scenario I Scenario II Scenario III Scenario IV Scenario V Scenario VI

Percentage increase 6.06% 5.83% 5.85% 5.84% 5.76% 5.92%

Table 6. Revenue on tickets under different schemes.

Scheme I/¥ Scheme II/¥ Scheme III/¥ II–I/% III–II/% III–I/%

2,122,355.5 2,186,875.0 2,247,980.0 3.04 2.79 5.92

By adjusting the ticket price during different ticketing periods, the passenger demand of each

OD will elastically change, so that the seat number allocated for each OD in each ticketing period will

also change. Taking G7 as an example, as shown in Figure 3, at the beginning of the ticketing period

(i.e., k = 1), the seat number allocated to each OD is less than the seat number allocated at the end of

the ticketing period (i.e., k = 4). This is also in line with the idea of revenue management, leaving

more seats to passengers who are willing to pay a higher price to get more benefits. Generally, we can

see that in the early stage of ticketing period, because of the lower price, it will attract more people to

buy tickets (i.e., k = 1, more passengers bought tickets under the time-dependent price than under the

fixed price). The demand for passengers at a single fixed price is usually limited by the number of

tickets allocated by each OD, while the time-dependent pricing is used to actively guide and adjust the

changes in passenger demand by adjusting the price. Passengers have more choices for prices and can

choose the appropriate price in the appropriate ticketing period according to their needs. At the same

time, it can be seen that the time-dependent pricing scheme also give priority to meeting the needs of

long-distance passengers (e.g., AI between Beijing South and Shanghai Hongqiao), and this can also

achieve the goal of increasing total revenue.

It can be seen from Table 3 that after optimization, the passenger flow of some OD segments has

increased, while some have declined. Figure 4 shows that the seat occupation rate is decreased for G21

and G11, but increased for G7 and G3 with a time-dependent ticket price, and in general, the utilization

rate of the seat capacity is high. The total passenger flow before and after optimization has not changed

much, but the plan has gained more benefits after optimization, indicating that it is not the case that

the more tickets are sold, the higher the revenue, but a greater revenue will be obtained by selling

tickets to passengers who are more willing to pay a high price.

According to the historical ticket sales data, we randomly select historical data for different six

months and separately calculate the average value of each month as the initial seat allocation values in

six cases, and we take them as scenarios I–VI respectively. Taking G3 as an example, Table 4 shows the

price and seat allocation of G3 under different scenarios and Table 5 shows the percentage increase of

total revenue under different scenarios.

It can be seen from Tables 4 and 5 that in the different initial seat allocation scenarios, the seat

allocation number and the price in each ticketing period are relatively stable and the floating amount

of the percentage increase of total revenue is 0.30% at most. The optimal solution obtained by the

algorithm is stable. Therefore, this shows that the algorithm we use in this paper is less dependent on

the initial solution and can get a stable optimal solution.

In Table 6, (II–I) = (Scheme II–Scheme I)/Scheme I × 100%, represents the percentage increase in

revenue after optimizing ticket price; (III–II) = (Scheme III–Scheme II)/Scheme II × 100%, indicates the

percentage increase in revenue after the optimization of the seat allocation based on the optimization

of price; (III–I) = (Scheme III–Scheme I)/Scheme I × 100%, indicates the percentage increase in revenue

after using joint optimization of pricing and seat allocation. It can be seen from Table 6 that the joint

optimization model of pricing and seat allocation is better than the single optimization model of price

and can increase the revenue to a greater extent.
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4.3. Sensitivity Test

We study the changes in the ratio of revenue increase of different schemes under different demand

intensities, as shown in Figure 5.

Figure 5. The influence of the change in the passenger flow demand on the difference in revenue of

different schemes.

Figure 5 shows the expected revenue results and differences in passenger tickets under different

schemes when the passenger demand is 0.8–1.1 times that of the initial passenger flow. The following

observations are obtained from the sensitivity test:

(1) When the passenger flow increases to a certain value, the revenue generated by the scheme

only considering optimizing fare will decrease (i.e., when the passenger flow reaches a certain value,

the II–I curve will decrease). This is because, when the demand for passenger flow is large, most of the

seats are fully utilized, and sometimes the passenger demand is greater than the capacity of the HSR.

At this time, if the scheme considering optimizing fares only is carried out, there may be many people

buying low-priced tickets in the early stage of the ticketing period. Since there is no optimization of the

seat allocation, the requested demand will be met under the premise of satisfying the transportation

capacity. By the end of the ticketing period, the HSR fare will rise. Since a large number of low-priced

tickets have been sold in the early stage of the ticketing period, at this time, there may be a situation

in which some requests for the purchase of high-priced tickets are rejected, due to the limitation of

transportation capacity, and this may cause a certain loss of revenue.

(2) According to the analysis of the demand intensity of passenger flow, it is found that under

any demand intensity level, the scheme of optimizing the ticket seat number based on the optimized

price can make the expected ticket revenue become better, and its percentage of increase in revenue

increases as the intensity of demand increases (i.e., the III–II curve keeps rising with the increase in

passenger flow intensity).

(3) Under any demand intensity level, the increase in the revenue from the scheme that jointly

optimizes pricing and seat allocation is significantly higher than that from the scheme that only

optimizes fares (i.e., the values of (III–I) are always obviously higher than the values of (II–I)). This is

because our scheme will dynamically adjust the number of seats allocated to each ticketing period

according to the change in the demand intensity of passenger flow during each ticketing period to
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achieve the purpose of adjusting and guiding demand. At the same time, our scheme can avoid a

high-priced ticket being sold at a low price in the early stage of ticketing period on the basis of fully

satisfying the travel demand, meaning that the revenue can be greatly improved.

It can be seen from the above analysis that compared with a single optimization model of price,

the joint optimization model of pricing and seat allocation proposed in this paper can better achieve

the goal of improving the expected revenue. Additionally, when the passenger flow demand is large,

the effect of our model is more remarkable.

5. Discussion and Conclusions

In this paper, we aim to optimize HSR operation based on revenue management. In particular,

we propose an innovative model to simultaneously optimize the pricing and seat allocation for

HSRs; i.e., determining the optimal price and seat allocation for each OD of each train during each

ticketing period.

We first analyze passengers’ ticket purchase behavior based on historical ticket data and divide

the ticketing period accordingly. Next, we identify the key factors that influence passengers’ choice

behavior and construct the elastic passenger demand function that changes with the ticket price. Then,

we simulate the passenger’s choice behavior among trains based on the Logit model. After that,

we establish a joint optimization model of pricing and seat allocation for HSR, transform it into an

equivalent model that is easy to solve, and design a heuristic algorithm to solve it according to the

characteristics of the model. Finally, we present some numerical experiments to verify the feasibility

and validity of the proposed model and solution algorithm.

The conclusions of this paper have demonstrated the following:

• Compared with the existing pricing and seat allocation method, the joint optimization method

proposed in this paper considers the elastic passenger flow affected by ticket price which can

formulate time-dependent prices to respond to the purchasing patterns of passengers, so as to

guide and adjust passenger flow actively, and at the same time, make passengers more satisfied

with HSR travel, which is more conducive to the long-term development of HSR.

• After numerical verification, we find that under different demand intensities, compared with

a single optimization model of price, the joint optimization model proposed in this paper can

adapt to fluctuations in demand, and can always generate greater revenue. This can help provide

scientific and reasonable decision-making suggestions for railway operation departments and

develop a more flexible fare mechanism and a scientific seat allocation system. This will help the

HSR to provide higher-quality and richer passenger transportation services in the future to realize

sustainable development.

This paper provided a new way of thinking for the railway operation department to reasonably set

time-dependent prices to increase revenue and provided a scientific basis for the sustainable operation

of the railway. However, this article is based on the assumption that the passengers’ refund and

change behavior are not considered. The situation in real life may be more complicated, which can be

a direction for future research. In addition, this article only considers the second-class seats of HSR;

the HSR also provides a certain number of first-class seats and business seats. The joint optimization of

pricing and seat allocation for heterogeneous seats could be another future research direction.
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