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SUMMARY

Presently there are many opportunities for the application of ceramic materials at elevated

temperatures. In the near future, ceramic materials are expected to supplant high temperature

metal alloys in a number of applications. It thus becomes essential to develop a capability to

predict the time-dependent response of these materials. This paper focuses on the creep rupture

phenomenon and outlines a time-dependent reliability model that integrates continuum damage

mechanics principles and Weibull analysis. Several features of the model are presented in a

qualitative fashion, including predictions of both reliability and hazard rate. In addition, a

comparison of the continuum and the microstructural kinetic equations highlights a strong

resemblance in the two approaches.

INTRODUCTION

The utilization of structural ceramic components in high temperature environments requires

thoughtful consideration of fast fracture as well as strength degradation due to time dependent

phenomenon such as subcritical crack growth, creep rupture, and stress corrosion. In all cases this

can be accomplished by specifying an acceptable reliability level for a component. Here reliability

is defined as the probability that a component performs its required function adequately for a

specified period of time under predetermined (design) conditions. Methods of analysis exist that
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capturethe variability in strength of ceramicsas it relates to fast fracture (see Gyekenyesi (1986)).

However the calculation of an expected lifetime of a ceramic component has been limited to a

statistical analysis based on subcritical crack growth (see Wiederhorn and Fuller (1985) for a

detailed development). The subcritical crack growth approach establishes relationships among

reliability, stress, and time to failure based on principles of fracture mechanics. The analysis

combines the Griffith (1921) equation and an empirical crack velocity equation with the underlying

assumption that steady growth of a preexisting flaw is the driving failure mechanism.

Several authors including Quinn (1987), Ritter et al. (1980) and Dalgleish et al. (1985) have

emphasized that time dependent failure of ceramics is not limited to subcritical crack growth and

may occur by either stress corrosion or creep rupture. Stress corrosion involves nucleation and

growth of flaws by environmental/oxidation attack. Creep rupture typically entails the nucleation,

growth, and coalescence of voids dispersed along grain boundaries. This paper highlights creep

rupture with the intent to provide the design engineer with a method that determines an allowable

stress for a given component lifetime and reliability. This is accomplished by combining Weibull

analysis with the principles of continuum damage mechanics, which was originally developed by

Kachanov (1958) to account for tertiary creep and creep fracture of ductile metal alloys.

This effort does not represent the first application of continuum damage mechanics to brittle

materials. The observed differences of creep behavior in tension and compression have been

addressed through the use of damage mechanics by Krajcinovic (1979) for concrete, and Rosenfield

et al. (1985) for ceramics. In addition, Krajcinovic and Silva (1982) explored several fundamental

aspects of combining damage mechanics with statistical strength theories for perfectly brittle

materials. What is novel here is that the incorporation of damage mechanics within the framework

of a weakest link theory allows the computation of reliability for intermediate times less than a

component's given life.

Ideally, any theory that predicts the behavior of a material should incorporate parameters that

are relevant to its microstructure (grain size, void spacing, etc.). However this would require a

determination of volume averaged effects of microstructural phenomena reflecting nucleation,

growth, and coalescence of microdefects that in many instances interact. This approach is difficult
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evenunder strongly simplifying assumptions. In this respect Leckie (1981) points out the difference

between the materials scientist and engineer is one of scale. He notes the materials scientist is

interested in mechanisms of deformation and failure at the microstructural level and the engineer

focuses on these issues at the component level. Thus the former designs the material and the latter

designs the component. We adopt the engineer's viewpoint and note from the outset that

continuum damage mechanics does not focus attention on microstructural events, yet it does

provide a practical model which macroscopically captures the changes induced by the evolution of

voids and defects. As outlined in the section Comparison With Void Growth Mechanisms, a

comparison of the continuum and microstructural kinetic equations bear strong resemblance. Thus

adopting a continuum theory of damage with its attendant phenomenological view would appear to

be a logical first approach.

THEORETICAL DEVELOPMENT

It is assumed that the evolution of the microdefects represents an irreversible thermodynamic

process. On the continuum level this requires the introduction of an internal state variable that

serves as a measure of accumulated damage. Consider a uniaxial test specimen and let A
O

represent the cross-sectional area in an undamaged (or reference) state. Denote A as the current

cross-sectional area in a damaged state where material defects exist in the cross section (i.e.,

A<Ao). Microstructurally this can be represented by figure 1.

with this specimen is represented by the scalar

x=(Ao-A)/A o

or alternatively by ¢=l-w, which is referred to as "continuity".

The macroscopic damage associated

(1)

The variable ¢ represents the

fraction of cross-sectional area not occupied by voids. A material is undamaged if w=0 or ¢=1.

For time dependent analysis the rate of change of continuity _b (or the damage rate b) must be

specified. This rate is functionally dependent on stress and the current state of continuity, that is

(2)

and is monotonically decreasing (_b<0). For a uniaxial specimen the dependence of _ on stress is

taken through a net stress defined as
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a= P/A = ao/¢ (3)

where P is the applied tensile load and _o=P/Ao . A power law form of the kinetic equation is

adopted, that is

_=-B (_)n= _B(%/¢)n (4)

where B>0 and n>l are material constants determined from creep rupture data as discussed below.

The authors recognize this form of evolutionary law is simplistic, stipulated a priori, and that

experimental data may indicate some inconsistencies and/or inadequacies. Modification would be

guided by experiment and material science models of creep damage outlined in a later section. For

example, physical processes that involve void growth mechanisms along grain boundaries typically

exhibit threshold behavior. This is illustrated in a schematic plot of log of stress as a function of

log of time to failure in figure 2. Marion et al. (1983) suggest that for stress levels along grain

boundaries below a threshold value, liquid phase sintered ceramics deform by a

solution/precipitation mechanism without damage accumulation. Experimental data generated by

Wiederhorn et al. (1988) supports the existence of this threshold for silicon nitride. Tsai and Raj

(1982) suggest methods of estimating values of a threshold stress for ceramics, and the above form

of the kinetic equation could easily accommodate a threshold, that is

= 0 or0 < ath (5)_b = -B(o-0/¢)n a0 > Oth

Dalgleish et al. (1985) have presented experimental data that suggest the existence of a second

threshold that delineates regions where subcritical crack growth and creep rupture failure

mechanisms are operative. Chuang et al. (1986) predict the value of this threshold stress by using

principles of irreversible thermodynamics within the framework of several well accepted models for

.

crack growth. If this threshold (_rth) exists, one can construct a composite reliability model such

that

= R(subcritical crack growth) a0 > ath •R = R(creep rupture) ath < a0 _< ath (6)

where R is the reliability of a component. In this paper the aforementioned thresholds are

recognized as a possibility. However, a lack of quality experimental data leaves the authors unsure
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asto whether or not thesethresholdsarea universalphenomenon,and thereforeto ignore the

thresholdsis expedientat this time.

It is postulated that during a creeprupture experiment a ° is abruptly applied and held at a

fixed value (see the inset of figure 2). With ¢=1 at t=0, equation (4) can be integrated to yield an

expression for ¢ as a function of time, stress, and model parameters as follows:

¢_ [ 1- B(_roln(n_bl) t ]l/(n+l) (7)

An expression for the time to failure (tf) can be obtained from equation (7) by noting t=tf when

¢=0. Hence

tf= l/B(ao)n(n+l) (8)

and the equation for ¢ is simplified to

¢ = [ 1 -(t/tf)] 1/n+l (9)

This is consistent with the strong dependence of failure times on stress, as suggested by Johnson et

al. (1984). As noted by Jones (1987), the distribution of failure times for a given stress level cr
O

may be probabilistic or deterministic. Currently the data is insufficient to postulate either case. In

this paper tf is treated in a deterministic fashion noting that a probability distribution function for

tf could be introduced to the analysis in a manner similar to that suggested by Bolotin (1979).

To generate meaningful data, great care must be taken to determine the operative failure

mechanism (i.e., subcritical crack growth or creep rupture). Dalgleish et al. (1985) proposed using

the Monkman-Grant constant to separate experimental rupture life data. However, the

creep-damage tolerance parameter, defined by Leckie (1986) as the total creep strain divided by

the Monkman-Grant constant, may prove more suitable. After the data has been carefully

screened, the model parameters n and B would be easily determined from creep rupture data.

Taking the natural log of equation (8) yields

ln(tf) -b n ln(cro)- -ln[B(n+l)] (10)

The value 1/n corresponds to the slope of ln(ao) plotted against ln(tf) and B would be computed

from the intercept.

Now consider that the uniaxial test specimen is a monolithic ceramic with its inherent large

scatter in strength. The variation in strength can be suitably characterized by the weakest link
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theory by using Weibull's (1939)statistical distribution function. This is often referredto as

Weibull analysis. With Weibull analysisthe reliability of a uniaxial specimenis

This assumesthat the stressstate is homogeneousand that the two-parameter Weibull distribution

sufficiently characterizesthe specimenin the failure probability rangeof interest. Taking a equal

to the net stress defined above and, for simplicity, assuming a unit volume yield the following

expression for reliability

R = exp [-(ao/¢fl) a (12)

Substituting for ¢ by using equation (7) yields

= - (13)R exp 71/(n+l )
1 -- B(O-o)n(n+l)t

Alternatively, substituting for ¢ by using equation (9) yields

Here it is clearly evident that in the limit as t approaches tf, R approaches zero. Examples of

reliability curves and their dependence upon time and model parameters are presented in the

section Fundamental Implications of the Model.

Next, the hazard rate function is considered. By definition the hazard rate (or mortality rate)

is the instantaneous probability of failure of a component in the time interval (t,t+At), given that

the component has survived to time t. In more general terms, this function yields the failure rate

normalized to the number of components left in the surviving population. This function can be

expressed in terms of R or the probability of failure Pf as

dt -R d-T 1 -- Pf

With equation (14) used to define R, the hazard rate becomes

The hazard function can be utilized from a modeling standpoint in one of two ways. First it can be

used graphically as a goodness-of-fit test. If any of the underlying assumptions or distributions
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usedto construct equation (14) are invalid, onewould obtain a poor correlation betweenmodel

prediction of the hazardrate and experimentaldata. On the other hand, experimentaldata canbe

usedto construct the functional form of the hazardrate and R canbedeterminedfrom equation

(15). In a sensethis representsan oversimplifiedcurvefitting technique. Sinceit wasassumed

that the creeprupture failure mechanismcanbemodeledby continuum damagemechanics,this

effort hasfollowed the first approach. In this spirit the hazardrate function would beusedto

assessthe accuracyof the model in comparisonto experiment.

The hazardrate is interpreted asfollows:

(1) A decreasinghazardrate indicatescomponentfailure hasbeencausedby defective

processing.

(2) A constanthazard rate indicates failure is causedby randomfactors.

(3) An increasinghazardrate denoteswear-out of the component.

Herewe note that negativevaluesof o_ and n are physically absurd, hence

-(a + n + 1)/(n + 1) < 0 (17)

and equation (16) yields an increasing hazard rate. This is compatible with the underlying

assumption that creep rupture is the operative failure mechanism if one recognizes creep rupture as

strictly a wear-out mechanism. Examples of hazard rates and their dependence on material

parameters are presented in the section Fundamental Implications of the Model.

COMPARISON WITH VOID GROWTH MECHANISMS

When a ceramic undergoes high temperature deformation (T > 0.5Tm) its microstructure

changes. Voids nucleate and grow at the grain boundary, and grain size may increase to a point

where it is possible for dislocations to move through grains. These changes in microstructure are

referred to as creep damage and typically accelerate creep strain rates and the rate of damage until

the specimen fails. This type of microstructural damage is similarly found in metals subjected to

creep at elevated temperatures. The role of continuum damage mechanics in predicting the

behavior of metals under creep loading has been discussed by a number of authors. Dyson and

Leckie (1988) summarize the different metallurgical mechanisms and reconcile them with the
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continuumdamagemechanicsapproach. A moremodest,yet similar effort is attempted herefor

ceramics. The mechanismsthat promote damagein ceramicsinclude growth of cavities in the

secondphaseof sinteredceramics,void growth alonggrain boundariesattributed to vacancy

diffusion in reaction bondedceramics,and intragranular motion of dislocations(although this is not

a typical mechanismin ceramics). Eachmechanismis briefly discussedand a comparisonis made

with continuum damagetheory.

Beforediscussingspecificmechanisms,void growth on a grain boundaryis consideredin

generalterms. In a fashionsimilar to Cocksand Ashby (1980),figure 3 illustrates equally spaced

sphericalvoids along the boundary betweentwo grainssubjectedto a far field uniaxial stress. A

cylindrical elementof material surroundinga singlevoid is isolated. It is assumedthe voids are

equally spacedat a distance21,with a void diameter2r. The areafraction of holes_]is definedas

the ratio of the projectedareaof the void to the areaof the cylindrical element,that is

[r]2  18/T

We now identify the parameter _?with the continuum damage parameter w. In the same sense 1- 7

would be associated with ¢. This association makes fundamental sense, and the two parameters

would be directly related by some general volume integral relationship, that is

w : [/V _(x,,x2,x_)dV](1/V) (19)

where V is the volume of a continuum element located at spatial coordinates xl, x:, and x3.

Specifically, Murakami and Ohno (1981) developed an integral relation that resembles equation

(19) by assuming the principal effect of net area reduction convoids along the grain boundary. If

the volume of the continuum element is independent of time, then by our analogy _,_, and the

assumed form of _(=-_) should compare favorably with material science evolutionary laws for _.

Cannon and Langdon (1988) report power law creep behavior (dislocation climb and glide) in

ceramics with large grain sizes. Cocks and Ashby (1980) analyzed this mechanism and developed

an expression for an approximate growth rate by using an upper bound theorem from Martin

(1966). The expression is given as

= p -
dt (1 -
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where P and v are constants and a is the far-field uniaxial stress. By identifying 1-7 with ¢, this

expression resembles equation (4), and as 7 approaches 1, the two equations become quite similar.

Note that this mechanism requires large grain sizes and that a very fine grain structure is easily

maintained in ceramics. This is the microstructure of choice since it increases fracture toughness.

Hence the power law creep mechanism is highly undesirable and, by using well controlled

processing techniques, not likely to occur.

A second mechanism that promotes the growth of voids is vacancy diffusion. This mechanism

is controlled by diffusive motion through the grain (termed Nabarro-Herring creep (1948), (1950))

or motion along the grain boundary (termed Coble creep (1963)), and it plays a more enhanced role

in creep of ceramics. The growth of voids by grain-boundary diffusion was analyzed by Cocks

(1985). He assumed that the grain boundaries serve as perfect sources and sinks for vacancies.

Under the far-field stress _r, voids grow by the plating of material from around the void onto the

grain boundary. The rate of growth increases as the voids enlarge and is expressed as

dr/ 2Db 5bft
= a (21)

dt"
kT1 _(7)0. 51n(1/7)

where D b is the grain-boundary diffusivity, 5b is the grain boundary thickness, fl is the atomic

volume, k is Boltzman's constant, and T is absolute temperature. As 77approaches 1 (effectively

when 7>0.1) then

(7)°'51n(1/77) " (1 - 7) (22)

and for isothermal conditions equation (21) can be expressed as

1]d r/ = H cr (23)

dt 1 --7

where H is a constant that incorporates k, T, 1, Db, 5b' and 1]. Again identifying 1.-7 with ¢, this

equation is similar to equation (4) with n=l. If this analogy holds, one implication is that the

constant B in equation (4) has information pertaining to grain size and diffusional properties

embedded in it.

A fundamental difference between the growth rates for 7 and ¢ must be pointed out. The two

previous models for growth in 7 tacitly assumes that _]=0 when 7=0; that is, nonexistent holes

cannot grow. This is not assumed in the continuum damage approach. This may be viewed as a
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strengthor a weakness.It is a weaknessin the sensethat for small valuesof _/,the two growth

rateswill be quite dissimilar. Howeverthe modelsfor void growth must include somemechanism

to accountfor the nucleationof voids to accuratelypredict time to failure. Modelshave been

proposed(e.g.,Pageand Chan (1987),Tsai and Raj(1982)) for cavity nucleation in ceramics. With

this approachtime to failure hastwo components,time for nucleationand a secondcomponentfor

growth. Alternatively, the rate of growth in ¢ is finite evenin the absenceof damage. Thus

includesboth the nucleationand growth phasesof damageaccumulationand a specialaccounting

for nucleation is unnecessary.

A large percentageof technologically important structural ceramics(e.g.,fl-Si3N4) are

processed using liquid phase sintering techniques. This leaves a viscous second phase material

along the grain boundary which has an adverse effect on mechanical properties at high temperature.

Tsai and Raj (1982) proposed a method to compute the growth of a microcrack along a two-grain

boundary. This approach is complex in that it allows an inhomogeneous stress field to be

approximated by a Mode I stress field in a material that is assumed to behave as a viscous

Newtonian fluid. A far simpler approach proposed by Raj and Dang (1975) models the growth of

penny-shaped bubbles sandwiched between two rigid plates with a uniform normal traction applied

In this work the rate of growth of the penny-shaped bubbles is given in a generalto the plates.

form as

where

d _ = S ® (24)

dt

] (25)

Note that _/remains finite as 7/ approaches 1, however the two previous expressions for _ as well as

become infinitely large as 77approaches 1. The structure of equation (24) resembles equation

(23), but the form of f(7/) in the denominator of the two equaare distinctly different. Even though

equation (23) is an approximation of the physical process occurring along the grain boundary, one

can still argue that the structure of this expression resembles the structure of the damage rates for

continuum damage mechanics.
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FUNDAMENTAL IMPLICATIONS OF THE MODEL

Unfortunately, at the present time we lack the experimental data to properly estimate model

parameters. Thus an assessment of the model in comparison to experimental data is reserved for a

later date, and for the examples that follow, model parameters are arbitrarily chosen for the

purpose of illustration. The Weibull plots represent uniaxially stressed continuum elements (or

links) of unit volume. For dimensionless R, the Weibull parameter/_ has units of

stress. (volume) 1/_ with stress measured in megapascals. In all the examples/_=400 and o_=10

(where o_, the Weibull modulus, is a unitless exponent). The damage parameter B has units of

1/(time. stressn), where the exponent n is unitless.

Figures 4(a) through 5(b) depict several Weibull reliability plots that include fast fracture

(t=0) and three curves representing constant time (or damage). Note that the fast fracture curve is

linear, however, the reliability curves become nonlinear with accumulated damage. Increasing the

damage parameter B widens the spacing between the reliability curves and generally tends to

increase the slope of the curves especially for smaller values of reliability. These trends can be seen

in figures 4(a) through 5(a). Figures 4(b) and 5(a) strongly suggest the existence of vertical

asymptotes. This is consistent with the assumption that tf is deterministic. Hence t must always

be less than tf for a given applied stress. Figure 5(b) depicts the effect of changing the damage

parameter n. As n is decreased the spacing between the curves diminishes. In this figure the

reliability curves tend to collapse to the fast fracture curve indicating a material that is damage

tolerant.

Figures 6(a) and 6(b) represent families of hazard rate curves. In each figure four curves

representing applied stresses of 0-=250, 300, 350, and 400 MPa are shown, In both figures the

damage parameter n is taken equal to 2, and the Weibull parameters o_ and/_ are the same values

as in the previous Weibull reliability plots. In figure 6(a) B=5,,10 -9 and in 6(b) B=lxl0 -9.

Lowering the value of damage parameter B decreases the spacing between the family of curves and

also decreases the initial hazard rates. Decreasing the exponent n has the same relative effect.

More importantly, these hazard rate curves would serve as a useful guide for the design engineer.

Note that there tends to be a well-defined knee in the curves of both families where values of the
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hazardrate increasesrapidly with small incrementsin normalizedtime (t/tf). The designengineer

would usethesecurvesto removea componentfrom serviceat a normalizedtime (t/tf) lessthan

the value at the breakpoint of a given curve.

CONCLUDING REMARKS

In this paper a time dependentreliability model for ceramicsusedin high temperature

applicationswasdevelopedby integrating the principlesof continuum damagemechanicswithin

the framework of Weibull analysis. It wasassumedthat the failure processesof subcritical crack

growth and creeprupture are separablein that failure due to the former is a result of preexisting

flaws,whereascreeprupture is characterizedby the nucleation, growth, and coalescenceof a new

populationof flaws. The nucleationof newflaws is a grain boundary phenomenonand an attempt

wasmadeto reconcilethe continuum damageformulation to existing material sciencemodelsthat

predict void growth along the grain boundaryof polycrystalline ceramics. Howeverthe main

objectiveof this work was to provide the designengineerwith a reliability theory that incorporates

the expectedlifetime of a ceramiccomponentundergoingdamagein the creeprupture regime.

Severalfeaturesof the model werepresentedin a qualitative fashion,including predictionsof

both reliability and hazardrate. The predictive capability of this approachdependson how well

the macroscopicscalarstate variable ¢ capturesthe growth of thesegrain boundary microdefects.

The influenceof microdefectscanbemeasuredand usedto quantify damage. Density change,

acousticattenuation, and changein the reliability of the material by usingthe conceptof effective

stressaremethodsthat canbeusedto quantify damage. The authors areexploring the useof

nondestructiveevaluation techniquesto accomplishthis.

Finally, the kinetics of damagealsodependsignificantly on the direction of the appliedstress.

Hereit wasexpedientfrom a theoretical and computational standpoint to usea scalarstate

variable for damagesinceonly uniaxial loading conditionswereconsidered. The incorporationof a

continuum damageapproachwithin a multiaxial Weibull analysisnecessitatesthe descriptionof

orienteddamageby a second-ordertensor. The authorsare currently pursuingthis task following

the approachof Murakami and Ohno (1981).
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STRESSES, AND OUTLINING DISTINCT REGIONS WHERE EXPECTED

FAILURE MECHANISMS WOULD BE OPERATIVE.
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FIGURE 3. - SCHEMATICOF SPHERICAL VOIDS GROWINGALONG TWO

GRAIN BOUNDARIES.
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