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Abstract: A simulation of the resilience of lifeline systems in a test bed subjected to a series of seismic events is presented in this paper.

The simulation framework is comprised of a group of independent simulators that interact through a publish–subscribe pattern for data

management. The framework addresses the spatial and time-dependent interactions that arise between lifeline systems as a hazard and

subsequent restoration processes unfold. The simulation results quantify how operability loss and recovery time may be underestimated

if the interdependencies between lifeline systems are not properly taken into account. The effect of insufficient resources on recovery was

investigated, and it was demonstrated that among the six resource allocation strategies studied, the time-varying strategies that are responsive

to actual conditions on the ground had a better effect on resilience. This paper demonstrates the power of connecting simulators using

the publish–subscribe method in order to account for multiscale interdependency and time-dependent effects on community resilience.
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Motivation and Objectives for the Study

Modeling a disaster and subsequent recovery efforts is complicated

by the differing time scales for the various phases of the process,

that is, seconds or minutes as a hazard unfolds versus days or

months as emergency efforts and recovery take place. As a result,

studies that model the multiple phases of a disaster within one

overarching simulation are rare due to the challenge of integrating

different simulation models with disparate temporal and spatial

scales.
A common assumption in resilience studies is that a hazard

occurs during one analysis step, that is, virtually instantaneously.

In reality, hazards unfold in a finite amount of time. Accounting for

how a hazard unfolds and affects infrastructure systems that interact

with one other can yield new insights into how interdependencies

affect community resilience. This is especially important for sit-

uations such as long-period disasters that overlap with short-term

recovery efforts [e.g., the emergency response to a hurricane

(Schmeltz et al. 2013)], short-period disasters that interact with

an ongoing recovery efforts (e.g., an aftershock affecting the re-

covery effort associated with a main shock), or multiple disasters

occurring in a specific locale [e.g., an earthquake followed by a

tsunami (Moreno and Shaw 2019)].
Given the paucity of studies in this area, the objective of this

research was to conduct an analysis that explicitly addressed the

spatial and temporal progression of earthquake-induced damage

and the postdisaster restoration effort. After a review of the liter-

ature, the methodology and framework are introduced and a case

study of three interdependent lifeline systems subjected to two
successive earthquakes is presented. Last, the applicability and
limitations of the framework are discussed.

Background

There is broad consensus that the interdependencies that exist be-
tween the lifeline systems of a society can significantly impact the
resilience of communities facing natural and man-made hazards

(Cutter et al. 2003; NER 2011; Cimellaro et al. 2016).
Various methods for classifying interdependencies have been

proposed (Zimmerman 2001; Rinaldi et al. 2001; Dudenhoeffer
et al. 2006; Zhang and Peeta 2011), and different computational

modeling approaches have been used to study the effects of
interdependencies on community resilience. Eusgeld et al. (2008)
and Ouyang (2014) categorized these approaches into several

types: empirical, agent-based, system dynamics, economic theory,
network-based approaches, and other techniques. The two most
often-used approaches for modeling community resilience are

agent-based models and network-based methods. Agent-based
models are powerful because they can capture pertinent behavior
at the component level (Barton et al. 2000; Schoenwald et al. 2004;

Reilly et al. 2017). Their versatility is, however, marred by their
computational expense. Network-based approaches are computa-
tionally expedient. They are widely used in lifeline system model-

ing because these types of systems can typically be represented
as a network graph with nodes and links (Hernandez-Fajardo and
Dueñas-Osorio 2013; Guidotti et al. 2016). A more detailed discus-

sion of the various modeling techniques can be found in Eusgeld
et al. (2008), Ouyang (2014), and Lin et al. (2019).

Numerous studies have been conducted to evaluate the
resilience of communities subjected to hazards. The PEOPLES

resilience framework (Renschler et al. 2010; Cimellaro et al. 2016)
includes seven dimensions for assessing community resilience:
population and demographics, environmental and ecosystem,

organized governmental services, physical infrastructures, lifestyle
and community competence, economic development, and social-
cultural capital. Miles and Chang (2011) introduced a simulation
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model named ResilUS that was built on their previous efforts

(Chang and Miles 2004; Miles and Chang 2007) and provided an

implementation of the 1994 Northridge earthquake. The NIST-

funded Center for Risk-Based Community Resilience Planning

has developed the Interdependent Networked Community Resil-

ience Modeling Environment (IN-CORE), which some studies

have demonstrated on a virtual test bed community called Center-

ville (Ellingwood et al. 2016; Guidotti et al. 2016; Lin and Wang

2016; Cutler et al. 2016). The Civil Restoration with Interdepend-

ent Social Infrastructure Systems (CRISIS) model (Loggins et al.

2019) mapped services provided by civil infrastructure to the

performance of social infrastructure systems and aimed to find re-

storation schemes that optimize the performance of social systems.

As Koliou et al. (2018) concluded, there are only a handful of

frameworks that can account for the multidisciplinary and multi-

scale nature of community resilience in time-varying resilience

analyses. The methodology employed in this research is geared

toward addressing these gaps in the literature.

Computational Framework

Lin et al. (2019) provides a detailed description of the modeling

environment and publish–subscribe data transmission pattern used

in this work. Fig. 1 shows how the various simulators employed

herein interact together, and Fig. 2 illustrates the publish–subscribe

relationship between the simulators. Each simulator publishes its

results (in a “message”) to a corresponding “channel.” Other sim-

ulators, which need the information, subscribe to the channels

and receive published messages from them. This method of data

management is used in computer science to compose complex sim-

ulations from a set of individual, interacting simulators (Lin et al.

2019). Modifiability and scalability are the key advantages of this

methodology. In particular, it allows simulators to be replaced

based on different theories or algorithms and permits new simula-

tors to be added to existing simulation frameworks, allowing for

increasing levels of complexity.
The messages published during a disaster event are described in

Table 1 and the corresponding publishers and subscribers are listed

in Table 2. The run-time interface shown in Fig. 2 manages the flow

of messages, permitting the analysis to proceed in a decentralized

and scalable manner. Although Figs. 1 and 2 show the framework

for the case study considered herein, which contains three inter-

dependent systems, it can be extended in a straightforward manner

to handle other situations with more interacting systems and

simulators.
The scenario simulator in Fig. 1 describes the basic configura-

tion information, specifically the location and characteristics of

Fig. 1. Simulation framework and message flow.

Fig. 2. Publish–subscribe concept for data exchange.
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utility facilities and the connectivity between them. Such informa-

tion is published at the beginning of simulations and assumed not to

change with time. Once a disaster occurs (in the disaster phase), the

hazard intensity simulator provides information about the hazard,

such as the magnitude and epicenter of an earthquake in a seismic

disaster. Although this paper only focuses on seismic events, the

hazard intensity simulator could also provide information about

storm track and intensity if a hurricane hazard were of concern.

The simulator provides specific hazard information at all locations

of interest to other simulators—for example, ground motions at a

given location.
The direct damage simulator calculates the physical damage of

components directly induced by a hazard regardless of the influ-

ence of other infrastructure systems. Damage can be evaluated us-

ing empirical models, fragility curves, or detailed finite-element

models. The fact that the simulation framework does not care about

the specific method by which damage is assessed is a key strength

of the methodology. The interdependent damage simulator ad-

dresses the effects of interdependencies on damage occurrence.

Interdependencies come in many varieties. They can be functional,

spatial, or both (Zimmerman 2001); cyber, geographic, and logical

(Rinaldi et al. 2001); physical, geospatial, policy, and informational

(Dudenhoeffer et al. 2006); functional, physical, budgetary, market,

and economic (Zhang and Peeta 2011). The performance assess-

ment simulator assesses system performance and is a key determi-

nant for formulating a recovery strategy.
In the recovery phase, the recovery resource simulator estimates

the amount of resources, such as labor, equipment, materials, and

budget, that can be used for lifeline restoration. The recovery strat-

egy simulator allocates limited recovery resources to the systems

based on a given recovery strategy, which may depend on the dam-

age status and performance of the systems. The influencing factors

and strategy for the allocation of recovery resources may change

during the recovery process. Such time-dependent effects are a

key focus of this research; the study of such effects is enabled

by the distributed simulation methodology adopted in this work.

Once damage occurs, the physical recovery simulator determines

the reconstruction priority of damaged components based on their

damage situation and degree of importance in the system, and es-

timates the required time for restoration. During every recovery

period, the simulator further distributes recovery resources allo-

cated from the recovery strategy simulator to each damaged com-

ponent in order of priority, that is, system level to component level.

Then, within every recovery step, the physical recovery simulator

decides whether reconstruction progress advances forward or

pauses according to whether a component has enough allocated

resources.
The interdependencies between the various systems must be

considered not only as a hazard unfolds but also during the recov-

ery process. For example, one component in a network system may

have completely recovered from damage inflicted by a hazard but

still cannot function properly due to its dependency on another

still-damaged system. Therefore, like the interdependent damage

simulator, the interdependent recovery simulator considers inter-

dependent behaviors across systems and updates the recovery

status and functionality of components.
The simulators used in this work span different spatial scales:

whole community, infrastructure system, and structural component.

Community-level simulators affect large geographic areas (e.g., the

scenario simulator and hazard intensity simulator) or represent de-

cisions that address a large part of a community (e.g., the recovery

strategy simulator). System-level simulators address physical infra-

structure systems such as lifeline networks. The lowest spatial level

pertains to components of the various infrastructure systems, such

as residential buildings or pumping stations. The times scales

considered herein also vary widely. As illustrated in Fig. 1, the time

scale as the disaster phase unfolds Δthazard is several orders of

magnitude smaller than the time step during the recovery phase

Δtrecovery. The framework employed in this work allows for the

possibility of subsequent hazards to occur—for example, an after-

shock that occurs during an ongoing recovery progress.
Shifts between the disaster and recovery phases are controlled

by the performance assessment simulator, which is involved in both

phases. This simulator judges the beginning and end of a disaster

by interpreting the received damage messages and provides the

latest system performance to the recovery strategy simulator. As

shown in Fig. 1, in the disaster phase, the performance assessment

simulator calculates system performance based on damage status

provided by the interdependent damage simulator, and in the recov-

ery phase, it continues to update system performance according

to the recovery status from the interdependent recovery simulator.

The direct damage simulator also subscribes to the recovery status

provided by the interdependent recovery simulator, although it does

not publish anything during the recovery phase. This is because it

needs to know the latest recovery status in order to assess the capac-

ity reduction in components that are not yet fully repaired when the

next disaster occurs.
The computational framework handles several types of inter-

dependencies. Most importantly, the interdependencies between

system performances and community-level recovery strategy are

accounted for in a dynamic sense. In other words, recovery strategy

can evolve depending on system performance at a given time.

Table 1. Message types published during a disaster event

Code Message description

I Configuration of and information on test bed that does not

change with time

HðtÞ Hazard intensity measures at all locations of interest at time t

DDi (t) Damage status of components directly induced by a hazard at

time t

IDiðtÞ Damage status of components considering interdependency

effects at time t

Pi (t) System performance measures at time t

RSðtÞ Total available recovery resources and constraints at time t

SðtÞ Allocation strategy of recovery resources at time t

RiðtÞ Physical recovery status of components at time t

IRi (t) Recovery status of components considering interdependency

effects at time t

Note: Subscript i indicates messages produced by system i.

Table 2. Messages published or subscribed to by the simulators

Simulator

Message

published Messages subscribed to

Scenario simulator I —

Hazard intensity simulator HðtÞ I

Direct damage simulator i DDi (t) I, HðtÞ, IRj (t), j ¼ 1; 2; : : :

Interdependent damage

simulator i

IDiðtÞ I, DDj (t), j ¼ 1; 2; : : :

Performance assessment

simulator i

Pi (t) I, IDjðtÞ, IRj (t), j ¼ 1; 2; : : :

Recovery resource simulator RSðtÞ I

Recovery strategy simulator SðtÞ I, Pj (t), j ¼ 1; 2; : : :

Physical recovery simulator i RiðtÞ I, SðtÞ
Interdependent recovery

simulator i

IRi (t) I, RjðtÞ, j ¼ 1; 2; : : :

Note: Subscript i refers to system i.
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Second, because additional disruptions can occur during an on-

going recovery process, the ability of each component to resist new

demands caused by subsequent hazards may be affected by damage

from a previous event and unfinished rehabilitation efforts. Last,

interdependencies can occur between components of different life-

line systems and must be accounted for. These interdependent re-

lationships are shown in Fig. 1 by the interlaced lines joining the

direct damage simulator and the interdependent recovery simulator

or joining the physical recovery simulator and the interdependent

recovery simulator.
The extensibility and flexibility of the computational framework

for modeling various types of interdependencies between disparate

systems are the key strengths of the platform. For example, if new

interacting systems are added, the interdependent damage/recovery

simulators merely need to subscribe to the new direct damage

simulators or physical recovery simulators on which they depend.

No changes need to be made to other simulators in the system. The

publish–subscribe approach used in this work eliminates the need

for using interdependency matrices, which are commonly used to

specify the relationships between different pairs of networks. The

limitations associated with using interdependency matrices are

discussed in Lin et al. (2019).

Case Study: Seismic Damage and Recovery of
Lifeline Systems in Shelby County, Tennessee

Shelby County, Tennessee, which is close to the southwest

end of the New Madrid seismic zone (NMSZ) has been used as

a test bed in many studies. Dueñas-Osorio et al. (2007), Adachi and

Ellingwood (2008), and Hernandez-Fajardo and Dueñas-Osorio

(2013) studied the interdependent response of water and power

systems in Shelby County under earthquake demands. Adachi

and Ellingwood (2009) assessed the performance of its water

system under spatially correlated seismic intensities. Song and Ok

(2010) analyzed multiscale effects on system reliability of the gas

transmission network in Shelby County. González et al. (2016)

developed restoration strategies that took into account the interde-

pendencies between the water, power, and gas network systems in

Shelby County.
In a departure from previous studies, the computational frame-

work was applied to Shelby County, Tennessee in order to demon-

strate how it can be used to investigate earthquake-induced damage

and the subsequent recovery progress, which itself is interrupted

by an aftershock (first shock—short term recovery effort—second

shock—long term recovery effort). The framework was applied

to three interdependent lifeline systems in order to demonstrate

its scalability. Unlike the aforementioned studies, which merely

focused on one of the phases in a hazard event, that is, the disaster

process or the recovery period, this study presents an overall

simulation that addresses the disaster and postdisaster phases in

an integrated manner. Another key advantage of the framework

is that it naturally combines simulators that have disparate temporal

and spatial scales.

To capture the uncertainty in the seismic damage and the resto-

ration process, Monte Carlo simulations were performed, and the

means of the results are presented. Studies with 300, 500, and 1,000

simulations were conducted to select a reasonable number of sim-

ulations. The studies showed that the average relative differences

of the first to the last were 4.75% (300 runs versus 1,000 runs)

and 0.21% (500 runs versus 1,000 runs). Therefore, the number

of Monte Carlo runs was set to 500.
The following section describes the details of the simulators

shown in Fig. 1 and discussed previously.

Scenario Simulator

The scenario simulator provides configuration information about

the lifeline systems considered herein. The systems of interest in-

clude the electric power system (EPS), water distribution system

(WDS), and natural gas system (NGS), which are operated by the

Memphis Light, Gas, and Water (MLGW) division. The topologi-

cal configuration of the networks was adapted from Chang et al.

(1996), Dueñas-Osorio et al. (2007), and Song and Ok (2010).

Fig. 3 shows the topologies and critical components of the power,

water, and gas network systems in Shelby County. The gate stations

in EPS and NGS and the elevated tanks and pumping stations in

WDS are supply nodes. The 23 kV/12 kV substations in EPS, the

intersection nodes in WDS, and the regulator stations in NGS are

demand nodes. The intersection nodes in EPS and NGS and all

directed arcs represent the transmission components.

Hazard Intensity Simulator

The scenario earthquakes were assumed to have an epicenter at

35°18’N and 90°18’W; the same assumption was made in Adachi

and Ellingwood (2009). Ground motions designated RSN-5223

(designated EQ1) and RSN-6536 (designated EQ2) from PEER

(2018) were used in this study to represent feasible seismic activity.

The ground motion records, which have a 0.01-s time interval, were

scaled to peak ground acceleration (PGA) at the center of Memphis

(35°08’N and 89°59’W; i.e., 33 km from the epicenter). The PGA

values were 0.202 and 0.341 g for EQ1 and EQ2, respectively.

These values were chosen based on USGS (2018) for earthquakes

with a 10% probability of exceedance in 50 years (10/50) and a 5%

probability of exceedance in 50 years (5/50).
Ground motion attenuation was assumed to follow the model

proposed by Atkinson and Boore (1995). Although the attenuation

relationships were proposed only for the PGA, the model was as-

sumed to be applicable to the entire acceleration record as plotted in

Fig. 4 and to depend only on the distance to the epicenter. Although

the assumptions related to the hazard were made for convenience,

the hazard intensity simulator can be adjusted in the future once

more data or new models become available.

Direct Damage Simulator

Direct damage occurs if the hazard intensity, as computed by the

hazard intensity simulator, exceeds the capacity of a component.

Four damage states are considered: minor, moderate, extensive,

and complete. These states are irreversible and occur in sequential

order. The capacity of each component is determined at the begin-

ning of each realization in the Monte Carlo simulation. Lognormal

fragility functions were used to estimate the capacities associated

with different damage states for different types of utility facilities.

The fragility functions were adopted from the Hazards US Multi-

Hazard (HAZUS-MH) technical manual (FEMA 2003), and their

parameters are listed in Table 3. It was assumed that damage to EPS

can be assessed from the gate stations and substations, which are

the most critical equipment for the functionality of a power system

(Shinozuka et al. 2005). The intersection nodes in all networks

added for dividing the transmission lines and pipelines were

assumed to be not vulnerable to earthquakes (Fig. 3).
As discussed in FEMA (2003), the rate of occurrence of pipeline

failures per unit length is known as the repair rate and is computed

via Eq. (1), in which the unit for peak ground velocity (PGV) is

cm=s. The probability that the number of pipe breaks NB equals b

within a pipeline segment of length L can be expressed as shown in

Eq. (2), and the probability of pipeline breakage is shown in Eq. (3)
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Rrate½repairs=km� ≅ 0.0001 × PGV2.25 ð1Þ

PðNB ¼ bÞ ¼
ðRrate × LÞb

b!
e−Rrate×L ð2Þ

PðNB > 0Þ ¼ 1 − PðNB ¼ 0Þ ¼ 1 − e−Rrate×L ð3Þ

Each link in WDS and NGS is divided into several segments of

approximately one km length in order to consider the scale effect
(Song and Ok 2010). The PGV that corresponds with a 50%

Fig. 3. Topological configuration of the lifeline systems in Shelby County, Tennessee: (a) electric power; (b) water distribution; and (c) natural gas

system. [Adapted (a–c) from Chang et al. 1996; data for (a–b) from Dueñas-Osorio et al. 2007; data for (c) from Song and Ok 2010.]
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probability of pipeline breakage was used as the capacity of each
segment. Buried pipelines may also be damaged by ground failure,

for example, by liquefaction. Although such situations were not

considered in this case study, they could be considered in the future

by adding other specialized simulators.
Component capacities are determined at the beginning of each

realization based on the history of seismic activity. In the case of a

first seismic event, they are considered to be damage free. When

aftershocks occur during the recovery process, the integrity of the

segments has already been compromised by the previous event, and

component capacities are assumed to be a function of the previous
damage state. In this case, the capacities of discrete components

were assumed to be reduced by 40%, 20%, and 10% for extensive,

moderate, and minor damage states, respectively, and the reduction

ratios for broken pipelines was set to 40%, that is, an extensive

damage state. These numbers can be refined in the future if the time

between events is specified and the direct damage simulator and

interdependent recovery simulator are able to address sequential

damage effects.

Interdependent Damage Simulator

Two types of interdependencies are considered at the component-

level: functional interdependencies and spatial interdependencies.

A functional interdependency indicates the dependence of one sys-

tem (slave nodes) on the functionality or material flow of another
(master nodes). For example, pumping stations in water and gas

systems rely on electric power to operate pumping machines; elec-

tric power plants rely on the water distribution system for cooling

purposes and for controlling emissions of coal-based power gener-

ators. In this case study, part of the power grid depended on the

natural gas system to fuel generation units. Spatial interdependency

is a situation in which components from different infrastructure

systems are colocated within the same geographical environment,

that is, the components have spatial overlap. There is generally

mutual reliance rather than master-slave relationship of functional

interdependency; that is, the damage state of both nodes is the same

and is governed by the node that has more severe direct damage.

The conditional probability of a slave node being nonfunctional

given an inoperative master node can be seen as the degree of inter-

dependency or the coupling strength between the two nodes.

Herein, the conditional failure probability of any pair of slave and

master nodes is set to one, but it can be adjusted for other situations.

All these interdependent relationships and the nodes involved are

listed in Table 4. The interdependent damage simulator of each

system only needs to know which nodes are the master nodes of

its own components and subscribe to their damage conditions.

Performance Assessment Simulator

Ghosn et al. (2016) suggested that the performance measures of

a network system can be divided into two categories: flow-based

Table 3. Parameters of lognormal fragility functions for utility facilities

System Components Minor Moderate Extensive Complete

EPS Gate station 0.11 (0.50) 0.15 (0.45) 0.20 (0.35) 0.47 (0.40)

12 kV/23 kV substation 0.15 (0.70) 0.29 (0.55) 0.45 (0.45) 0.90 (0.45)

WDS Elevated tanks 0.18 (0.50) 0.55 (0.50) 1.15 (0.60) 1.50 (0.60)

Pumping station 0.15 (0.75) 0.36 (0.65) 0.77 (0.65) 1.50 (0.80)

NGS Gate station 0.15 (0.75) 0.34 (0.65) 0.77 (0.65) 1.50 (0.80)

Regulator station 0.15 (0.75) 0.34 (0.65) 0.77 (0.65) 1.50 (0.80)

Note: All fragility functions for utility facilities are lognormal distributions with peak ground acceleration (PGA) as the engineering demand parameter. The

corresponding median and lognormal standard deviation (β) are listed in the table, i.e., median (β); (unit: g).

Fig. 4. Assumed attenuation of ground acceleration (unit: g) for earthquake with (a) 5%; and (b) 10% probability of exceedance in 50 years.

Table 4. Interdependent relationships between EPS, WDS, and NGS

WDS*–EPS EPS*–WDS NGS*–EPS EPS*–NGS

NGS–WDS

(Mutual)

W2*–P28 P1*–W21 G6*–P18 P1*–G6 G3–W12

W3*–P29 P2*–W25 G10*–P24 P5*–G11 G14–W41

W4*–P14 P3*–W23 G12*–P44 P7*–G12 —

W5*–P17 P4*–W29 G13*–P26 — —

W6*–P33 P5*–W30 — — —

W8*–P36 P6*–W35 — — —

W9*–P38 P7*–W39 — — —

W11*–P40 P8*–W42 — — —

W12*–P26 P9*–W49 — — —

Note: The left four columns indicate functional interdependencies (slave

node*–master node), and the rightmost column indicates spatial

interdependencies.
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and topology-based measures. Flow-based performance measures
are represented by the amount of supplied flow and the propor-
tion of satisfied customer demand. Topology-based measures are
calculated based on graph theory. An abstract graph representing
a lifeline network consists of supply nodes, demand nodes, and sev-
eral directed links that indicate the connecting paths from supply
nodes to demand nodes.

Due to a lack of information pertaining to flow capacity and
demand, a topology-based metric, termed connectivity loss (CL),
was selected for performance assessment in this case study. CL
measures the average change in the connectivity of demand nodes
to supply nodes after perturbation and is often used to assess the
capability of a network system to withstand disruption (Albert et al.
2004; Dueñas-Osorio et al. 2007). At the beginning of a simulation,
each lifeline system is represented as a graph with nodes and links,

and the original connectivity is calculated. As the analysis pro-
gresses, inoperative components are removed from the graph, then
added back when they recover. CL of a network system with
Ndemand demand nodes can be computed by Eq. (4)

CL ¼ 1 −
1

Ndemand

X

Ndemand

i

�

Pi

P0;i

�

ð4Þ

where P0;i = original number of supply nodes that connect to the ith
demand node; and Pi = number of supply nodes connected to the
ith demand node after a perturbation. The remaining connectivity
(C) of a network is: C ¼ 1 − CL.

Recovery Resource Simulator

Recovery resources are quantified as a number of resource units.
A resource unit is defined as the amount of resources and budget
required for an 8-person crew with accompanying repair equipment
to work 12 hours (working time per day). In all of the case studies
discussed subsequently, the available number of resource units
Rtotal for the entire county was assumed to be a fixed value during

the recovery process. In general, it is assumed that all crews have
unlimited expertise, that is, they can work on all lifeline systems.
However, in last case study, the crews were assumed to have differ-
ent skills, and the maximum number of available crews specializing
in the ith lifeline system was denoted as Rmax;i. Clearly, the func-
tionality of the social infrastructure—for example, the availability
of able-bodied workers who were not injured or killed in the
event—affects Rmax;i. Although not accounted for here due to space
and scope limitations, in the future, such a limitation can be ac-
counted for through the addition of a social infrastructure simulator
that, for example, accounts for worker injuries and deaths and for
available funding needed to pay for repair crews.

Recovery Strategy Simulator

The recovery strategy simulator interprets the allocation strategy
for recovery resources. A feasible recovery strategy is to allocate

recovery resources to each system evenly regardless of their dam-
age conditions, as stated in Eq. (5), where Ns is the number of
systems and Rk is the amount of recovery resources allocated to
the kth system. This strategy (the EA strategy) could represent a
situation in which information about the extent of a disaster is
not known. In cases in which Rtotal and Ns are fixed values during
the recovery process, the EA strategy is time-independent

RkðtÞ ¼
RtotalðtÞ

Ns

ð5Þ

Another strategy (the LA strategy) is to assign resources de-
pending on the performance of the systems in terms of connectivity
loss. In this case, Rk is computed as

RkðtÞ ¼
CLkðtÞ

PNs

i CLiðtÞ
× RtotalðtÞ ð6Þ

where CLi = connectivity loss of the ith system. Alternatively, if
the number of damaged components in each system NDi is of con-
cern, then a feasible strategy (the DA strategy) could be as follows:

RkðtÞ ¼
NDkðtÞ

PNs

i NDiðtÞ
× RtotalðtÞ ð7Þ

The LA and DA strategies imply that the amount of recovery
resources allocated to each system is not constant and changes over
time t during the progress of recovery, reflecting the time-varying
characteristic of the recovery process.

The recovery strategies applied in the example assume that
systems that are more severely damaged and have worse system
performance will receive more recovery resources. However, deci-
sion making during an actual disaster may be much more involved
and may need to account for other factors, such as economics,
politics, and societal values. In such cases, users could refine the
algorithm in the recovery strategy simulator without influencing
other simulators.

Physical Recovery Simulator

After a system is allocated recovery resources, the physical recov-
ery simulator further distributes them to the damaged components.
Once new damage to a system is computed, a normal distributed
random variable is generated to estimate the required restoration
time for each damaged component based on the restoration func-
tions in the HAZUS-MH technical manual (FEMA 2003). Uncer-
tainty in the recovery process is considered. The parameters of
the restoration function used in the case study are summarized
in Table 5. The time step of the recovery process is taken as

one day, and the required resources for all types of components are
assumed to be one unit per day. If a damaged component has been
allocated enough resources in the recovery step (day), then its

Table 5. Parameters of restoration functions for different components

System Components Minor Moderate Extensive Complete

EPS Gate station 1.0 (0.5) 3.0 (1.5) 7.0 (3.5) 30.0 (15.0)

12 kV/23 kV substation 1.0 (0.5) 3.0 (1.5) 7.0 (3.5) 30.0 (15.0)

WDS Elevated tanks 1.2 (0.4) 3.1 (2.7) 93.0 (85.0) 155.0 (120.0)

Pumping station 0.9 (0.3) 3.1 (2.7) 13.5 (10.0) 35.0 (18.0)

NGS Gate station 0.9 (0.3) 3.1 (2.7) 13.5 (10.0) 35.0 (18.0)

Regulator station 0.9 (0.3) 3.1 (2.7) 13.5 (10.0) 35.0 (18.0)

Note: All restoration functions are normal distributions. The corresponding mean and standard deviation are listed in the table, i.e., median (standard

deviation); (unit: day).
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repair progress will advance forward one day. Otherwise, it remains
unrepaired.

The physical recovery simulator distributes allocated recovery
resources to damaged components using two different strategies:
randomly (the R strategy) or in order of their priority (the P strat-
egy). In the latter case, the recovery priority of the components in
each network is as follows: supply nodes, demand nodes, and links/
pipelines. To simplify the simulation, resources and work crew are
assumed available as soon as they are allocated, that is, the effect of
transportation on work crew routing (Morshedlou et al. 2018) is not
considered in this study, although it could be incorporated through
the addition of other simulators.

Interdependent Recovery Simulator

The same types of interdependencies, that is, functional interdepen-
dencies and spatial interdependencies, are considered during the
recovery process by the interdependent recovery simulator. The
interdependent relationships (master/slave) and involved nodes are

listed in Table 4. Although slave components may have completely
recovered from damage inflicted by a hazard, they may not function
until the master components they depend on have fully recovered.
For example, the functionality of pumping stations in the water
and gas systems depends both on their own repairs and on the avail-
ability of electric power. After simulation of the physical recovery,
the recovery status and functionality of components is updated
depending on the different interdependent behaviors across the
systems.

Results and Discussion

The simulators described in the previous section were connected
together using the computational framework described previously.
The computational platform was then used to investigate the effects
of system interdependencies, multiple shocks, recovery strategies,
and allocated recovery resources on the propagation of damage
during seismic events and short- and long-term recovery processes.

Fig. 5.Comparison of system performancewith and without considering interdependencies during the earthquake and recovery processes: (a) damage

curves of EPS; (b) recovery curves of EPS; (c) damage curves of WDS; (d) recovery curves of WDS; (e) damage curves of NGS; and (f) recovery

curves of NGS.
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Interdependencies between Lifeline Systems

First, a comparison of the performance of the three lifeline systems

with and without considering the interdependencies between the
systems is presented. Consider a seismic event with EQ2, Rtotal ¼
45 units=day, and crews with no limitation on their expertise. The
allocation of recovery resources is based on the LA and P strategies.

Fig. 5 shows the damage and recovery curves of the three lifeline
systems in terms of the average system connectivity performance.

The dotted lines in Fig. 5 reflect analyses that account for interde-

pendencies, while the solid lines reflect simulations that do not
account for interdependencies.

Figs. 5(a, c, and e) indicate that EPS is the system most signifi-

cantly affected by the earthquake out of the three lifeline systems

when interdependencies are not considered. Figs. 5(a and b) indi-

cate that the performance of EPS is not significantly affected by

interdependencies. Interdependencies are much more influential

for WDS and NGS, as shown in Figs. 5(c–e). The computational

results show that WDS and NGS are more dependent on EPS,

and the overall recovery time, in this case, is controlled by the re-

storation of EPS. It is clear that the operability loss and recovery

times may be significantly underestimated if the interdependencies

between lifeline systems are not adequately accounted for.

Fig. 6. Influence of foreshock on the lifeline system performance during (a) main shock without foreshock; (b) overall event without foreshock;

(c) main shock affected by foreshock; and (d) overall event with foreshock.

Fig. 7. Influence of foreshock on recovery after main shock: (a) EPS; (b) WDS; and (c) NGS.
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Influence of Foreshock

The influence of the foreshock is evaluated by considering a se-

quence of seismic events comprised of EQ1 followed by EQ2,

Rtotal ¼ 45 units=day, and crews with no limitation on their exper-

tise. The allocation of the recovery resources is based on the LA and

P strategies. The performance of the lifeline systems is indicated by

the connectivity ratio, as plotted in Fig. 6. Figs. 6(a and b) pertain

only to the main shock, while Figs. 6(c and d) illustrate the out-

comes of EQ1 (the foreshock) leading up to EQ2 (the main shock).

Figs. 6(a and c) indicate that the worst connectivity ratio of the life-

line systems is governed by the main shock, which is larger than the

foreshock. However, the damage inflicted by the foreshock makes

the lifeline systems more vulnerable to the later quake. As shown in

Fig. 7, the recovery slows down slightly in the long-term when the

foreshock is considered, because the final damage after the main

shock is more severe and there are more damaged components

in need of repair, which might not be fully reflected in the connec-

tivity loss.

Influence of Aftershock

Consider a seismic event with EQ2 (main shock) followed by EQ1

(aftershock), Rtotal ¼ 45 units=day, and crews with no limitation on

their expertise. The allocation of recovery resources is based on the

LA and P strategies. Fig. 8 shows the changes in system perfor-

mance with an aftershock compared to EQ1 by itself. As shown

in Figs. 8(a and b), the aftershock induces additional damage

and decelerates the speed of restoration despite being smaller than

the main shock. Moreover, by comparing Figs. 8(a and b) with

Figs. 8(c and d), it can be seen that the damage due to the aftershock

is much more serious than the damage due to a single earthquake

with the same magnitude. For example, in Fig. 8(d), the remaining

connectivity of EPS in the case with EQ1 by itself is about 0.64, but

in the case with the aftershock, the connectivity of EPS after EQ1

(aftershock) decreases to 0.42, as shown in Fig. 8(b).

Effect of Recovery Strategies

As discussed previously, two levels of recovery strategies are

proposed: community to system (EA, LA, and DA) and system

to component (R and P). As a result, there are six different combi-

nations of recovery strategies. The schemes are designated by their

names—for example, EA followed by R is EA-R and LA followed

by P is LA-P.
Consider a seismic sequence of events with EQ1 as a fore-

shock followed by EQ2 as the main shock. Resources Rtotal ¼
9 units=day, and repair crews have no limitations on their ex-

pertise. The focus is only on the connectivity performance of

EPS. It is clear from Fig. 9 that the three strategies that employ

the P allocation have steeper recovery curves in the early stages

of reconstruction. They also have better performance in the overall

resilience process. Among the six different recovery schemes,

Fig. 8. Influence of aftershock on the lifeline system performance during (a) aftershock following main shock; (b) overall event (main shock followed

by aftershock); (c) aftershock by itself (without considering the effect of the main shock); and (d) overall event involving only aftershock.

Fig. 9. Effect of different recovery strategies on the connectivity per-

formance of EPS.
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the EA-R scheme has the worst recovery performance. The best
is DA-P.

Effect of Amount and Type of Recovery Resources

To study the effect of the amount of recovery resources, consider
again a case with EQ1 as a foreshock followed by EQ2 as the
main shock. In this case Rtotal varies and equals 9, 15, 30, or
45 units=day, and crews have no limitation on their expertise.
Focusing again on EPS, the best (DA-P) and worst (EA-R) strat-
egies discussed previously are employed to maximize the contrast
between them, and the results are shown in Figs. 10(a and b), re-
spectively. As expected, recovery performance improves as more
recovery resources are allocated. Fig. 10 also shows that the effect
of limited resources is significantly more pronounced in the lower-

efficiency scheme. Fig. 11 compares the effect of the amount of
resources on recovery when different strategies are employed.

Again, the less efficient schemes suffer more pronounced effects

when fewer resources are available.
Consider a similar study with crews that have specific (not

general) expertise—for example, a crew is only able to service a

particular lifeline system. Consider a seismic sequence of events

with EQ1 as a foreshock, followed by EQ2 as the main shock. The

DA-P strategy is applied, and two different recovery resource con-

straints are considered. First, funding is available to pay up to 15

repair crews per day, that is, RtotalðtÞ ≤ 15 units=day (Constraint 1).

Second, the crews are specialized, with up to five crews spe-

cializing in each lifeline system, that is, RkðtÞ ≤ Rmax;k ¼ 5

(Constraint 2), where RkðtÞ is the amount of recovery resources

allocated to the kth system. Fig. 12 compares the performance of

EPS with different levels of recovery resource constraints. The fig-

ure shows that the resilience of the community is overestimated if

crew expertise is not account for, especially in the period between

25 and 60 days.

Fig. 10. Effect of recovery resources on EPS with recovery strategy: (a) DA-P; and (b) EA-R.

Fig. 11. The connectivity performance of EPS adopting different recovery strategies with different recovery resources with (a) 45; (b) 30; (c) 15; and

(d) 9 units=day.
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Summary and Conclusions

A distributed computational framework was employed to model the

interactions that occur between lifeline systems during earthquakes.
Various systems were modeled using simulators with disparate

temporal and spatial scales. The simulators were connected through
a computational platform. Shelby County, Tennessee, was used as a

case study for demonstrating the ability of the framework to model
the interactions between three lifeline systems. The effects of differ-

ent recovery strategies on system performance were examined
as the hazard unfolded and as the recovery process took place.

The computational results quantified the influence of the interde-
pendencies between the lifeline systems on the resilience of the

community.
Aside from the need to account for multiscale interdependen-

cies, the case study pointed out the necessity of time-varying analy-

sis as the hazard unfolded and during the recovery process. The

seismic hazard considered in this work occurred in just a few

seconds. Nevertheless, modeling the interactions that occurred be-

tween the lifeline systems during the event provided insights into

how interdependencies among infrastructure systems propagate

and provided clues as to how to improve their resilience. The ability

to handle differences in temporal scales between a hazard and

the recovery process is one of the key advantages of the analysis,

as evinced by its ability to handle aftershocks that interact with an

ongoing recovery effort.
The case study showed that not taking system interdependencies

into account will underestimate operability loss and recovery time.

It was also shown that that, within the constraints of this research,

the strategy of recovery resource allocation had a great impact on

community resilience. The impact was exacerbated when resources

were insufficient. Among the six resource allocation strategies

studied, the ones that adjusted based on damage/reconstruction

states enhanced resilience. This points to the necessity of maximiz-

ing a community’s ability to have good information flow after a

disaster. In other words, the hardening of monitoring and commu-

nications systems and making them more damage-tolerant is an

effective way to increase community resilience. This, of course,

can only be achieved by building, prior to the event, institutional

relationships that will foster cooperation between the various public

and private players that would be involved in response, restoration,

and recovery.
A limitation of this work lies in some of the assumptions and

simplifications made. For example, the effect of delays due to bad

weather conditions and traffic blockages or the effect of limited
construction materials on the available number of resource units
was not considered. Although these omissions and simplifications
may influence the specific results presented in this paper, the frame-
work’s flexibility and extensibility permit it to address them in the
future through the addition of new simulators or the modification of
the existing simulators.
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