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Abstract

We describe time-dependent single-electron transport through quantum dots in the Coulomb

blockade regime. Coherent dynamics of a single charge qubit in a double quantum dot

is discussed with full one-qubit manipulation. Strength of decoherence is controlled with

the applied voltage, but uncontrolled decoherence arises from electron–phonon coupling and

background fluctuations. Then energy-relaxation dynamics is discussed for orbital and spin

degree of freedom in a quantum dot. The electron–phonon interaction and spin–orbit coupling

can be investigated as the dissipation problem. Finally, charge detection measurement is

presented for statistical analysis of single-electron tunnelling transitions and for a sensitive

qubit read-out device.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Time-dependent phenomena in nanostructures are of growing interest for understanding and

controlling their dynamic behaviour. One of the applications is quantum computing, in which

some kinds of information processing can be performed efficiently in a parallel fashion by

manipulating particles (qubits) in a programmable manner [1,2]. Various quantum algorithms

have been successfully demonstrated in some physical systems [3], and there has been progress

in integrating large number of qubits required for practical quantum computers, especially in

solid state systems [4–9]. Although the realization of a practical quantum computer may require

enormous research activity, quantum information research has already succeeded in the sense

that a common language is provided for communicating with interdisciplinary researchers.

Quantum dynamics can now be discussed in terms of quantum information theory, which indeed

facilitates discussions between physicists, chemists, mathematicians and quantum engineers.

Generally, any quantum process that changes an initial state (density operator) to a final

state can be described by a completely-positive trace-preserving mapping [1]. Knowledge of

the mapping suffices for defining a quantum information process. Identical mapping provides

the same process regardless of the microscopic origin of the interactions. Quantum computation

is based on an assembly of unitary operations, which can be decomposed into some fundamental

unitary operations on one- or two- qubit subsystems. Therefore, the problem can be reduced

to a few kinds of unitary operators. Actually, realistic operations are influenced and degraded

by the environment coupled to the qubit system, and thus the mapping becomes a non-unitary

quantum process [10]. Two important quantum processes that degrade the coherence of the

system are dissipation, in which the energy of the quantum system is exchanged with the

environment, and dephasing, in which the phase of the quantum system is randomized by

the environment. The former is often characterized by longitudinal relaxation time (T1), and

the latter by transverse relaxation time (T2). In addition, the measurement process can also

be considered a quantum process under coupling to the measurement apparatus. Quantum

computing requires a full set of quantum processes for initializing all qubits, performing one-

and two-qubit unitary operations, measuring each qubit state and avoiding errors from non-

unitary operations [11].

Quantum dynamics in nanometre-scale solid-state devices is attractive for controlling

some single quanta in a tailored structure with a programmable sequence of quantum processes.

Superconducting circuits with Josephson junctions have successfully demonstrated one and

two-qubit operations with a high degree of coherency [12,13]. The system can be well isolated

from the environment by designing device parameters and a proper pulse sequence. Another

system is the semiconductor quantum dot (QD), which provides artificial electronic states that

can be controlled with external voltages. Since atomic-like electronic states can be designed

and actually formed in a semiconductor device, QDs are often referred to as artificial atoms

[14–17]. High controllability of electronic states is useful for studying the dynamic behaviour

of artificial quantum systems as well as that of quantum computing systems. There are two

major choices of the qubit bases: the spin degree of freedom in a single QD and the charge

(orbital) degree of freedom in a double quantum dot (DQD). In this paper, we shall review some

research on spin and charge qubits in QDs in connection to quantum information processing

and physical phenomena underlying realistic devices.

1.1. Charge qubit in a DQD

A single-electron charge qubit can be defined in a DQD, in which one electron occupies

the ground state of one dot or the other [18]. There are two types of coupling between the
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two QDs: electrostatic coupling, which prevents two electrons occupying the same QD; and

tunnelling, which allows an electron to occupy two QDs [19]. This allows us to describe the

DQD with a simplified two-level system. One-qubit unitary operation has been demonstrated

with Larmor precession, as will be shown in section 2.3 [20,21]. Two-qubit unitary operation

can be designed with dipole coupling between neighbouring charge qubits (section 2.5) [22].

Controlled-NOT (CNOT) gate operation and entanglement state have been proposed and

discussed theoretically for different geometries of DQD arrays [23]. The charge state can

be read out with a sensitive charge detector, such as a single electron transistor (SET) or

a quantum point contact (PC) device, which will be discussed in section 4.3. A charge

qubit is advantageous for all-electric control with state-of-the-art high-speed electronics for

programmable pulse sequences. Actually, superconducting charge qubits have been used for

the successful demonstration of CNOT operation [24] as well as single-shot measurement [25].

Therefore, similar measurements are also expected for semiconductor QD systems.

However, decoherence is a serious problem as described in section 2.4. Most single-

electron devices suffer from background charge fluctuations, in which electron occupation

of impurities in the device is thermally activated [26]. Although the thermally activated

noise should decrease with decreasing temperature, the noise can also be excited during qubit

operation even at zero temperature [25]. Background charge fluctuation has 1/f frequency

dependence, and its low-frequency part randomizes the phase of the qubit (decoherence).

Echo techniques developed in magnetic spin resonance experiments are useful in recovering

the coherency of the system [12]. However, the high-frequency part of the fluctuation cannot be

safely neglected and gives rise to significant decoherence and dissipation [25]. Understanding

and eliminating the fluctuation will require much effort in device fabrication. Electron–phonon

interaction is another decoherence source important to semiconductor systems. Piezoelectric

coupling, which appears in polar materials such as GaAs, is dominant for low-energy

excitations and brings about super-Ohmic coupling to qubit systems [27, 28]. Actually,

resonant tunnelling current through a DQD has revealed a spectral function of electron–phonon

coupling [29].

1.2. Electron spin qubit

Electron spin is a natural two-level system and thus ideal for a qubit [30–32]. An electron

confined in a QD is a convenient way to handle individual electron spins. According to Loss and

DiVincenzo [31], unitary operation of a single spin can be performed by Rabi oscillation with

oscillating magnetic field at the electron spin resonance (ESR) condition. Arbitrary unitary

operation for one qubit can be designed using two kinds of ESR oscillations, for instance, with

a different phase of the oscillating field. Two-qubit operation can be performed by applying

voltage-controlled exchange interaction between electrons in neighbouring QDs [32]. The

two-electron wavefunction with the spin singlet and triplet configurations experiences different

Coulomb repulsion, resulting in energy splitting between the singlet and triplet states [33]. The

opening of this splitting for a short period can be used to swap the spin information of the

two-electron system (swap operation). The combination of the swap operation and one-qubit

operation generates an arbitrary unitary operation including CNOT gate and more complicated

operations.

Much experimental progress has been made in this direction. Zeeman splitting, which

determines the Larmor precession frequency, has been measured with spin-dependent transport

through the spin-up or spin-down branch of single-electron state in a QD [34, 35]. Such spin-

dependent tunnelling under large Zeeman splitting can be used to prepare an initial state in

the ground state. A spin-up electron (ground state for GaAs) can be selectively injected into
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a QD. One can also determine the spin state of a QD using spin-dependent tunnelling, in

which only a spin-down electron with higher energy is allowed to escape from the QD [36].

High-speed charge detection determines whether the electron has escaped or remains; thus

single-electron spin state can be determined (section 4.3). This single-shot read out technique

is quite important for the statistical analysis of the multiple-qubit system and essential for

studying correlation in an entanglement state.

In contrast to an electron in a vacuum, the electron g-factor largely deviates from 2 because

of spin–orbit coupling in a compound semiconductor (e.g. −0.44 for bulk GaAs) [37]. Despite

large spin–orbit coupling, electron spin in a QD is expected to have a relatively long relaxation

time [38, 39]. Actually, the dissipation time (T1) of an electron spin can be made longer than

1 ms, which is about 107 times longer than the typical spin precession time [36, 40, 41], as

discussed in section 3.3. However, decoherence time (T2) is strongly affected by the magnetic

field fluctuation caused by nuclear spin fluctuation. The ESR signal of conduction electrons in

GaAs shows significant broadening and hysteresis due to hyperfine coupling to the nuclear spins

of the host material, implying T2 of about 10 ns as estimated from the width of the ESR peak.

Recent spin-dependent transport experiments indicate that the nuclear spin fluctuation gives rise

to a fluctuation in the local magnetic field, resulting in a short dephasing time of about 10 ns [42].

For coherent control of an electron spin qubit, ESR has been demonstrated for an

isolated electron trapped in a defect in silicon [43]. This technique could be applied for

one-qubit manipulation. However, ESR Rabi oscillation would remain relatively slow when

the experimentally available magnetic field is considered. Other techniques, such as the

voltage-controlled spin–orbit coupling effect, can be very efficient for spin manipulation

in semiconductors [44]. Two-electron exchange splitting for two-qubit operation has been

extensively studied in DQDs. In contrast to the relatively large exchange energy in a single

QD [45], the exchange spitting of spatially separated electrons in a DQD can be too small

to resolve in the conventional transport measurement [33, 46]. Extremely small exchange

splitting can be measured with the aid of hyperfine coupling to nuclei. Recently, coherent

oscillations between spin singlet and triplet states have been successfully demonstrated with

voltage-controlled exchange splitting [47]. Significant decoherence from the nuclear spin

fluctuation can be removed by using an echo technique to cancel the low-frequency part of the

fluctuations. Nevertheless, for the control of individual spins, controlling nuclear spins may

be required in order to improve the spin relaxation time. The nuclear spin fluctuation can be

minimized at full nuclear-spin polarization. It should be noted that hyperfine coupling may be

useful in a positive way in that the electron spin information can be transferred to nuclear spin

information, as theoretically predicted in [48].

1.3. Entanglement state

In addition to these standard approaches to quantum computing, there are various techniques

that are particularly important for quantum information science. For instance, successful

generation of an entangled photon pair relies on a non-linear optical process that generates

two visible photons from an ultraviolet photon [2]. Each photon of an entangled pair can be

analysed with a polarizing beam splitter and photon detectors. The coincidence statistics of

photon detection at various angles indicates a violation of Bell’s inequality, which tells us the

quantum mechanical nature of a non-local photon pair. The generation of entangled states can

be used in various kinds of quantum communication devices, like quantum teleportations and

quantum repeaters.

How can we perform such experiments for electrons in QDs? We have to develop an

electronic version of each optical component, such as an entanglement generator, polarizing

beam splitter/analyser and photon counting device. Various techniques for ballistic electron
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optics have been developed since the 1990s. It is known that an electron can travel ballistically

for more than 100 µm in a high-mobility semiconductor heterostructure [49,50]. The electron

trajectory can be modulated locally by gate electrodes, and tuneable electron refraction in

an electron prism as well as controllable reflection for electron mirrors have actually been

demonstrated [51]. Electron transport also shows interferometric effects, like the Aharonov–

Bohm effect and the Al’tshuler–Aronov–Spivak effect in a ring geometry [52–54]. It has

been demonstrated that interference patterns in a double-slit interferometer are degraded by

detecting which path (slit) an electron transports through, as quantum mechanics predicts [55].

Furthermore, the two-electron collision noise in an electron beam splitter indicates anti-

bunching characteristics of Fermionic symmetry [56]. When the spin degree of freedom

is considered, bunching (anti-bunching) is expected for spin singlet (triplet) correlation. These

measurements have motivated further studies on electron flying qubits in semiconductors. The

charge detection measurement described in section 4 may be useful for developing an electron

counting device.

Some theoretical studies have proposed generation and detection schemes for

entanglement spin pair in mesoscopic electron transport [57]. Bell-state measurement can be

performed with electron interferometers, beam splitters and local spin rotations. The selection

rule in the relaxation process may be useful for selecting one of the entanglement states as

described in section 3.4. In addition, it has been theoretically predicted that the single-charge

measurement is essential for the exponential speedup of quantum computation with electron

flying qubits [58].

These quantum information techniques with electron charge and spin can be developed

by understanding fundamental electron dynamics in quantum dots. In this paper, we describe

some recent progress in time-dependent single-electron transport through quantum dots. In

section 2, coherent dynamics of a single charge qubit in a DQD is described. Full one-

qubit manipulation with controlled decoherence is demonstrated. Energy relaxation dynamics

is discussed in section 3. The electron–phonon interaction and spin–orbit coupling can be

investigated as the dissipation problem in QDs. A possible scheme for generating the spin

entanglement state is also described. Finally, charge detection measurement is presented in

section 4. Statistical analysis of single electron tunnelling transitions is discussed with possible

applications for electron counting and a sensitive qubit read-out device.

2. Charge qubit in a DQD

2.1. DC transport characteristics of a DQD

The transport properties of a semiconductor DQD have been studied extensively (for reviews,

see [14, 59, 60]). The DQD considered in this section consists of two lateral QDs, which are

coupled to each other through a tunnel barrier. Each QD is also connected to an electron

reservoir via a tunnel junction, as shown by the equivalent circuit in figure 1(a) and the

energy diagram in figure 1(b). Each tunnel barrier has a small coupling capacitance as well as

tunnelling coupling, and single-electron transport through the DQD can be measured. Here, we

denote a tunnel coupling between localized states in the two dots as Tc and tunnelling rates for

the left and right tunnel barriers as ŴL and ŴR, respectively. In addition, the DQD is connected

to gate voltages Vl and Vr via capacitors Cl and Cr, respectively, so that the local electrostatic

potential of each dot can be controlled independently. The difference of the electrochemical

potentials of the two dots is expressed as ε = εL − εR. The energy difference between the

electrochemical potentials µL and µR of the left and right reservoirs corresponds to the applied

source–drain voltage Vsd.
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Figure 1. (a) Electric circuit model of a DQD containing m and n electrons in the left and right

dot, respectively. The two QDs are coupled to each other via a tunnel junction, and each dot is

connected to an electron reservoir via a tunnel junction. The electrostatic potential of the left (right)

quantum dot is controlled by the gate voltage Vl (Vr) through the capacitance Cl (Cr). (b) Energy

diagram of a double quantum dot. Tc is a tunnel coupling between the two quantum dots. ŴL and

ŴR are tunnelling rates for the left and right tunnel barriers. The difference of the electrochemical

potentials between the left (µL) and right (µR) reservoirs corresponds to the source–drain voltage

eVsd . The relative position of the electrochemical potential of each quantum dot can be controlled

by the gate voltage Vl (Vr). ε is the difference in the electrochemical potentials between the two

quantum dots. (c) SEM image of a double quantum dot structure.

A DQD can be routinely fabricated using various techniques. High-quality QDs are

often fabricated from a two-dimensional electron gas in a GaAs/AlGaAs modulation-doped

heterostructure using standard semiconductor fabrication processes, such as electron beam

lithography, dry etching and gate metallization [29,61,62]. As shown in the scanning electron

micrograph of figure 1(c), a narrow conductive channel is formed between the upper and lower

etched grooves (dark regions). Three tunnelling barriers are formed by applying negative

voltages to the gate electrodes (the bright vertical lines), leaving the left and right QDs (white

circles) between the source and drain electrodes. A very simple system where just one electron

occupies a DQD can also be made by optimizing the device structure [36].

In these devices, all DQD parameters (Tc, ŴL, ŴR, ε and eVsd) can be controlled with

external voltages almost independently. The total energy of the system is given by its enthalpy,

which is the electrostatic charging energy in all capacitors subtracted by the work that has been

done by the voltage sources [59]. The stable charge configuration (m, n) with m electrons

in the left QD and n electrons in the right QD is determined to minimize the total energy.

A schematic stability diagram of a DQD is depicted in the Vl–Vr plane in figure 2(a). When

the tunnelling coupling (Tc) is negligibly small, the boundaries of the stable charge states

appear as a honeycomb pattern, a part of which is shown by dashed lines. The triple points, E

and H, of three charge states are separated by a length corresponding to the inter-dot Coulomb

energy U . Electrons pass through three tunnel barriers sequentially in the vicinity of triple

points. For example, transport at E is illustrated in figure 2(b), where an electron travels from

the left to the right lead. On the other hand, the tunnelling process at H can be viewed as hole

transport, as the unoccupied state (hole) moves from the right to the left (not shown in the

diagram).

When the tunnelling coupling (Tc) is significantly large, the chemical energy of the DQD

has to be considered in describing the stable charge configuration. The charging diagram
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Figure 2. (a) Schematic stability diagram of a DQD in a linear transport regime. (m, n) represents

a stable charge state of the DQD. U and Tc correspond to the inter-dot Coulomb energy and the

tunnel coupling, respectively. (b) Sequential electron transport for forward direction at the triple

point E. (c) Coherent electron transport through the bonding state at B.

deviates from the honeycomb pattern as shown by solid lines in figure 2(a). The minimum

distance between A and B is increased by the coupling energy � ≡ 2h̄Tc from its original value

U . The ground state on the line between A and B is now a bonding state (superposition) of the

(0, 1) and (1, 0) charge states. In this case, linear transport is allowed only on the solid lines

close to points A and B. Coherent electron transport through the bonding state is a suitable

picture, as shown in figure 2(c).

When a large source–drain bias voltage Vsd is applied, the conductive regions change

from triple points to triangular shaped regions as shown in figure 3(a), where the sequential

tunnelling regime is considered for simplicity. The electron-like transport around the triple

point E is allowed when the electrochemical potential of the left QD is below that of the left

reservoir (εL < µL bounded on the lines, l1), that of the right QD below that of the left one

(εR < εL bounded on the lines, lres), and that of the right reservoir below that of the right

QD (εR < ER bounded on the lines, l4). These conditions determine the lower-left triangle in

figure 3(a). Similarly, hole-like transport is allowed in the upper-right triangle. These triangles

for electron- and hole-transport are separated by the inter-dot Coulomb energy U .

Since the electron energy is quantized in a QD, transport between the dots is allowed

basically only for resonant condition (ε = εL − εR = 0), which is indicated by the thick line

in figure 3(a). The current peak profile is expected to be the Lorentzian form

I (ε) =
e

h̄

ŴR|Tc|2

ε2 + Ŵ2
R/4 + |Tc|2(1 + ŴR/ŴL)

, (1)

for electron flow from the left to the right. Figure 3(b) shows a typical resonant tunnelling

peak fitted with equation (1) [63, 64]. The current spectrum often involves inelastic current

at the off-resonant condition as seen on the positive ε side of the traces in figure 3(b) and

the corresponding grey region in figure 3(a). This inelastic current is attributed to electron–

phonon coupling, in which the electron can tunnel from a higher-energy state in one dot to

a lower-energy state in the other dot by spontaneously emitting an acoustic phonon. This

electron–phonon coupling will be discussed with the decoherence problem in section 2.4 and

momentum relaxation in section 3.2.
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Figure 3. (a) A schematic stability diagram of a double quantum dot at a finite bias voltage Vsd .

Resonant tunnelling current can flow through the device along the bottom thick line of the triangles

where the chemical potentials of the two quantum dots are aligned. Inelastic tunnelling current

flows inside the grey triangles. (b) Typical resonant current. The gate voltages are converted to the

energy difference ε. Dashed lines are Lorentzian curves fitted to the data.

Figure 4. (a) Bloch sphere representation of a state of the two-level system. (b) Larmor precession

of a pseudospin about the effective magnetic field parallel to the z-axis (� = 0). (c) Larmor

precession of a pseudospin about the general effective magnetic field (� �= 0).

2.2. Dynamics of a charge qubit in a DQD

Here, we describe idealized dynamics of a two-level system composed of a single energy level

in each dot. The Hamiltonian of a closed system, i.e. an isolated DQD without any reservoirs

can be written in the form

HTLS = εL|L〉〈L| + εR|R〉〈R| + Tc(|L〉〈R| + |R〉〈L|), (2)

=
1

2
εσz +

1

2
�σx + const, (3)

with the same notation defined in figure 1(b). σx and σz are the x and z components of the Pauli

matrices, respectively, on the basis of localized states |L〉 and |R〉 in the DQD. This can be

seen as a spin–1/2 system subjected to an external magnetic field B = (�, 0, ε): H = 1
2
σ · B.

Therefore, the mathematical structure of the DQD is the same as that of a spin–1/2 system.

An arbitrary state |ψ〉 in the two-dimensional (one-qubit) Hilbert space can be expressed as

|ψ〉 = cos
θ

2
|L〉 + eiφ sin

θ

2
|R〉, (4)

where the coupling angle θ and the phase φ can be identified by a point on a sphere, known as

Bloch-sphere representation, as shown in figure 4(a). The North and South poles correspond

to |L〉 and |R〉, respectively.
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Figure 5. (a) Schematic diagram of a two-state system. Dotted lines are the energy levels for

|L〉 and |R〉. Solid lines are the energy levels for the bonding (|ψB〉) and antibonding (|ψA〉)
states. With a finite coupling � between |L〉 and |R〉, the energy levels of the two states |ψB〉 and

|ψA〉 are anticrossed. The gap energy of the anticrossing corresponds to the coupling energy, �.

(b) Photon-assisted tunnelling current spectra. Each line is offset such that the right vertical axis

gives the applied frequency. The diagrams show photon-assisted tunnelling between the two QDs.

The eigenstates for the Hamiltonian of equation 2 are the bonding (|ψB〉) and anti-bonding

(|ψAB〉) states:

|ψAB〉 = cos

(

β

2

)

|L〉 + sin

(

β

2

)

|R〉, (5)

|ψB〉 = sin

(

β

2

)

|L〉 − cos

(

β

2

)

|R〉, (6)

where β = arctan(�/ε) is the coupling angle. Any state on the longitudinal circle at φ = 0

can be prepared as eigenstates of the system by adjusting β. The corresponding eigenenergies,

± 1
2
h̄	 = ± 1

2

√
ε2 + �2, show anti-crossing behaviour, as shown in figure 5(a). With increasing

ε (|ε| ≫ �), the eigenstates approach the base ket vectors |L〉 and |R〉.
This energy splitting has been clearly observed in photon-assisted tunnelling transport

measurements on a strongly coupled DQD [65]. Microwave voltage of frequency f applied

to a gate electrode modulates the energy bias ε = ε0 + ε1 cos(2πf t), which allows transition

between the bonding and the anti-bonding state by microwave absorption or emission at the

resonant condition, 	 = 2πf [19, 66]. This transition is measured with a current from

the source to the drain electrode weakly coupled to the DQD. As shown in figure 5(b), the

obtained current spectra exhibit a hyperbolic dependence of peak position, which clearly

indicates the formation of the bonding and anti-bonding states. It should be noted that

microwave spectroscopy probes the coherent coupling only when the microwave excitation

causes weak perturbation (ε1 ≪ hf ). When an intense microwave field is applied, the system

is described by quasi-eigenstates (Floquet state), where an electron and photon are strongly

coupled [67]. The resonant condition changes with the microwave amplitude approximately

as 	J0(ε1/hf ) = 2πf , where Jn(x) is the nth order Bessel function of the first kind. Such

dynamic coupling between an electron and photons has actually been demonstrated using

microwave spectroscopy [68].
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Now, we turn to the coherent dynamics of a DQD in the absence of a microwave field.

Suppose non-stationary superposition of eigenstates are prepared by some means, for instance,

by changing the system Hamiltonian instantly from one to another, which do not commute

with each other. Non-stationary superposition shows Larmor precession about the fictitious

magnetic field B under the time-independent Hamiltonian. The time-evolution operator is

given by

U(t) = exp

(

−iHt

h̄

)

= exp

(

−iσ · Bt

2h̄

)

. (7)

The motion in the Bloch sphere is schematically shown in figure 4(b) for the � = 0 case

and figure 4(c) for the general case of ε ∼ � > 0. Therefore, any state on the Bloch sphere

can be prepared by appropriate Larmor precession. Arbitrary one-qubit operation can be

designed by combining two Larmor precessions in, for instance, the Euler angle decomposition,

Uy(γ )Uz(β)Uy(α), with precession operator Uy/z along the y/z axis.

In contrast, practical DQDs are often coupled to some electrodes. Consider the situation

where both eigenstates are in the source–drain transport window (µL > ± 1
2
h̄	 > µR) under a

large energy bias, µL −µR = eVsd ≫ kBT . We neglect double occupancy where two electrons

occupy the DQD. An electron can enter the DQD only from the left electrode at rate ŴL and

can escape only to the right lead at rate ŴR. These tunnelling processes induce decoherence

to the charge qubit in the DQD. The system can be described by a density matrix, ρ, which

can be obtained by considering coupling to the electronic states in the electrodes. Under the

Born–Markov approximation, master equations for the reduced density matrix read

d

dt
ρLL = − i

�

2
(ρRL − ρLR) + ŴL(1 − ρLL − ρRR), (8)

d

dt
ρRR = i

�

2
(ρRL − ρLR) − ŴRρRR, (9)

d

dt
ρLR = − iερLR − i

�

2
(ρRR − ρLL) −

ŴR

2
ρLR, (10)

d

dt
ρRL = iερRL + i

�

2
(ρRR − ρLL) −

ŴR

2
ρRL. (11)

Note that the tunnelling rates ŴL and ŴR do not enter the equations in a symmetric way.

This is because the escaping process (ŴR) kills the coherence of the system (the last term

in equations (10) and (11)) but the incoming process (ŴL) just creates an electron in the

left dot (the last term in equation (8)). Figure 6(b) shows the time evolution of the density

matrix element, ρLL, calculated for the initial state, ρ(t = 0) = |L〉〈L|. As ŴR increases,

the coherent oscillation degrades more quickly and finally disappears. The total number of

electrons escaping to the right electrode is obtained by

nt(T ) =
∫ T

0

ρRR(t)ŴR dt, (12)

and the time-averaged current It = ent(T )/T corresponds to the measurable current through

the device. This current It depends on the electron occupation in the right dot, ρRR(t = 0),

providing projective measurement of the charge qubit.

2.3. Coherent control of charge qubit in a DQD

A DQD device may contain a few tens of electrons basically forming many-body states. In a

simplified picture, even if the dots contain more than one electron, one excess electron added

to the DQD occupies either the right or the left dot. Each charge state involves a ground state
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Figure 6. (a) Schematic energy diagram in the transport regime of a DQD. (b) Time evolution of

density matrix element, ρLL , under initial condition, ρLL = |L〉〈L|. Ŵ = ŴL = ŴR .

and excited states corresponding to the orbital degree of freedom in each dot. Therefore, the

two-level system (qubit) given by equation (2) is a good approximation when only one well-

defined state from each dot is considered as |L〉 or |R〉. This can be justified under a condition

where excitation energies, like the thermal energy (2.5 µeV at 30 mK for the measurement

described below), are much smaller than the characteristic energies of the dot, i.e. the addition

energy (2–3 meV for typical DQD), the single-particle excitation energy (50–200 µeV), and

the electrostatic coupling energy (about 100 µeV).

To observe the Larmor precession of charge qubit in a DQD, we introduce a rectangular

voltage pulse to the drain electrode, as shown in figure 7(a). The fast voltage pulse switches the

source–drain bias voltage, Vsd, between VH in the transport regime and VL (∼0) in the Coulomb

blockade regime, as shown in figure 7(b). At the same time, it also switches the energy bias ε

abruptly between ε0 (for VH) and ε1 (for VL), since the DQD is also capacitively coupled to the

electrodes. This simple rectangular pulse is sufficient for performing initialization, coherent

manipulation and read-out processes sequentially.

When the DQD is in the Coulomb blockade region (Vsd = VL ∼ 0), tunnelling processes

between the DQD and the electrodes are energetically forbidden, as shown in the energy

diagram of figure 7 (d). Therefore, to the lowest approximation, the coupling to the electrode

can be ignored and the closed two-level system discussed in section 2.2 can be applied. Other

decoherence will be discussed in section 2.4. In contrast, when a large source–drain voltage

(Vsd = VH) is applied, single-electron tunnelling current flows through a DQD and the allowed

tunnelling processes induce significant decoherence to the charge qubit. The corresponding

energy diagrams at a large positive voltage are shown in figures 7(c) and (e). In this case, an

electron in the right dot may escape to the right electrode, while another electron may enter

the left dot from the left lead. Under the condition, ŴL, ŴR ≫ Tc, the stationary solution of the

master equation (equations (8)–(11)) becomes a density matrix with element ρLL ∼ 1, which

describes an electron confined in the left dot [21].

Therefore, the decoherence of the qubit can be switched on (in the transport regime) and

off (in the Coulomb blockade regime) by changing the voltage. Our approach is to first prepare

a confined state |L〉 in the transport regime and switch the system into the Coulomb blockade

regime by applying a rectangular voltage pulse of an adjustable length, tp. Since |L〉 is no

longer an eigenstate in the Coulomb blockade regime, coherent time evolution is expected.

After the pulse, the DQD is again set in the transport regime, so that the electron, if it occupies

the right dot, contributes to the current. With this scheme, we expect one electron tunnelling per
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Figure 7. (a) Measurement setup and a SEM image of a DQD sample. A pulse generator is

connected to the drain electrode through a coaxial cable. (b) Typical pulse waveform used for

coherent control of the qubit. (c)–(e) Schematic energy diagrams of the DQD during initialization

(c), manipulation (d) and measurement (e).

pulse at most. By repeating the pulse with repetition frequency, frep = 100 MHz, a reasonable

pumping current, Ip = eρRR(tp)frep, is obtained, where ρRR(tp) is the probability of finding an

electron in the right dot after the pulse length tp, and this provides a projective measurement.

In practice, inelastic transition contributes to an additional current during the initialization

and measurement period (when Vsd = VH). In order to reduce the effect of inelastic current

on the measurement, we employ a lock-in technique to measure modulation current, Imod, by

turning on and off the pulse sequence with low frequency (100 Hz). Then,

Imod = [eρRR(tp) − tpIinel]frep (13)

should be measured.

Full one-qubit operation can be obtained by combining a rotation gate for controlling θ

and a phase-shift gate for φ in equation (4). The rotation gate, which changes the occupation

of the electron, can be performed with finite � at ε = 0, where the state rotates about the x-

axis as shown in the inset of figure 8(a). The observed pulse-modulated current Imod (circles)

in this situation clearly shows an oscillating behaviour as a function of tp and is fitted well

with an exponentially damping sinusoidal function (solid line in figure 8(a)). From the fitting,

the oscillation frequency in this particular case is estimated to be fosc = 2.3 GHz. The

dashed line shows the inelastic current contribution, the second term of equation (13). The

oscillation frequency can also be controlled by tuning the centre gate voltage, VC, which mainly

changes the central barrier height and thus the coupling energy, �. As shown in figure 8(b),

the oscillation frequency is an exponential function of VC, as expected from the tunnelling

probability for realistic potential.

The amplitude of the oscillation is approximately half of the ideal case of efrep = 16 pA.

This degradation might have arisen from the population of other excited states during

initialization. This could happen when the applied source–drain voltage (VH) is higher than the

single particle excitation energy. Or non-ideal pulse waveform (finite rising time or jittering)
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Figure 8. (a) Pulse-modulated current, Imod , as a function of pulse length, tp. The dots are the

experimental data. The solid line is a fitting function. The dotted line is the offset of the oscillation.

The inset shows the schematic trajectory on the Bloch sphere. (b) Dependence of the coherent

oscillation frequency on the central gate voltage. The line is an exponential function of the center

gate voltage, VC. Note that the vertical axis is on a logarithmic scale.

could have influenced the rotation gate operation. The decay of the oscillation is attributed to

decoherence, which is discussed in the next subsection.

An ideal phase-shift gate can be realized with finite ε at � = 0, but this cannot be achieved

in the experiment since � is always positive. Therefore, we approximate the phase-shift gate

by applying ε ≫ �, where the state precesses more or less about the z-axis. To demonstrate the

phase-shift operation that does not change electron population, we apply the pulse waveform

shown in figure 9(a). A sharp tipping pulse of length tt, which works as phase shift gate, is

added at the center of the square pulse for the π -rotation gate (NOT gate) [20]. As a result,

the first π /2 pulse rotates the qubit state from |L〉 to a superposition state, (1/
√

2)(|L〉 − i|R〉)
on the equator, as shown by arrow (i) in the inset of figure 9(b). The sharp tipping pulse

induces a phase difference φ, resulting in a state (1/
√

2)(|L〉 − i exp(iφ)|R〉), as shown by

arrow (ii). Then, the final state after the second π /2 pulse becomes sin(φ/2)|L〉+ cos(φ/2)|R〉
(arrow (iii)), whose probability for |R〉, cos2(φ/2), should be measured as the corresponding

pulse induced current, Imod. The phase shift φ is approximately given by the area of the pulse

(hatched region) as φ ≃ εttt/h̄. Actually, we change the height of the tipping pulse, εt, while

keeping the pulse width constant at tt ∼ 55 ps. Figure 9(b) shows Imod obtained in this way, and

the obtained oscillation indicates the phase-shift operation on the qubit. Since the oscillation

is obtained with a fixed pulse width, the amplitude decay at higher Vt implies an increased

decoherence rate at large Vsd.

2.4. Decoherence mechanisms

One of the most important quality factors for qubits is the phase coherence time, T2, which is

the time a qubit remains in a superposition state. In spite of the successful manipulation of

a single-charge qubit, the qubit is actually influenced by uncontrolled decoherence, which is

present even in the Coulomb blockade regime. Some possible decoherence mechanisms are

summarized here.

First, background charge noise (1/f noise) in the sample and electrical noise in the gate

voltages cause fluctuation of the qubit parameters ε and Tc, which gives rise to decoherence of

the system [18,69,70]. The amplitude of low-frequency fluctuation in ε is estimated to be about

1.6 µeV, which is obtained from low-frequency noise in the single-electron current, or 3 µeV,
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Figure 9. (a) Pulse shape used for phase-shift gate operation. A shape tipping pulse (hatched

region) is added at the middle of the π pulse. (b) Dependence of the pulse-induced current Imod on

the tipping-pulse height Vt , demonstrating the phase-shift operation. The insets show schematic

trajectories in the Bloch sphere. The left and right inset corresponds to phase shifts φ = π and 2π ,

respectively.

which is estimated from the minimum line width of an elastic current peak at the weak coupling

limit [29]. Low-frequency fluctuation in � is relatively small and estimated to be about 0.1 µeV

at h̄Tc = 10 µeV, assuming local potential fluctuation in the device [71]. Actually, the ε

fluctuation explains the decoherence rate observed at the off-resonant condition (|ε| � h̄Tc).

The 1/f charge fluctuations are usually considered to be an ensemble of bistable fluctuators,

like electron traps, each of which produces a Lorentzian frequency spectrum [26]. The

microscopic origin of the charge fluctuators is not well understood, and their magnitude differs

from sample to sample, even when samples are fabricated in the same batch. Understanding

the fluctuators is a practical and important issue in developing quantum information devices.

A recent noise measurement has indicated that the fluctuation in ε can be reduced by decreasing

the temperature as suggested by a simple phenomenological model where the activation energy

of the traps is uniformly distributed in the energy range of interest [71]. Cooling samples very

slowly with positive gate voltage is sometimes effective in reducing charge fluctuation at low

temperature [72].

In contrast, the decoherence at the resonant condition (ε = 0) is dominated by other

mechanisms. Although the first-order tunnelling processes are forbidden in the Coulomb

blockade regime, higher-order tunnelling, namely co-tunnelling, processes can take place and

decohere the system [73]. Actually, the co-tunnelling rate estimated from the tunnelling rates

is close to the observed decoherence rate and may thus be a dominant mechanism in the

present experiment [18]. However, since we can reduce the co-tunnelling effect by making

the tunnelling barrier less transparent, we should be able to eventually eliminate it in future

measurements.

The electron–phonon interaction is an intrinsic decoherence mechanism in semiconductor

QDs. Spontaneous emission of an acoustic phonon persists even at zero temperature and causes

an inelastic transition between the two states [29]. Actually, the negative background slope

shown by the dashed line in figure 8(a) corresponds to the inelastic tunnelling transition at

the off-resonant condition (ε = ε0) during the initialization/measurement sequence. The

energy relaxation time in this case is about 10 ns, but becomes shorter at the resonant condition

(ε = 0). The phonon emission rate at the resonant condition cannot be directly estimated from
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Figure 10. (a) Schematic diagram of two charge qubits (Q1 and Q2) in a parallel configuration. A

round square represents a charge qubit with two QDs (◦), one of which accommodates an electron

(•). (b) Two charge qubits in a perpendicular configuration. (c) Energy diagram of a parrarel

two-qubit system. Dashed lines are obtained under zero tunnelling coupling (�1 = �2 = 0); solid

lines are for finite coupling (�1 = �2 = 0.3δ).

this data, but it may be comparable to the observed decoherence rate. It should be noted that

a measurement from a single vertical QD has also shown a phonon emission rate of the order

of 10 ns (described in section 3.2) [41]. Strong electron–phonon coupling is related to the

fact that the corresponding phonon wavelength is comparable to the size of the QD [27, 29].

In this sense, electron–phonon coupling may be reduced by using much smaller or much

larger QD structures. In addition, polar semiconductors, such as GaAs, exhibit a piezoelectric

type of electron–phonon coupling, which is significant for low-energy excitations (<0.1 meV

for GaAs) [74]. Non-polar semiconductors, such as Si or carbon-based molecules, may be

preferable for reducing the phonon contribution to the decoherence.

Other mechanisms, such as the electromagnetic environment, have to be considered to fully

understand the decoherence. It should be noted that the quality of the coherent oscillation has

actually been improved by reducing high-frequency noise from the gate voltages and a coaxial

cable. We expect that further studies will exploit ways to reduce some decoherence effects.

2.5. Towards two-qubit manipulation

The CNOT gate is a nontrivial two-qubit gate, which flips the target qubit only when the control

qubit is in logical one state. The experimental implementation of the CNOT gate for a charge

qubit was motivated by Barenco et al [22], and some realistic device geometries have been

proposed [23, 75]. For two qubits arranged parallel to each other as in figure 10(a), the state

of the control qubit Q1 modifies the energy bias, ε2, of the target qubit, Q2, via the Coulomb

interaction. The coupling term, δσ1zσ2z, appears in the system Hamiltonian, where δ is the

coupling energy and σnz is the z-component of the Pauli matrix of the nth qubit. When the two

qubits are arranged perpendicularly as in figure 10(b), the coupling term is given by δ′σ1zσ2x ,

where the state of the control qubit, Q1, modifies the tunnelling coupling of the target qubit, Q2.

Realistic devices may contain both terms in the Hamiltonian, but it is instructive to consider

only one term in order to understand how the CNOT gate can be implemented. Figure 10(c)

shows an energy diagram of two parallel charge qubits with Hamiltonian

H =
1

2
(ε1σ1z + �2σ1x + ε2σ2z + �2σ2x + δσ1zσ2z) . (14)
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Figure 11. (a) Schematic diagram of an asymmetric DQD. (b) Energy diagram of the three-level

system formed in asymmetric DQD. (c) Coherent oscillations taken at different resonant conditions

(i) between the ground state of the left dot to the first excited state of the right dot and (ii) between

the ground state of the left dot to the second excited state of the right dot.

Here, tunnelling coupling is assumed to be identical for the two qubits (�1 = �2 = �), and

eigenenergies are plotted for the energies normalized to the coupling energy δ. Anticrossing

behaviour between different logical qubit states can be controlled by tuning the energy bias, ε1

and ε2, of the two qubits. When the system is adjusted at the anticrossing point of |10〉 and |11〉
states (shown by the arrow), coherent oscillation between these states is expected. The half

period of the oscillation swaps states |10〉 and |11〉, providing a controlled-rotation (CROT)

gate. A CNOT gate can also be realized by combining additional one-qubit operations.

However, the coupling term is always present in the geometries shown in figures 10(a) and

(b). Therefore, the one-qubit operation in the two-qubit system is constrained to combine a

couple of pulses for decoupling two qubits. For instance, combination of coherent oscillations

between |10〉 and |11〉 states and between |00〉 and |01〉 states can be used for a one-qubit

rotation gate for the second qubit. Although constant coupling is not an intrinsic problem for

the quantum computing scheme, electrical tuning of the coupling may be useful for performing

one- and two-qubit operations in more complicated systems.

Tuneable coupling can be achieved by introducing an excited state into one of the two

QDs. Consider an asymmetric DQD consisting of a small QD with its ground state |0〉 and

a larger QD with its ground state |1〉 and the first excited state |2〉, as shown in figures 11(a)

and (b). There are tunnelling couplings, �01, between |0〉 and |1〉 and �02 between |0〉 and

|2〉, providing a three-level system. Such a three-level system is available in a realistic DQD

device [76]. Actually, coherent oscillations have been observed for two resonant tunnelling

conditions at slightly different gate voltages as shown in figure 11(c) [18]. The two oscillations

correspond to coupling �01 and �02 in the three-level system.

Then, we can use the coherent oscillation between |0〉 and |1〉 for a one-qubit manipulation

at the resonant condition where excitation to |2〉 is negligible. A superposition of |0〉 and |1〉 is

useful for constructing a CROT gate with a neighbouring qubit, as described above. π -rotation

at the other resonant condition exchanges probability amplitudes of |0〉 and |2〉, resulting in a

local superposition of |0〉 and |2〉 states. Since this local superposition occupies the right dot

only, its Coulomb interaction to the neighbouring qubit is almost independent of the qubit state.

Therefore, a three-level system in a DQD is of interest for tuneable coupling in an integrated

system.
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Figure 12. (a) Schematic diagram of the pulse measurement setup. (b) The pulse waveform for

the single-step pulse measurement. (c),(d) Schematic energy diagrams for the low-voltage and the

high-voltage states, respectively.

3. Relaxation dynamics in a QD

In this section, we discuss energy relaxation dynamics in quantum dots, which is related to the

T1 of qubit dynamics. After electrical pump–probe methods for measuring the relaxation time

are described, some important relaxation mechanisms of orbital- and spin-degree of freedom

in QDs are discussed based on some experiments.

3.1. Electrical pump–probe measurement

We start with single-step pulse measurement as schematically shown in figures 12(a) and (b)

where a rectangular-shaped voltage pulse, Vg(t), is applied to the gate electrode [77]. Consider

the relaxation process from a first excited state (ES) to the ground state (GS) of N0-electron

QD. First, the QD is set in the N = N0 −1 CB state when the gate voltage is in the low-voltage

state, Vg = Vl, as shown in figure 12(c). We also tune the two tunnel barriers such that the

tunnel rate through the left entrance barrier, ŴL, is much larger than that through the right exit

barrier, ŴR. After a sufficiently long time period, tl ≫ Ŵ−1
L , the QD is prepared in N = N0 −1

GS. In this situation, both N0-electron GS and ES of interest are above the chemical potential

of the two electrodes, µL and µR. Next, Vg is switched to Vh (high-voltage state) within a short

time, which should be comparable to or shorter than Ŵ−1
L . We adjust Vh such that only the ES

is located in the transport window between µL and µR, as shown in figure 12(d). Here, the

QD is in the N0-electron CB region. The applied voltage, eVsd = µR − µL, should be larger

than h̄ŴL to prevent the back-flow of the electron to the left electrode. Then, an electron can

enter the GS (ES) with a probability proportional to the rate, ŴL,g + ŴR,g (ŴL,e). If an electron

enters the ES, it can either tunnel out to the right electrode to give a net current, or relax to the

GS. When the barriers are highly asymmetric (ŴL ≫ ŴR), the electron can stay in the ES for a
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Figure 13. (a) Pulse waveform for the double-step pulse measurement. (b), (c), (d) Schematic

energy diagrams for the low-, high- and medium-voltage states, respectively.

relatively long time, ∼Ŵ−1
R , during which relaxation may take place. If the electron in the ES

tunnels out to the right electrode, another electron enters the ES or GS. However, this cycle is

terminated once the GS is occupied, either by relaxation from the ES or by direct tunnelling

from the electrodes.

The average number of tunnelling electrons per pulse, nt, is given as

nt = nmax[1 − exp(−Dth)] (15)

by solving rate equations [78,79]. Here, nmax is the maximum number of tunnelling electrons

obtained with sufficiently long th and tl, and D is the decay rate of the transient current. This

D gives the relaxation rate W of interest provided that ŴL � W � ŴR. One can determine

W from this relation. The pulse length dependence of nt shown in figure 16 is obtained in

this way.

If the bias is reversed (thicker emitter barrier), on the other hand, the decay rate is

insensitive to W , as given by D ∼ Ŵtot,g = ŴL,g + ŴR,g ∼ ŴL,g. This situation can be

used to determine the total tunnelling rate, Ŵtot,g. Another way to obtain Ŵtot,g is to vary tl with

th fixed at a long-enough value, th ≫ Ŵ−1
R , corresponding to the escaping process from the

GS to either electrode as shown in figure 12(c). In this case, the average number of tunnelling

electrons per pulse is given by

nt = nmax[1 − exp(−Ŵtot,gtl)], (16)

from which Ŵtot,g can be determined by fitting the data to this equation. Since an asymmetric

barrier is not required, this method can be used for various situations.

The above single-step pulse method is unable to determine the relaxation rate if W < ŴR,e

(long relaxation time), as in the case of the relaxation involving a spin flip. Such a case

requires an improved method involving the application of a double-step voltage pulse, where

Vg is switched between three voltages, Vl, Vh and Vm, as shown in figure 13(a).
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Figure 14. (a) Schematic diagram of a vertical QD together with the pulse measurement set-up.

(b) Scanning electron micrograph of the vertical dot device. (c) dIsd/dVg for N = 1 (first stripe)

and 2 (second stripe) measured with Vsd = 2.8 mV at temperature T ∼ 100 mK.

First, when Vg = Vl, the N = N0 GS and ES are above the chemical potential as shown

in figure 13(b). The GS and ES are emptied by maintaining this condition for a sufficiently

long time, tl (initialization). Next, by instantly changing Vg to Vh, both states are pulled down

below the electrochemical potential of the electrode as shown in figure 13(c). Now, an electron

enters either ES or GS (arrows). Once an electron enters the dot, it cannot leave the dot because

large energy is required in order to excite the electron to the electrode, nor can another electron

enter the dot (Coulomb blockade). This electron, if it populates the ES with a probability P , is

allowed to relax to the GS while the gate voltage is kept at Vh during the wait time th. Finally,

the pulse height is adjusted so that only the ES is within the transport window between µL

and µR (read-out). Then, the electron can contribute to the current only if it remains in the ES

after th. This read-out pulse width, tm, is made sufficiently longer than Ŵ−1
R . Actually, several

electrons [1/(1 − P)] flow during this time for the unrelaxed case. Therefore, the average

number of tunnelling electrons per pulse cycle, nt, follows an exponential decay,

nt =
P

1 − P
exp(−Wth), (17)

from which the relaxation rate W can be determined [41]. Thus, the double-step pulse scheme

clearly separates pumping and probing sequences and is applicable to a wide range of W ≪ ŴL.

The lower limit is practically determined by current sensitivity. Spin relaxation measurement

data shown in figure 17 are obtained with this technique.

3.2. Momentum relaxation

The QD devices discussed in section 2 are called ‘lateral’ dot device because current

flows laterally. There is another type of QD called a ‘vertical’ dot, which is shown in

figures 14(a) and (b). It is in the form of a submicron-sized circular mesa fabricated from

an AlGaAs/InGaAs/AlGaAs double barrier structure. Current flows vertically through the

mesa, and the electron number, N , in the dot formed in the InGaAs layer is changed using a
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Figure 15. (a) Energy difference between 1s and 2p states, ε1s–2p in the N = 1 QD. (b) Size of

the QD (a, lx and ly ) and the phonon wavelength, λ1s–2p, corresponding to the energy spacing. (c)

Decay time of the transient current for forward bias (•) and reverse bias (◦), and energy relaxation

times calculated from the piezoelectric potential (· · · · · ·), or the deformation potential (- - - -), and

both potentials (——).

gate electrode wrapped around the mesa. Electronic states (spin S and total angular momentum

M) and N can be unambiguously determined in a vertical QD owing to the well-defined lateral

confinement potential (approximately harmonic potential) and to a built-in tunnel rate via the

AlGaAs barriers [16]. The first few electrons occupy 1s (M = 0) and 2p (M = ±1) orbitals,

which have two-fold and four-fold degeneracy including spin, respectively. This results in a

‘shell structure’ in the Coulomb blockade oscillation characteristics, where large energy gaps

appear at N = 2 (N = 6) when the 1s (2p) orbital is fully occupied by electrons, just as in

real atoms.

Although the nominal dot shape is circular, a specific QD used for the relaxation

measurement has non-circular lateral confinement potential in the x–y plane with confinement

strength, h̄ωx = 2.5 meV and h̄ωy = 5.5 meV. Therefore, degeneracy of the two 2p states with

(M = ±1) is already lifted at B = 0. Despite this non-circularity, we still use the terms ‘1s’

and ‘2p’ to label states for convenience.

Figure 14(c) shows excitation spectra, dIsd/dVg, as a function of magnetic field with a

large source–drain bias, Vsd = 2.8 meV [17]. Positive peaks in the 1st (2nd) stripe correspond

to electron injection to ground and excited states of the N = 1 (N = 2) QD. GS and ES are

designated by arrows together with schematic electron configurations in the inset, in which

the lower (upper) horizontal bar represents the 1s (2p) orbital. Here, we are not able to

resolve small Zeeman splitting (∼0.1 meV at 5 T). The energy difference between the 1s and

2p states, ε1s–2p, estimated from the 1st stripe of the excitation spectra in figure 14(c) is plotted

in figure 15(a). The solid line shows a fitted theoretical calculation based on the asymmetric

parabolic confinement potential (confinement energies h̄ωx and h̄ωy) in the x–y plane [80].

The corresponding characteristic size of the QD in the x/y direction is given by

lx/y =
√

h̄/m∗(ω2
x/y + ω2

c/4)−1/4, (18)

where m∗ and h̄ωc are the effective mass and cyclotron energy, respectively. The magnetic

field dependence of these characteristic lengths is plotted in figure 15(b).

We apply the single-pulse measurement scheme to extract momentum relaxation time in

the N = 1 QD, which can be regarded as an artificial hydrogen atom. In this case, an electron
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Figure 16. Average number of tunnelling electrons per pulse, nfor , in the forward bias for different

magnetic fields.

relaxes from the 2p state to the 1s state, preserving the spin. The dot is coupled to the top

and bottom electrode with Ŵ−1
t ∼ 100 ns and Ŵ−1

b ∼ 3 ns, reflecting the built-in asymmetric

AlGaAs barriers. Figure 16 shows the average number of tunnelling electrons per pulse, nfor in

the forward bias for different magnetic fields, i.e. different ε1s–2p. Each data point is fitted with

equation (16) (solid line), from which the decay time, τfor, in the 3–10 ns range is estimated.

Although there is some scatter of data points, τfor decreases systematically with B as shown

by the solid circles in figure 15(c). We also show the decay time in reverse bias, τrev, by open

circles for comparison. The increase of τrev with B is consistent with the decrease of tunnelling

rate, Ŵtot, with B.

In this situation, with an energy difference of a few millielectronvolts and at low

temperature, a dominant momentum relaxation mechanism is the spontaneous emission of

an acoustic phonon [29]. The corresponding phonon wavelength is given by λ1s–2p =
hvphonon/ε1s–2p, where vphonon = 5100 ms−1 is the phonon velocity in GaAs. λ1s–2p is

comparable to or even smaller than the characteristic size of the QD as compared in figure 15(b).

The observed increase of the relaxation time with the decrease of λ1s–2p is in line with the

inefficient phonon emission rate known as phonon bottleneck effect [81, 82]. In figure 15(c),

we also plot calculated relaxation times based on Fermi’s golden rule for the piezoelectric

mechanism and deformation mechanism and for the sum of the two mechanisms [41, 83, 84].

The reasonable agreement with the experimental data in spite of the lack of fitting parameters

confirms that the momentum relaxation in the N = 1 QD occurs via emission of a phonon.

3.3. Spin relaxation

Next, we consider the spin relaxation process in an N = 2 QD, which mimics a helium

atom. At low magnetic field, the many-body GS is a spin singlet (S) with total spin, S = 0,

while the first ES is a triplet state (T) with S = 1, as schematically illustrated in the inset

of figure 14(c). Energy relaxation from the triplet ES to the singlet GS not only involves

momentum relaxation as in the N = 1 QD, but also spin relaxation. Therefore, some kind

of spin–flip mechanism is necessary for relaxation. Spin is generally considered to be a good

quantum number, which suggests that the spin–flip process occurs over a much longer time
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Figure 17. Relaxation time measurement for the triplet ES in the N = 2 QD. nt is the average

number of tunnelling electrons per pulse.

cotunnelling,

Figure 18. Spin relaxation time as a function of the high-state voltage of the double-step pulse.

scale compared with a simple phonon-emission process. Therefore, we use the double-step

pulse technique explained above. Figure 17 shows the average number of tunnelling electrons

per pulse, nt, as a function of wait time, th, in the high-voltage state of the double-step pulse. By

fitting the exponential curve (equation (17)) to the data, the spin relaxation time τ = 200 µs is

estimated. This is four to five orders of magnitude longer than the momentum relaxation time

observed for the N = 1 QD [85, 86]. Recently, relaxation times of longer than milli seconds

have been reported in QDs between Zeeman sublevels, as well as between a spin triplet and a

singlet state [34,36,40]. Electron spin is therefore considered to be a promising candidate for

a quantum bit.

Now, the question is: what is the spin relaxation mechanism? Figure 18 shows the observed

spin relaxation time as a function of the high state voltage, Vh. The energy required to excite

the N = 2 triplet ES to N = 1 GS, �1, increases with gate voltage, Vh, while the excitation
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Figure 19. (a) Evolution of the two Coulomb oscillation peaks under magnetic field showing a

spin-pair behaviour, taken at Vsd = 0.15 mV. Transition fields are denoted by triangles. (b) dI/dVL

at Vsd = 1.2 mV taken from the dashed rectangular region in (a).

energy to N = 3 GS, �3, decreases with increasing Vh, as shown in the subordinate scales

in figure 18. The observed spin relaxation time strongly depends on Vh, especially around

the small �1 regime. This implies a strong influence from electrodes other than the thermal

excitation effect, which predicts much sharper Vh dependence, as shown by the dashed line

in figure 18. Although the dot is kept at the N = 2 CB condition during the relaxation

stage, higher-order tunnelling, or co-tunnelling, is quite effective in causing an exchange of

electrons having opposite spins between the dot and the lead electrodes [87]. This results in

spin relaxation from the triplet ES to the singlet GS. According to the second-order perturbation

theory, the co-tunnelling rate, τ−1
cot , is approximately given by

τ−1
cot = �ST(h̄Ŵtot)

2(�−1
1 + �−1

3 )2/h, (19)

where Ŵtot = ŴL + ŴR is the total tunnelling rate and �ST the singlet–triplet energy difference

[41, 88]. The solid line in figure 18(a) shows τco calculated from equation (19) without any

fitting parameters (Ŵtot is obtained from a separate single-pulse measurement). The reasonable

agreement with the experimental data indicates that inelastic co-tunnelling is a dominant spin

relaxation mechanism in this experiment.

In a vertical QD, the tunnelling rate through the barriers is predetermined by the

semiconductor crystal growth. In a lateral QD, on the other hand, we have more freedom

in tuning the tunnelling rate with the gate voltages, which allows us to study spin dynamics in

a wider regime where different relaxation mechanisms compete. In a lateral QD similar to the

one shown in figure 1(c), tunnelling rates, ŴL and ŴR, can be changed by changing the gate

voltages, VL and VR. Although we cannot determine the exact number of electrons, we can

determine whether it is even or odd from the electron-addition spectrum. Figure 19(a) shows an

observed dc current, I , through the dot as a function of left gate voltage, VL, and magnetic field,

B. An overall pair-wise motion of the two stripes with B reflects spin degeneracy. The electron

orbitals in a few-electron QD can be classified by the Landau level (LL) index [89, 90]. The

lower stripe, corresponding to odd N , involves a level crossing (denoted by a solid triangle),

associated with two different LLs. As for the upper stripe with even N , the ground state is

mostly spin singlet. However, direct and exchange Coulomb interactions favour a spin triplet

GS via rearrangement of electrons between different LLs [45]. In our data, the triplet GS

is realized between the two open triangles. These spin states can also be observed in the

excitation spectrum of figure 19(b), where dI/dVL, with a large Vsd = 1.2 mV, is plotted as a

function of VL and B. Some ESs as well as the GS that fall within the source–drain transport
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Figure 20. (a) Log–log plot of τs as a function of Ŵtot for both the inter-LL and intra-LL cases.

The solid lines are fitted to the data. (b) The coefficient α for the co-tunnelling component as a

function of �ST. β is a ratio between the effective Ŵtot and the experimentally determined one.

window are observed. The spin relaxation denoted by the arrow involves an orbital change

between different LLs (inter-LL transition).

We performed double-step pulse measurement to obtain spin relaxation time, τs, and total

tunnelling rate, Ŵtot. By changing some gate voltages, we measured how τs changes with

Ŵtot in the range from 1×108 to 3×109 s−1, as shown in figure 20(a). The data points at

large Ŵtot are consistent with co-tunnelling theory, as shown by the dashed line t−1
cot = αŴ2

tot

(see equation (19)). The proportional factor α depends on �ST as shown in figure 20(b),

which is also consistent with the theory, as shown by the solid line. Therefore, spin relaxation

in the large Ŵtot regime can be well explained by the standard co-tunnelling theory. It is

seen in figure 20(a) that, when Ŵtot is reduced, τs increases and eventually saturates. In this

regime, the co-tunnelling process is well suppressed and intrinsic spin relaxation time, which is

independent of Ŵtot, can be investigated. Theoretically, spin–orbit interactions are predicted to

make the dominant contribution to spin relaxation in GaAs QD systems [39,91]. By assuming

this prediction, the spin–orbit relaxation time, τso, can be obtained by fitting the data with

(1/τso+1/τcot)
−1 as shown by the solid line in figure 20(a).

3.4. Spin–orbit coupling effect

Spin–orbit interaction in III–V semiconductors originates from the absence of crystal inversion

symmetry (the Dresselhaus effect), asymmetric confinement potential (the Rashba effect) and

interface or surface effects [37]. For a one-electron system in a QD, these spin–orbit interaction

couples a spin-up (down) state of one orbital to a spin-down (up) state of another orbital. When

spin–orbit coupling is considered between the two orbitals, say a and b with matrix element

�so = |〈ψa,↑|Hso|ψb,↓〉| = |〈ψa,↓|Hso|ψb,↑〉|, spin-up and spin-down components are mixed

and finite phonon emission probability is expected between Zeeman sublevels under a magnetic

field [77, 92]. This spin-mixing and electron–phonon coupling between Zeeman sublevels

give the B−5 dependence of the relaxation time, as shown by optical excitation/detection

measurement for self-organized QDs [39, 40].

In the case of a two-electron state, which can be approximated by the Slater determinant

of the one-electron orbitals, spin–orbit interaction gives selective mixing between different

spin states. The spin singlet state (|S〉) is coupled to two of the triplet sublevels (|T+〉 and

|T−〉) having SZ = ±1 but not to the other sublevel (|T0〉) having SZ = 0 [39, 93]. Therefore,

relaxation from the triplet to the singlet state should be governed by a selection rule in which
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Figure 21. (a) �ST dependence of the τs for the inter-LL relaxations. Data represented by open

symbols are obtained by fitting a single exponential function, while the solid circle represents the

fast component of the double exponential function. The dotted line is a guide for the eye. (b)

Allowed and forbidden transitions from the triplet sublevels to the singlet state.

|T0〉 state is still free from the spin–orbit relaxation mechanism as shown in figure 21(b).

This simple argument applies when the singlet-triplet energies are so close to each other that

coupling with other states is negligible.

Figure 21(a) shows the magnetic field dependence of τs measured in the small-Ŵtot regime

where spin–orbit interaction is a dominant spin relaxation mechanism. The data are actually

plotted against �ST. τs is almost constant in a wide �ST regime (except at a dip around

�ST ∼ 380 µeV) and tends to increase when �ST < 200 µeV, which might arise from the

phonon emission spectra in a QD as discussed in section 3.2. The sharp dip observed at

�ST ∼ 380 µeV is as narrow as about 20 µeV in �ST (∼ 10 mT in B). It may be related to

the level crossing at B ≃ 0.52 T (�ST ≃ 400 µeV), where the triplet state (T) crosses with

another state (X) as seen in figure 19(b). The state X can be identified as spin singlet, since

unresolved anti-crossing behaviour (<100 µeV) is observed between X and T [80, 94, 95].

This situation suggests that strong spin–orbit coupling around the crossing point enhances

the spin relaxation rate, as theoretically predicted in [92]. It should be noted that the

decay of the pulse-induced current shows a non-single exponential behaviour around the

dip as shown in figure 22(b), while single exponential decay is always observed at other

conditions, e.g. at �ST = 300 µeV shown in figure 22(a). The decay characteristic

in figure 22(b) can be expressed well by a double exponential function (the solid line),
2
3

exp(−th/τso) + 1
3

exp(−th/τcot) with a 2 : 1 ratio consistent with the spin–orbit selection

rule. Thus, the fast component with rate τso can be assigned to the relaxation from |T+〉 and

|T−〉 via spin–orbit coupling and the slow component to the relaxation from |T0〉 via remaining

co-tunnelling contribution, τcot.

Although the above observations agree well with the selection rule for spin–orbit coupling,

we cannot safely rule out other possibilities. Hyperfine coupling to nuclear spins might appear

at the level coincidence of different spin states [42, 96]. In this case, one of the triplet states

with finite Zeeman splitting can couple to the singlet state via flip–flop interaction, leading

to a 1 : 2 selectivity rather than the observed 2 : 1 ratio. However, our measurement does

not provide sufficient accuracy for identifying the origin of the selection rule. Identifying

the mechanism requires further investigations. Nevertheless, the observed double exponential

behaviour should be related to some selection rule for spin-triplet and unknown (probably

singlet) states.



Time-dependent single-electron transport 785

Figure 22. (a) Logarithmic plot of nt versus th at �ST = 300 µeV (B = 0.6 T). The solid line is

an exponential function fitted to the data. (b) A logarithmic plot of nt versus th at �ST = 380 µeV

(B = 0.55 T). The solid line is a double-exponential function fitted to the data. The dotted and

dashed lines are the fast and slow components, respectively. Each inset is a linear plot of the

same data.

Now, let us assume spin–orbit coupling dominates the singlet-triplet relaxation process.

Then, we can think of an ‘entanglement generator’ using the selection rule. The singlet

ground state |S〉 = |↑〉a |↓〉a holds a spin pair in an orbital a, while the triplet state

contains non-entangled states, |T+〉 = |↑〉a |↑〉b and |T−〉 = |↓〉a |↓〉b, and entangled state,

|T0〉 = (1/
√

2)(|↑〉a |↓〉b + |↓〉a |↑〉b), with an electron in orbitals a and b. After a proper

waiting time after electron injection into one of the four states, the system is left in the

entangled triplet state |T0〉 or the singlet ground state |S〉. Our pulse measurement is based on

the extraction of an electron only from the triplet excited state, and thus this scheme can be

used to generate or analyse an entangled spin pair by detecting the extracted electron with a

sensitive electrometer [35, 36].

4. Statistics of single-electron tunnelling

Statistics of a transition from one state to another reflects the symmetry of the particle (boson or

fermion), interaction between the particles and coupling to the environment. Single-electron

tunnelling is a tunnelling transition that is influenced by Coulomb interaction inside a QD [59].

The transition is forbidden if the Coulomb energy cost for injecting an electron into the

QD exceeds the excitation energy of the transition (Coulomb blockade). Tunnelling is also

influenced by spin correlation (e.g. spin singlet or triplet), as shown by the Pauli spin blockade

effect in transport through a DQD [97].

Such single-electron tunnelling has been discussed with conventional current

measurement. However, current measurement has very low sensitivity in the sense that millions

of electrons are required to obtain a meaningful current signal. In contrast, charge detection

measurement allows direct detection of electron occupation in a QD and provides a sensitive

measurement for single-electron transport.

4.1. Charge detection techniques

The single-electron transistor (SET), whose transport is influenced by Coulomb interaction

in the QD, is known as a sensitive electrometer with expected sensitivity of about
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Figure 23. (a) Schematic diagram of the measurement setup. The sample shown in the scanning

electron micrograph contains two GaAs QDs (white circles) made by a dry etching (upper, central

and lower dark regions) and Schottky gates (vertical bright lines). The white bar is a scale of 200 nm.

The RF carrier signal is transmitted through the lower QD and the LC resonator. The measurement

was done in a dilution refrigerator (T ∼ 0.1 K). (b) Energy diagram of a single-electron tunnelling

process.

10−6 e/
√

Hz [98, 99]. The radio-frequency (RF) technique allows us to operate such a SET

with carrier signal at gigahertz frequency, and the charge detection bandwidth can exceed

100 MHz [100, 101]. Another type of electrometer can be made from a semiconductor

point contact (PC) structure, which exhibits quantized conductance corresponding to the

number of occupied one-dimensional channels [102–104]. Tunnelling probability for an

unoccupied channel depends on the potential barrier at the contact, which is sensitive to

charge distribution around the contact. Thus, these electrometers provide a charge detection

scheme for QDs electrostatically coupled to the electrometer. SET electrometer has essentially

better sensitivity than PC electrometer, since a large change in the transmission probability is

expected. However, the practical signal-to-noise ratio remains more or less the same, when

it is determined by background charge fluctuation in the device or other extrinsic noise in

the measurement system. In this case, the PC electrometer has the advantage of a simpler

structure, and it can be operated with fewer gate electrodes in a wide gate-voltage range.

Figure 23(a) shows a typical circuit diagram along with a scanning electron micrograph

for charge detection measurement. Two electrically isolated channels are integrated in an

AlGaAs/GaAs heterostructure [101, 105]. A QD in the lower channel works as a SET

electrometer. One end of the SET is connected to an LC resonator and a low-noise high-

frequency amplifier. An RF carrier signal at the resonant frequency of 650 MHz is sent from

the other end of the SET, and the transmission signal is detected using a phase-sensitive

detection scheme. The output voltage Vdet is proportional to the conductance of the SET, so

that the SET serves as an RFSET electrometer. This SET is coupled to the other QD formed in

the upper channel. The coupling coefficient η (∼0.005 in this sample) is given by the coupling

capacitance between the two QDs relative to the total capacitance of the QD in the electrometer.

Charging an electron to the upper QD induces a fractional charge of about 0.005e on the lower

QD, which can be measured from a change in the electrometer output.

4.2. Charge detection of a quantum dot

Consider the two-level charge fluctuation in a QD in the single-electron tunnelling regime.

Only one excess electron can occupy the QD. By assuming a single spinless energy state in the

QD, as schematically shown in the energy diagram of figure 23(b), transport is characterized

by tunnelling rates ŴL and ŴR across the left and right barriers, respectively [59]. The current



Time-dependent single-electron transport 787

Figure 24. (a) Frequency spectra of the RFSET signal, Vdet , for CB condition and single-

electron transport conditions (#3–#6). Each spectrum is obtained by averaging data for about 1 h.

Sharp-peak artefacts from 50-Hz harmonics are removed for better visibility. (b) Time-domain

measurements of Vdet for CB (the lower trance) and single-electron tunnelling regime (the upper

trace for #5). No averaging is performed. (c) Histograms, H(Vdet), of the two traces of (b) but for

a longer time domain.

is defined by the net charge transfer from the left lead to the right lead. For instance, under a

relatively large voltage that ensures forward tunnelling direction, the averaged current is given

by I = eŴLŴR/(ŴL + ŴR). In contrast, an electrometer measures the occupation of the charge

state, regardless of which lead an electron was injected from or escaped to. Therefore, it is

convenient to characterize the charge fluctuation using the incoming rate (Ŵin) and the outgoing

rate (Ŵout), respectively, for increasing and decreasing the electron number in the QD. Assuming

a purely random stochastic process for tunnelling transitions, the power spectrum of the charge

fluctuation is given by the Lorentzian form:

Sq(ω) =
4e2

(Ŵ−1
in + Ŵ−1

out)
[

ω2 + (Ŵin + Ŵout)2
] . (20)

The cutoff frequency is determined by the total tunnelling rate Ŵ ≡ Ŵin + Ŵout, while the

low(zero)-frequency magnitude is given by 4e2/(Ŵ−1
in + Ŵ−1

out)Ŵ
2. Therefore, in principle, one

can determine Ŵin and Ŵout from the power spectrum.

Figure 24(a) shows the power spectrum of the detector output, which is proportional

to Sq(ω) [106]. The bottom curve, labelled CB, is measured when the upper QD is in the

Coulomb blockade region, where no charge fluctuation is expected in the QD. This noise

floor arises from a background charge fluctuation (1/f spectrum) of the device in the low-

frequency region (�1 kHz) and from white noise of the amplifier in the high-frequency region

(�1 kHz). When the QD is adjusted in the single-electron tunnelling regime, the excess power

spectrum is observed as shown by curves #3–#6, in figure 24(a). The curves can be fitted
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well with the Lorentzian profile (dashed line for #5), and the characteristic frequency (f0)

shifts in accordance with the gate voltage (corresponding to the tunnelling rate changing from

∼100 kHz (#3) to ∼10 Hz (#6)).

When a large bias voltage is applied, electrons transport from the left lead through the dot

to the right lead (Ŵin = ŴL and Ŵout = ŴR). This is the case where the average current is related

to the charge fluctuation. Figure 24(b) shows typical real-time traces of the SET electrometer

output. The histogram of the detector voltage is shown in figure 24(c). The trace measured

in the single-electron tunnelling regime (#5) involves two-level fluctuations, as shown by the

double-peak structure in the histogram. This contrasts with the other trace taken in the CB

region (just noise with a single peak in the histogram). In the upper trace, represented by open

circles for incoming and solid circles for outgoing processes, five electrons pass through the

QD in a 10-ms period. The corresponding current (0.1 fA) is much smaller than the noise level

of conventional current meters, which suggests possible application of the charge detection

scheme for extremely sensitive current meter [100, 106, 107].

Real-time charge detection should work in the frequency range where the signal level is at

least a couple of decibels higher than the noise level. As seen in the frequency spectrum (e.g. #5)

of figure 24(a), the high-frequency limit is determined by the white noise of the measurement

system, while the low-frequency limit is determined by 1/f noise of the device. The frequency

range can be expanded by optimizing the device geometry to increase the coupling efficiency

or by improving the measurement setup.

Single electron tunnelling is a correlated tunnelling process: an electron that has entered

the small island leaves it before another electron is allowed to enter [59, 85]. Two-level

fluctuations seen in the above measurement indeed originate from the single-electron tunnelling

characteristics, excluding double occupancy. In addition, single-electron tunnelling provides

intriguing time-correlated transport. In a one-dimensional array of small islands, Coulomb

interaction (charge soliton) regulates the electron transport more periodically rather than

random Poisson statistics [108]. Recently, a single peak in the frequency spectrum of charge

fluctuation has been observed as a hallmark of single-electron tunnelling oscillation [109].

4.3. Single shot readout device for qubits

An important application of sensitive charge detection is a readout device for various kinds of

qubits. It is desirable to determine a single qubit state with a reasonably high fidelity (single-

shot readout). An important criterion for single-shot readout is that the measurement time (tm)

has to be much shorter than the dissipation time (T1) of the qubit [110]. Since a back action on

the qubit is inevitable, decoherence time (T2) during the measurement process cannot exceed

tm. In order to minimize the influence during quantum computation, it is desirable to be able

to switch on the measurement device only for the measurement process.

Naturally, charge measurement should be applied for readout of charge qubits [111].

Figure 25(a) shows a device structure containing a DQD in the upper electrical channel and

a PC charge detector in the lower channel (The dotted regions are the conductive regions).

The two channels are well isolated (≫10 G	) by applying sufficiently large voltage Viso to

the isolation gate. The PC electrometer is placed on the left side of the structure so that the

electrometer is more sensitive to the left dot and less sensitive to the right one. Thus, one

electrometer is sufficient for detecting arbitrary charge states in the DQD.

First, we investigate a strongly (coherently) coupled DQD by conventional conductance

measurement on the PC electrometer. The PC conductance is adjusted at the maximal

sensitivity condition (about half the quantized conductance). In order to improve the signal-

to-noise ratio, the charge state of the DQD is modulated by applying low-frequency (100 Hz)
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Figure 25. (a) Schematic measurement setup and a scanning electron micrograph of a double

quantum dot coupled with a QPC electrometer. (b) Schematic energy diagram of eigenstates. (c)

Current through the QPC. (d) The derivative of the QPC current. (e) Experimental charge detection

signal. The dashed and dotted lines are fitted to the data by assuming thermal distribution and

coherent tunnelling coupling, respectively.

sinusoidal voltage Vmod to the electrode as shown in figure 25(a), and the corresponding

modulated current Idet through the PC is measured with a lock-in amplifier.

Figure 25(b) shows a schematic energy diagram of eigenenergies Ea and Eb when the

energy bias ε (same definition as in section 2.1) is changed. The PC current should follow the

charge occupation, Idet ∼ |〈R|ϕ〉|2 − |〈L|ϕ〉|2, as schematically shown for the bonding state

in figure 25(c). The derivative curve, dIdet/dε, is shown in figure 25(d) and is given by

dIdet

dε
∼

h̄2T 2
C

(h̄2T 2
c + ε2)3/2

. (21)

Figure 25(e) shows experimental traces of dIdet/dVmod around the charge degeneracy

point ε ≡ EL − ER = 0. The energy scale in the figure was determined from photon

assisted tunnelling spectroscopy with microwave irradiation (not shown) [19]. The peak in

the topmost trace at the central gate voltage, VC = −494 mV, is the narrowest one observed in

this measurement. The peak width is probably related to the external noise or ac modulation

voltage used. The profile can be fitted well by assuming Fermi-Dirac distribution of charges

(dashed line),

dIdet

dε
∼ cosh−2(ε/kBTeff), (22)

with the effective thermal energy of kBTeff ∼ 30 µeV as a parameter. As the central gate voltage

VC is made less negative to increase the tunnelling coupling, the peak broadens, suggesting

that the two QDs are coherently coupled by the tunnelling coupling. The peaks for the lowest

two traces in figure 25(e) can be fitted well with equation 21 (see the dotted line fitted with

h̄Tc ∼ 60 µeV for VC = −482 mV). The disagreement on the left-hand side arose from the
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Figure 26. (a) PC charge detection of a DQD. The PC current (colour) is plotted as a function of

two gate voltages VL and VR . Schematic charging diagram is attached. (b) Real time detection of

charge fluctuation measured at several points a–h in (a).

broad positive signal from another peak on the left. Therefore, the experiment demonstrates

that the PC detector can determine the charge distribution in a DQD even when the system is

in a bonding state of the two localized charge states [112].

In contrast, when the DQD is weakly (incoherently) coupled, we can resolve time-

dependent fluctuation between localized charge states. Figure 26(a) shows a charging diagram

of the DQD obtained from the PC current profile (colour plot) when gate voltages VL and

VR for the DQD are swept. When these gate voltages are fixed at several points (labelled

a–h) in the diagram, we see charge fluctuation between some charge states as shown in

figure 26(b). Three-level fluctuation is observed at points c and f, where three charge states are

energetically degenerated, while two-level fluctuation is seen at d and e, where two charge states

are degenerated. No significant fluctuation is observed at a and h, where the DQD is Coulomb

blockaded. Observation of these fluctuations suggests the readout of the instantaneous charge

state of a DQD, which is an encouraging single-shot readout. In this setup, charge states can

be measured with a time resolution of about 500 µs.

However, there is a large gap between the measurement time and the typical T1 (∼10 ns,

discussed in section 2.3) of the charge qubit in a DQD. This gap can be overcome by introducing

an auxiliary island that traps an electron for a sufficiently long time for reading, as demonstrated

for a superconducting charge qubit [25]. Another strategy is to make T1 sufficiently long

only during the measurement period. Since T1 is determined by phonon emission process

between the charge states, one can control its rate by changing the tunnelling barrier [113,114].

Therefore, single-shot readout for a charge qubit is feasible by switching the interdot coupling

from the strong regime for coherent control to the weak regime for readout.

The electron spin state in a QD can also be measured with a charge detector by converting

spin information to a charge state [36, 115]. Figure 27 illustrates spin-up and spin-down

sublevels of a ground state of a one-electron QD connected to a lead. By adjusting the

chemical potential of the lead between the Zeeman split sublevels in a magnetic field as shown

in figure 27(c), only a spin-down electron (for negative g-factor material) is allowed to escape

from the QD, and subsequently a spin-up electron is injected from the lead (figure 27(d)).

Thus, single-spin measurement can be performed with an electrometer. The measurement has

been demonstrated by applying a two-level voltage pulse to a gate electrode to empty the QD
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Figure 27. Schematic charging diagram for single-shot charge detection. (a) Emptying a quantum

dot. (b) Injection of an electron with random spin orientation. The figure illustrates the case when

spin-down electron is injected. (c) Reading out spin-down state. (d) Relaxing into spin-up ground

state.

(figure 27(a)), inject an electron with random spin orientation (figure 27(b) for spin-down case)

and read out the spin state (figures 27(c) and (d)). The charge state of the QD is measured

with a PC electrometer. Since the pulse also changes the PC current, the current displays the

charge state superimposed on the pulse waveform. The appearance of a signal in the read-out

sequence indicates that a spin-down electron was injected into the QD. Measurement error

arises from finite noise and limited bandwidth in the current measurement. The demonstration

yields 65% visibility, which is high enough to say that a single-shot readout of an electron spin

qubit has succeeded [36].

5. Summary

We have reviewed some time-dependent phenomena in semiconductor quantum dots. In the

experiments shown in section 2, a high-speed voltage pulse is applied to induce coherent

oscillations of a charge qubit in a double quantum dot. Tailoring the pulse waveform provides

arbitrary unitary transformation in the one-qubit space. However, coupling to the environment

causes decoherence (dissipation) problem. Although some decoherence mechanisms can be

reduced by developing better fabrication techniques and refining measurement conditions,

intrinsic electron–phonon interaction, especially piezoelectric coupling, would dominate

the dissipation processes in semiconductors. In this sense, quantum dots in non-polar

semiconductors (Si, carbon based material) may be preferable. Relaxation dynamics has also

been focused in section 3, where the electronic pump–probe technique is used to determine

the dissipation time. One can significantly reduce the relaxation rate by making use of spin

selection rules for the relaxation. The spin degree of freedom is more isolated from the

phonon bath, as we demonstrated in a quantum dot. This evidence has motivated many people

to consider electron spin qubit as one of the best candidates for many-qubit systems. We have

also discussed the spin selection rule for spin–orbit coupling in the two-electron system, in

which the spin-correlated triplet state is expected to have a much longer relaxation time. A

full understanding of the dissipation and decoherence mechanism may provide a clever way

to overcome the decoherence problem. Moreover, the selection rule in the spin–orbit coupling

can be used to create or determine spin entanglement state by combining with the charge

detection scheme.

On the other hand, high-speed and high-precision measurement of a quantum state is

desired to obtain a reliable outcome from a single qubit. In section 4, charge detection

measurements with a single electron transistor or a quantum point contact device were described

in the context of single-shot readout for charge and spin qubit. The technique is rapidly
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developing for better visibility and higher speed. Interaction of a qubit with a measurement

apparatus, which is one of the fundamental problems in quantum mechanics, can be investigated

and designed in further studies. Moreover, charge detection scheme is expected to provide a

single-electron counting device, in which individual electron tunnelling processes are recorded

in a real time scale. Electron counting statistics will be a new tool to investigate correlated

electron transport of a small current.

Finally, these techniques can be combined with other mesoscopic electron devices, such

as electron interferometer and beam splitter, by means of nanotechnology. In analogy with

the optical technique used in quantum optics, integration of these components would provide

a novel measurement concept for nontrivial quantum states. We believe these techniques can

be applied for a better understanding of quantum transport in nanostructures as well as for

developing quantum engineering in solid state devices.
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