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ABSTRACT

Stochastic acceleration of charged particles due to interactions with magnetohydrodynamic (MHD) plasma waves
is the dominant process leading to the formation of the high-energy electron and ion distributions in a variety of
astrophysical systems. Collisions with the waves influence both the energization and the spatial transport of the
particles, and therefore it is important to treat these two aspects of the problem in a self-consistent manner. We solve
the representative Fokker-Planck equation to obtain a new, closed-form solution for the time-dependent Green’s
function describing the acceleration and escape of relativistic particles interacting with Alfvén or fast-mode waves
characterized by momentum diffusion coefficient D( p) / pq and mean particle escape timescale tesc( p) / pq�2,
where p is the particle momentum and q is the power-law index of the MHD wave spectrum. In particular, we obtain
solutions for the momentum distribution of the ions in the plasma and also for the momentum distribution of the
escaping particles, which may form an energetic outflow. The general features of the solutions are illustrated via
examples based on either a Kolmogorov or Kraichnan wave spectrum. The new expressions complement the results
obtained by Park and Petrosian, who presented exact solutions for the hard-sphere scattering case (q ¼ 2) in addition
to other scenarios in which the escape timescale has a power-law dependence on the momentum. Our results have
direct relevance for models of high-energy radiation and cosmic-ray production in astrophysical environments such
as �-ray bursts, active galaxies, and magnetized coronae around black holes. In particular, we outline an application
of the new results to black hole sources that produce outflows of relativistic hadrons, with associated predictions that
can be tested using GLAST.

Subject headinggs: acceleration of particles — black hole physics — cosmic rays — galaxies: jets —
methods: analytical — plasmas

1. INTRODUCTION

Observations of high-energy radiation from a variety of as-
trophysical sources imply the presence of significant populations
of nonthermal (often relativistic) particles. Much of the obser-
vational data is characterized by strong variability on very short
timescales. Nonthermal distributions are naturally produced via
the Fermi process, in which particles interact with scattering cen-
ters moving systematically and/or randomly. The first-order Fermi
mechanism treats particle acceleration in converging flows, such
as shocks, and is thought to be important at the Earth’s bow shock,
in certain classes of solar flares, for cosmic-ray acceleration by
supernova remnants, and in sources with relativistic outflows,
including blazars and �-ray bursts (for reviews, see Blandford &
Eichler 1987; Kirk 1994). The second-order process, as it was
originally conceived by Fermi, involved the stochastic accelera-
tion of particles scattering with randomly moving magnetized
clouds (Fermi 1949). Later refinements of this idea replaced the
magnetized clouds with magnetohydrodynamic (MHD) waves
(e.g., Melrose 1980). The second-order, stochastic Fermi process
now finds application in a wide range of astrophysical settings,
including solar flares (Miller et al. 1990; Liu et al. 2004a), clusters
of galaxies (Schlickeiser et al. 1987; Petrosian 2001; Brunetti

et al. 2004), theGalactic center (Liu et al. 2004b;Atoyan&Dermer
2004), and �-ray bursts (Waxman 1995; Dermer & Humi 2001).

The standard approach to modeling the acceleration of non-
thermal particles via interactions with MHD waves involves
obtaining the solution to a steady-state transport equation that in-
corporates treatments of systematic and stochastic Fermi accel-
eration, radiative losses, and particle escape (e.g., Schlickeiser
1984; Schlickeiser & Steinacker 1989; Liu et al. 2006). How-
ever, the prevalence of variability on short timescales in many
sources calls into question the validity of the steady-state inter-
pretation. Park & Petrosian (1995) provided a comprehensive
review of the various time-dependent solutions that have been
derived in the past 30 years. In most cases, it is assumed that the
momentum diffusion coefficient,D( p), and the mean particle es-
cape timescale, tesc( p), have power-law dependences on the par-
ticle momentum p. Although the set of existing solutions covers a
broad range of possible values for the associated power-law in-
dices, there are certain physically interesting cases for which no
analytical solution is currently available. For example, Dermer
et al. (1996) have shown that for the stochastic acceleration of
relativistic particles due to resonant interactions with plasma
waves in black hole magnetospheres, one obtainsD( p) / pq and
tesc( p) / pq�2, where q is the index of the wavenumber distri-
bution (see x 2). The analytical solution for the time-dependent
Green’s function in this situation is of particular physical inter-
est, but it has not appeared in the previous literature. This has
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motivated us to reexamine the associated Fokker-Planck trans-
port equation for this case, and to obtain a new family of closed-
form solutions for the secular Green’s function. The resulting
expression, describing the evolution of an initiallymonoenergetic
particle distribution, complements the set of solutions discussed
by Park & Petrosian (1995). Our primary goal in this paper is to
present a detailed derivation of the exact analytical solution and
to demonstrate some of its key properties. Detailed applications
of our results to the modeling of particle acceleration in black
hole accretion coronae and other astrophysical environments
will be presented in a separate paper.

The remainder of the paper is organized as follows. In x 2 we
review the fundamental equations governing the acceleration of
charged particles interacting with plasma waves. The transport
equation is solved in x 3 to obtain the time-dependent Green’s
function, and illustrative results are presented in x 4. The as-
trophysical implications of our work are summarized in x 5, and
additional mathematical details are provided in the Appendix.

2. FUNDAMENTAL EQUATIONS

Charged particles in turbulent astrophysical plasmas are ex-
pected to be accelerated via interactions with whistler, fast-mode,
and Alfvén waves propagating in the magnetized gas. Here we
consider a simplified isotropic description of the wave energy
distribution, denoted by W (k), where W (k)dk represents the en-
ergy density due to waves with wavenumber between k and
k þ dk. The transport formalism we consider assumes a power-
law distribution for the wave-turbulence spectrum, which implies
definite relations between themomentumdiffusion coefficient and
the momentum-dependent escape timescale (e.g., Melrose 1974;
Schlickeiser 1989a, 1989b; Dermer et al. 1996). MHDwaves in-
jected over a narrow range of wavenumber cascade to larger wave-
numbers, forming a Kolmogorov or Kraichnan power spectrum
over the inertial range with W (k) / k�q, where q ¼ 5/3 and
q ¼ 3/2 for the Kolmogorov and Kraichnan cases, respectively
(e.g., Zhou &Matthaeus 1990). The specific forms we adopt for
the transport coefficients in x 2.2 are based on the physics of the
resonant scattering processes governing the wave-particle in-
teractions (see Dermer et al. 1996). We assume that the non-
thermal particle distribution is isotropic, and focus on a detailed
treatment of the propagation of particles in momentum space due
to wave-particle interactions. The spatial aspects of the transport
(i.e., the confinement of the particles in the acceleration region) are
treated in an approximate manner using a momentum-dependent
escape term.

2.1. Transport Equation

The fundamental transport equation describing the propaga-
tion of particles in the momentum space can be written in the
flux-conservation form (e.g., Becker 1992; Schlickeiser 1989a,
1989b)

@ f

@t
¼ � 1

p2

@

@p
p2 A( p) f � D( p)

@ f

@p

� �� �
� f

tesc( p)
þ S( p; t)

4�p2
;

ð1Þ

where p is the particle momentum, f ( p; t) is the particle distribu-
tion function,D( p) denotes the momentum diffusion coefficient,
tesc( p) is themean escape time, S( p; t) represents particle sources,
and A( p) describes any additional, systematic acceleration or loss
processes, such as shock acceleration or synchrotron/inverse-
Compton emission. The quantity in square brackets in equa-
tion (1) describes the flux of particles through the momentum

space (Tademaru et al. 1971), and the source term is defined so
that S( p; t) dp dt gives the number of particles injected into the
plasma per unit volume between times t and t þ dt with mo-
menta between p and pþ dp. The total particle number density
n(t) and energy density U (t) of the distribution f ( p; t) are com-
puted using

n(t)¼
Z 1

0

4�p2f ( p; t)dp; U (t)¼
Z 1

0

4��p2f ( p; t)dp; ð2Þ

where the particle kinetic energy � is related to the Lorentz factor
� and the particle momentum p by

� ¼ (� � 1)mc2; � ¼ p2

m2c2
þ 1

� �1=2

; ð3Þ

and m and c denote the particle rest mass and the speed of light,
respectively.
Rather than solve equation (1) directly to determine f ( p; t) for

a given source term S( p; t), it is more instructive to first solve for
the Green’s function, fG( p0; p; t0; t), which satisfies the equation

@ fG
@t

¼� 1

p2
@

@p

�
p2

�
A( p) fG � D( p)

@ fG
@p

��

� fG

tesc( p)
þ �( p� p0)�(t � t0)

4�p20
; ð4Þ

where p0 is the initial momentum and t0 is the initial time. The
source term in this equation corresponds to the injection of a
single particle per unit volumewith momentum p0 at time t0. The
particle number and energy densities associated with the Green’s
function are given by

nG(t) ¼
Z 1

0

4�p2fG( p0; p; t0; t)dp;

UG(t) ¼
Z 1

0

4��p2fG( p0; p; t0; t)dp: ð5Þ

Once theGreen’s function solution has been determined, the par-
ticular solution associated with an arbitrary source distribution
S( p; t) can be computed using the integral convolution (e.g.,
Becker 2003)

f ( p; t)¼
Z t

0

Z 1

0

fG( p0; p; t0; t)S( p0; t0)dp0dt0; ð6Þ

where we have assumed that the particle injection begins at time
t ¼ 0 and no particles are present in the plasma for t < 0.

2.2. Transport Coefficients

In the Appendix (xA1), we demonstrate that for arbitrary par-
ticle energies, the mean rate of change of the particle momentum
due to stochastic acceleration is related to the momentum diffu-
sion coefficient D( p) viaD dp

dt

E���
stoch

¼ 1

p2

d

dp
p2D
� 	

: ð7Þ

The corresponding result for themean rate of change of the kinetic
energy is (see x A2 of the Appendix and Miller & Ramaty 1989)D d�

dt

E���
stoch

¼ 1

p2
d

dp
p2vD
� 	

; ð8Þ
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where v is the particle speed. If the MHD wave spectrum has the
power-law formW / k�q associated with Alfvén and fast-mode
waves, then the momentum dependences of the diffusion coef-
ficient D( p) and the mean escape time tesc( p) describing the
resonant pitch-angle scattering of relativistic particles are given
by (e.g., Dermer et al. 1996; Miller & Ramaty 1989)

D( p) ¼ D�m
2c2

p

mc

� �q

; tesc( p) ¼ t�
p

mc

� �q�2

; ð9Þ

where D� / s�1 and t� / s are constants. We shall focus on
transport scenarios with q � 2, so that tesc is either a decreasing
or constant function of the momentum p. In order to maintain the
physical validity of the escape-timescale approach used here, we
must require that tesc exceed the light-crossing time L/c for a
source with size L. This implies a fundamental upper limit to the
particle momentum when q < 2.

By combining equations (7) and (9), we find that the mean rate
of change of the momentum for relativistic particles accelerated
stochastically by MHD waves is given by

D dp
dt

E���
stoch

¼ (qþ 2)D�mc
p

mc

� �q�1

: ð10Þ

For simplicity, we assume that the momentum dependence of the
additional, systematic loss/acceleration processes appearing in the
transport equation (1), described by the coefficient A( p), mimics
that of the stochastic acceleration (eq. [10]). We therefore write

A( p) ¼ A�mc
p

mc

� �q�1

; ð11Þ

where the constant A� / s�1 determines the positive (negative)
rate of systematic acceleration (losses). Note that this formulation
precludes the treatment of loss processes with a quadratic energy
dependence (e.g., inverse Compton or synchrotron) since that
would imply q ¼ 3, which is outside the range considered here.
However, first-order Fermi acceleration at a shock or energy
losses due to Coulomb collisions can be treated by setting q ¼ 2
withA� either positive or negative, respectively. This suggests that
the results obtained here are relevant primarily for the transport of
energetic ions. However, even in this application one needs to bear
inmind that synchrotron and inverse Compton losses will become
dominant at sufficiently high energies (e.g., Schlickeiser 1984;
Schlickeiser & Steinacker 1989; Liu et al. 2006).

It is convenient to transform to the dimensionless momentum
and time variables x and y, defined by

x � p

mc
; y � D�t; ð12Þ

in which case the transport equation (4) for the Green’s function
becomes

@ fG
@y

¼ 1

x2
@

@x
x2þq @ fG

@x

� �
� a

x2
@

@x
x1þqfG
� 	

� �x2�qfG þ �(x� x0)�( y� y0)

4�m3c3x20
; ð13Þ

where

x0 �
p0

mc
; y0 � D�t0; ð14Þ

and we have introduced the dimensionless constants

a � A�

D�
; � � 1

D�t�
: ð15Þ

Note that x equals the particle Lorentz factor in applications
involving ultrarelativistic particles. The constant a describes the
relative importance of systematic gains or losses compared with
the stochastic process.

2.3. Fokker-Planck Equation

Additional physical insight can be obtained by reorganizing
equation (13) in the Fokker-Planck form

@NG

@y
¼ @ 2

@x2
xqNGð Þ � @

@x



(qþ 2þ a)xq�1NG

�
� �x2�qNG þ �(x� x0)�( y� y0); ð16Þ

where we have defined the Green’s function number distribution
NG using

NG(x0; x; y0; y) � 4�m3c3x2fG(x0; x; y0; y): ð17Þ

The Fokker-Planck coefficients appearing in equation (16),
which describe the evolution of the particle distribution due to
the influence of stochastic and systematic processes, are given by
(Reif 1965)

1

2

d�2

dy
¼ xq;

D dx
dy

E
¼ (qþ 2þ a)xq�1; ð18Þ

where the first coefficient describes the ‘‘broadening’’ of the
distribution due to momentum space diffusion, and the second
represents the mean ‘‘drift’’ of the particles (i.e., the average ac-
celeration rate).

Equation (16) is equivalent to equation (49) from Park &
Petrosian (1995) if we set their parameters app ¼ 2þ a and spp ¼
q� 2, where spp denotes the power-law index describing themo-
mentumdependence of the escape timescale. Our particular choice
for spp reflects the physics of the resonant wave-particle interac-
tions, as represented by equations (9). The Fokker-Planck form
of equation (16) clearly reveals the fundamental nature of the
transport process. In particular, we note that in the limit a ! 0,
the drift coefficient hdx/dyi reduces to the purely stochastic result
(eq. [10]), as expected when systematic gains/losses are excluded
from the problem. The total number and energy densities are com-
puted in terms of NG using (cf. eq. [5])

nG( y)¼
Z 1

0

NG(x0; x; y0; y)dx;

UG( y)¼
Z 1

0

� x NG(x0; x; y0; y)dx; ð19Þ

where (see eq. [3])

� ¼ mc2

"
x2 þ 1
� 	1=2�1

#
: ð20Þ

Since the physical situation considered here corresponds to the
injection of a single particle per unit volume at ‘‘time’’ y ¼ y0, it
follows that nG( y0) ¼ 1.
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3. SOLUTION FOR THE GREEN’S FUNCTION

The result obtained for the Green’s function number distri-
butionNG has two important special cases depending onwhether
q ¼ 2 or q < 2. Park & Petrosian (1995) obtained the exact solu-
tion to equation (16) for the hard-sphere case (Ramaty 1979) with
q ¼ 2 and their parameter spp ¼ 0, corresponding to amomentum-
independent escape timescale. In this section we derive the exact
solution to the time-dependent problem with q < 2 and spp ¼
q� 2, which describes the physics of the wave-particle interac-
tions (see eqs. [9]).

3.1. Laplace Transformation

We define the Laplace transformation of NG using

L(x0; x; s)�
Z 1

0

e�syNG(x0; x; y0; y)dy: ð21Þ

By operating on the Fokker-Planck equation (16) with
R1
0

e�sydy,
we obtain

d2

dx2
xqLð Þ � d

dx
(qþ 2þ a)xq�1L

 �

� �x2�qL� sL

¼ �e�sy0�(x� x0); ð22Þ

or, equivalently,

d 2L

dx2
þ q� 2� a

x

� �
dL

dx
þ (1� q)(2þ a)

x2
� �

x2q�2
� s

xq

� �
L

¼ � e�sy0�(x� x0)

xq
:

ð23Þ

This equation can be transformed into standard form by intro-
ducing the new momentum variables

z(x) � 2
ffiffiffi
�

p

2� q
x2�q; z0(x0) �

2
ffiffiffi
�

p

2� q
x
2�q
0 : ð24Þ

After some algebra, we find that the equation for L now becomes

z2
d 2L

dz 2
þ aþ 1

q� 2
z
dL

dz
þ (1� q)(2þ a)

(2� q)2
� z2

4
� sz

c0(2� q)2

� �
L

¼ � c0e
�sy0�(z� z0)

2� q

z

c0

� �(3�2q)=(2�q)

;

ð25Þ

where

c0 �
2
ffiffiffi
�

p

2� q
: ð26Þ

The solutions to equation (25) obtained for z 6¼ z0 that satisfy the
high- and low-energy boundary conditions are given by

L(z0; z; s) ¼ e�z=2z(aþ2)=(2�q)
AU (�; �; z); z � z0;

BM (�; �; z); z � z0;

�
ð27Þ

where M and U denote the confluent hypergeometric functions
(Abramowitz & Stegun 1970) and

� � sþ (aþ 3)
ffiffiffi
�

p

2(2� q)
ffiffiffi
�

p ; � � aþ 3

2� q
: ð28Þ

The constants A and B appearing in equation (27) are determined
by ensuring that the function L is continuous at z ¼ z0, and that it
also satisfies the derivative jump condition

lim
�!0

dL

dz

����
z0þ�

z0��

¼ � c0e
�sy0

(2� q)z20

z0

c0

� �(3�2q)=(2�q)

¼ �e�sy0

2x0
ffiffiffi
�

p ;

ð29Þ

obtained by integrating the transport equation (25) with respect
to z in a small range around the source momentum z0.
The constant B can be eliminated by combining the continuity

and derivative jump conditions. After some algebra, the solution
obtained for A is

A ¼ � e�sy0e z0=2z
(aþ2)=(q�2)
0 M (�; �; z0)

2x0
ffiffiffi
�

p
W (z0)

; ð30Þ

where W (z) denotes the Wronskian, defined by

W (z) � M (�; �; z)
d

dz
U (�; �; z)� U (�; �; z)

d

dz
M (�; �; z):

ð31Þ

Using equation (13.1.22) from Abramowitz & Stegun (1970),
we find that W is given by the exact expression

W (z) ¼ � �(� )z��ez

�(� )
; ð32Þ

which can be combined with equation (30) and the continuity
relation to obtain

A ¼ �(� )z
�þ(aþ2)=(q�2)
0 e�sy0e�z0=2M (�; �; z0)

2x0
ffiffiffi
�

p
�(�)

; ð33Þ

B ¼ �(� )z
�þ(aþ2)=(q�2)
0 e�sy0e�z0=2U (�; �; z0)

2x0
ffiffiffi
�

p
�(� )

: ð34Þ

The final solution for the Laplace transformation L can therefore
be written as

L(z0; z; s) ¼
�(� )z�0

�(�)2x0
ffiffiffi
�

p z

z0

� �(aþ2)=(2�q)

; e�sy0e�(zþz0)=2M (�; �; zmin)U (�; �; zmax); ð35Þ

where

zmin � min(z; z0); zmax � max (z; z0): ð36Þ
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3.2. Inverse Transformation

The solution for the Green’s function NG can be found using
the complex Mellin inversion integral, which states that

NG(z0; z; y0; y) ¼
1

2�i

Z �þi1

��i1
esyL(z0; z; s)ds; ð37Þ

where � is chosen so that the line Re s ¼ � lies to the right of any
singularities in the integrand. The singularities are simple poles
locatedwhere j�(� )j ! 1, which corresponds to� ¼ �n, with
n ¼ 0, 1, 2, : : : Equation (28) therefore implies that there are an
infinite number of poles situated along the real axis at s ¼ sn, where

sn ¼ 2(q� 2)n� a� 3½ �
ffiffiffi
�

p
; n ¼ 0; 1; 2; : : : ð38Þ

We can therefore employ the residue theorem to writeI
esyL(z0; z; s)ds ¼ 2�i

X1
n¼0

Res(sn); ð39Þ

whereC is the closed integration contour indicated in Figure 1 and
Res(sn) denotes the residue associated with the pole at s ¼ sn.
Based on asymptotic analysis, we conclude that the contribution
to the integral due to the curved portion of the contour vanishes in
the limitR ! 1, and consequentlywe can combine equations (37)
and (39) to obtain

NG(z0; z; y0; y) ¼
X1
n¼0

Res(sn): ð40Þ

Hence we need only evaluate the residues in order to determine
the solution for the Green’s function.

3.3. Evaluation of the Residues

The residues associated with the simple poles at s ¼ sn are
evaluated using the formula (e.g., Butkov 1968)

Res(sn) ¼ lim
s!sn

(s� sn)e
syL(z0; z; s): ð41Þ

Since the poles are associated with the function �(� ) in equa-
tion (35), we need to make use of the identity

lim
s!sn

(s� sn)�(� ) ¼
(�1)n

n!
2(2� q)

ffiffiffi
�

p
; ð42Þ

which follows from equations (28) and (38). Combining equa-
tions (35), (41), and (42), we find that the residues are given by

Res(sn) ¼
(�1)n(2� q)esn( y�y0)z

�
0

n!�(�)x0

z

z0

� �(aþ2)=(2�q)

; e�(zþz0)=2M (�n; �; zmin)U (�n; �; zmax): ð43Þ

Based on equations (13.6.9) and (13.6.27) from Abramowitz &
Stegun (1970), we note that the confluent hypergeometric
functions appearing in this expression reduce to Laguerre poly-
nomials, and therefore our result for the residue can be rewritten
after some simplification as

Res(sn) ¼
n!esn( y�y0)z

�
0 (2� q)

�(� þ n)x0

z

z0

� �(aþ2)=(2�q)

; e�(zþz0)=2P(��1)
n (z)P(��1)

n (z0); ð44Þ

where P(��1)
n (z) denotes the Laguerre polynomial.

3.4. Closed-Form Expression for the Green’s Function

The result for the Green’s function number distribution NG is
obtained by summing the residues (see eq. [40]), which yields

NG(z0; z; y0; y) ¼
X1
n¼0

n!esn( y�y0)z
�
0 (2� q)

�(� þ n)x0

z

z0

� �(aþ2)=(2�q)

; e�(zþz0)=2P(��1)
n (z)P(��1)

n (z0): ð45Þ

This convergent sum is a useful expression for the Green’s
function. However, further progress can be made by employing
the bilinear generating function for the Laguerre polynomials,
given by equation (8.976) from Gradshteyn & Ryzhik (1980).
After some algebra, we find that the general closed-form solution
can be written in the form

NG(x0; x; y0; y) ¼
2� q

x0

x

x0

� �(aþ1)=2 ffiffiffiffiffiffiffiffi
zz0	

p

1� 	

; exp � (zþ z0)(1þ 	 )

2(1� 	 )

� �
I��1

2
ffiffiffiffiffiffiffiffi
zz0	

p

1� 	

� �
;

ð46Þ

where

z(x) � 2
ffiffiffi
�

p

2� q
x2�q; z0(x0) �

2
ffiffiffi
�

p

2� q
x
2�q
0 ;

� � aþ 3

2� q
; 	( y; y0) � e2(q�2)( y�y0)

ffiffi
�

p
; ð47Þ

which is the main result of the paper. Note that the solution for
NG depends on the time parameters y and y0 only through the
‘‘age’’ of the injected particles, y� y0, as indicated by the form

Fig. 1.—Integration contour C used to evaluate eq. (37).
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for 	. In the limit � ! 0, corresponding to infinite escape time,
the Green’s function number distribution reduces to

NG(x0; x; y0; y)
���
�¼0

¼ (xx0)
(3�q)=2

(2� q)x20 ( y� y0)

x

x0

� �a=2

; exp � (x2�q þ x
2�q
0 )

(2� q)2( y� y0)

" #
I��1

2(xx0)
(2�q)=2

(2� q)2( y� y0)

" #
: ð48Þ

The exact solution for the time-dependent Green’s function de-
scribing the evolution of a monoenergetic initial spectrum with
q < 2 given by equation (46) represents an interesting new con-
tribution to particle transport theory. The corresponding solution
for the hard-sphere case with q ¼ 2, given by equation (43) of
Park & Petrosian (1995), can be stated in our notation as

NG(x0; x; y0; y)
���
q¼2

¼ e�k( y�y0)

2x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�( y� y0)

p x

x0

� �(aþ1)=2

; exp
�( ln x� ln x0)

2

4( y� y0)

� �
; ð49Þ

where

k � (aþ 1)2

4
þ 2þ aþ �: ð50Þ

We note that the general solution for NG given by equation (46)
agrees with equation (49) in the limit q ! 2 as required. Further-
more, equation (46) allows q to take on negative values if de-
sired, and it is also applicable over a broad range of both positive
and negative values for a. Recall that when a ¼ 0, there are no
systematic acceleration or loss processes included in the model.
Positive (negative) values for a imply additional systematic ac-
celeration ( losses).

3.5. Transition to the Stationary Solution

The analytical solutions we have obtained for the Green’s func-
tion provide a complete description of the response of the system
to the impulsive injection of monoenergetic particles at any
desired time. The generality of these expressions allows one to
obtain the particular solution for the distribution function f as-
sociated with any arbitrary momentum-time source function S
using the convolution given by equation (6). One case of special
interest is the spectrum resulting from the continual injection of
monoenergetic particles beginning at time t ¼ 0, described by
the source term

S( p; t) ¼ Ṅ0�( p� p0); t � 0;

0; t < 0;

(
ð51Þ

where Ṅ0 denotes the rate of injection of particles with mo-
mentum p0 per unit volume. We assume that no particles are
present for t < 0. Combining equations (6) and (51), we find that
the time-dependent distribution function resulting from mono-
energetic particle injection is given by

f ( p; t) ¼ Ṅ0

Z t

0

fG( p0; p; t0; t)dt0: ð52Þ

By transforming to the dimensionless variables x and y and
employing equation (17), we conclude that the particular solu-

tion for the number distribution associated with continual mono-
energetic particle injection can be written as

N (x; y) � 4�m3c3x2f (x; y) ¼ Ṅ0

D�

Z y

0

NG(x0; x; y0; y)dy0; ð53Þ

where we have used equation (14) to make the substitution
dt0 ¼ dy0/D�. Since NG depends on the time parameters y and y0
only through the combination y� y0 (see eqs. [46] and [49]), it
follows that

N (x; y) ¼ Ṅ0

D�

Z y

0

NG(x0; x; 0; y
0)dy0: ð54Þ

This is a more convenient form for N (x; y) because y now ap-
pears only in the upper integration bound.
For general, finite values of y, the time-dependent particular

solution for N (x; y) given by equation (54) must be computed
numerically by substituting for NG using either equation (46) or
(49), depending on the value of q. However, as y ! 1, the
solution rapidly approaches a stationary result representing a
balance between injection, acceleration, and particle escape. The
form of the stationary solution, called the ‘‘steady-state Green’s
function,’’ NG

ss , can be obtained by directly solving the transport
equation (1) with @ f /@t ¼ 0 and S( p; t) ¼ Ṅ0�( p� p0). Alter-
natively, the steady-state Green’s function can also be computed
by taking the limit of the time-dependent solution, which yields

N G
ss (x) � lim

y!1
N (x; y) ¼ Ṅ0

D�

Z 1

0

NG(x0; x; 0; y
0)dy0: ð55Þ

In the q < 2 case, we can substitute for NG using equation (46)
and evaluate the resulting integral using equation (6.669.4) from
Gradshteyn & Ryzhik (1980). After some algebra, we obtain

N G
ss (x) ¼

Ṅ0

(2� q)x0D�

x

x0

� �(aþ1)=2

(xx0)
(2�q)=2

; I ��1ð Þ=2

ffiffiffi
�

p
x
2�q
min

2� q

 !
K ��1ð Þ=2

ffiffiffi
�

p
x2�q
max

2� q

 !
; ð56Þ

where � ¼ (aþ 3)/(2� q) and

xmin � min(x; x0); xmax � max (x; x0): ð57Þ

Likewise, for the case with q ¼ 2, we can substitute forNG using
equation (49) and then utilize equation (3.471.9) fromGradshteyn
&Ryzhik (1980) to conclude that the steady-state solution is given
by

N G
ss (x)

���
q¼2

¼ Ṅ0

2x0D�
ffiffiffi
k

p x

x0

� �(aþ1)=2
xmax

xmin

� ��
ffiffi
k

p

; ð58Þ

where k is defined by equation (50). The steady-state solutions
given by equations (56) and (58) agree with the results obtained
by directly solving the transport equation. Due to the asymptotic
behavior of the Bessel K
(z) function for large z, equation (56)
indicates that N G

ss exhibits an exponential cutoff at high energies
when q < 2 (Abramowitz & Stegun 1970). This corresponds
physically to the fact that the escape timescale decreases with in-
creasing particle momentum in this case. However, when q ¼ 2
(eq. [58]), the spectrum displays a pure power-law behavior at
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high energies because the escape timescale is independent of the
particle momentum. Specific examples illustrating these beha-
viors will be presented in x 4.

3.6. Escaping Particle Distribution

The various expressions we have obtained for the Green’s
function NG describe the momentum distribution of the particles
remaining in the plasma at time t after injection occurring at time
t0. However, since our model incorporates a physically realistic,
momentum-dependent escape timescale tesc( p) given by equa-
tion (9), it is also quite interesting to compute the spectrum of the
escaping particles, which may form an energetic outflow capable
of producing observable radiation. In general, the number dis-
tribution of the escaping particles, Ṅ esc(x; y), is related to the cur-
rent distribution of particles in the plasma, N (x; y), via

Ṅ esc(x; y) � t�1
escN (x; y) ¼ �D� x

2�qN (x; y); ð59Þ

where we have used equations (9) and (15) to obtain the final
result. The quantity Ṅ esc(x; y)dx represents the number of par-
ticles escaping per unit volume per unit time with dimensionless
momenta between x and xþ dx.

An important special case is the evolution of the escaping
particle spectrum resulting from impulsive monoenergetic in-
jection at dimensionless time y ¼ y0. In this application, equa-
tion (59) gives the Green’s function number spectrum for the
escaping particles, defined by

Ṅ esc
G (x0; x; y0; y) � �D� x

2�qNG(x0; x; y0; y); ð60Þ

where NG is evaluated using either equation (46) or (49) de-
pending on the value of q. We can use this expression for Ṅ esc

G to
compute the total escaping number distribution resulting from
an impulsive flare occurring at t ¼ 0 by integrating the escaping
distribution with respect to time, which yields

�N esc
G (x) �

Z 1

0

Ṅ esc
G dt ¼ �x2�q

Z 1

0

NG(x0; x; 0; y
0)dy0; ð61Þ

where we have used equation (60) and taken advantage of the fact
that NG depends on y and y0 only through the difference y� y0
(cf. eq. [54]).

By comparing equations (55) and (61), we deduce that

�N esc
G (x) ¼ �D�

Ṅ0

x2�qN G
ss (x); ð62Þ

so that the total escaping spectrum is simply proportional to the
steady-state Green’s function resulting from continual injection,
as expected. The process considered here corresponds to the in-
jection of a single particle at time t ¼ 0, and therefore we find
that the normalization of �N esc

G is given by

Z 1

0

�N esc
G (x)dx ¼ 1; ð63Þ

which provides a useful check on the numerical results.
Another interesting example is the case of continual mono-

energetic particle injection commencing at time t ¼ 0, described
by the source term given by equation (51). The time-dependent
buildup of the escaping particle spectrum Ṅ esc(x; y) in this sce-

nario can be analyzed by using equation (54) to substitute for
N (x; y) in equation (59), which yields

Ṅ esc(x; y) ¼ Ṅ0�x
2�q

Z y

0

NG(x0; x; 0; y
0)dy 0: ð64Þ

In the limit y ! 1, the escaping particle spectrum approaches
the steady-state result

Ṅ esc
ss (x) � lim

y!1
Ṅ esc(x; y) ¼ Ṅ0�x

2�q

Z 1

0

NG(x0; x; 0; y
0)dy 0:

ð65Þ

By comparing equations (55), (62), and (65), we conclude that

Ṅ esc
ss (x) ¼ �D� x

2�qN G
ss (x) ¼ Ṅ0�N esc

G (x): ð66Þ

The final result can be combined with equation (63) to show that
the escaping spectrum satisfies the normalization relationZ 1

0

Ṅ esc
ss (x)dx ¼ Ṅ0; ð67Þ

as expected for the case of continual steady-state injection.
Note that analytical expressions for the steady-state escaping

spectrum Ṅ esc
ss (x) can be obtained by substituting for NG

ss (x) in
equation (66) using either equation (56) or (58), depending on
the value of q. We obtain

Ṅ esc
ss (x) ¼ Ṅ0�x

2�q

(2� q)x0

x

x0

� �(aþ1)=2

(xx0)
(2�q)=2

; I ��1ð Þ=2

ffiffiffi
�

p
x
2�q
min

2� q

 !
K ��1ð Þ=2

ffiffiffi
�

p
x2�q
max

2� q

 !
ð68Þ

for q < 2 and

Ṅ esc
ss (x) ¼ Ṅ0�x

2�q

2x0
ffiffiffi
k

p x

x0

� �(aþ1)=2
xmax

xmin

� ��
ffiffi
k

p

ð69Þ

for q ¼ 2.

4. NUMERICAL RESULTS

The new result we have derived for the secular Green’s func-
tion (eq. [46]) displays a rich behavior through its complex de-
pendence on momentum, time, and the dimensionless parameters
q, a, and �, which are related to the fundamental physical transport
coefficients D�, A�, and t� via equations (15). Here we present
several example calculations in order to illustrate the utility of
the new solution. Detailed applications to astrophysical situa-
tions, including active galaxies and �-ray bursts, will be presented
in subsequent papers.

The panels on the left-hand side of Figure 2 depict the time-
dependent Green’s function solution,NG, describing the evolution
of the particle distribution in the plasma resulting from impulsive
monoenergetic injection at y ¼ 0. Results are presented for the
hard-sphere scattering case (q ¼ 2), computed using equation
(49), and for theKolmogorov (q ¼ 5/3) andKraichnan (q ¼ 3/2)
cases, evaluated using equation (46). The only acceleration
mechanism considered here is the stochastic acceleration asso-
ciated with the second-order Fermi process, and therefore we set
a ¼ 0. The escape parameter � is set equal to unity, so that the

STOCHASTIC PARTICLE ACCELERATION 545No. 1, 2006



timescale for escape is comparable to the diffusion timescale. As
the wave turbulence spectrum becomes steeper (i.e., as q in-
creases), a larger fraction of the turbulence energy is contained in
waves with long wavelengths, which interact resonantly with
higher energy particles. Steeper turbulence spectra therefore pro-
duce harder particle distributions, as can be confirmed in the plots.
Consequently we conclude that an ensemble of hard-sphere scat-
tering centers is more effective at accelerating nonthermal par-
ticles compared with a Kolmogorov wave spectrum, which in
turn is more effective than a Kraichnan spectrum.

The panels on the right-hand side of Figure 2 illustrate the
buildup of the particle spectrum in the plasma, N (x; y), due to

continual monoenergetic injection beginning at y ¼ 0, com-
puted by evaluating numerically the integral in equation (54).
We have set a ¼ 0 and therefore the acceleration is purely sto-
chastic. As y ! 1, the spectrum approaches the steady-state
form given by equation (56) for q < 2 or by equation (58) for
q ¼ 2. In the hard-sphere case (q ¼ 2), the particle spectrum
displays a power-law shape at high energies in agreement with
equation (58). However, when q < 2, particle escape dominates
over acceleration at high energies, and therefore the steady-state
distribution is truncated, even in the absence of radiative losses.
This effect produces the quasi-exponential turnovers exhibited by
the stationary spectra when q ¼ 5/3 and q ¼ 3/2. Particle escape

Fig. 2.—Green’s function solutions to the time-dependent stochastic particle acceleration equation for x0 ¼ 1. The left panels depict the impulsive-injection solution,
NG (eqs. [46] and [49]), and the right panels illustrate the response to uniform, continuous injection, N (eq. [54] ), with Ṅ0 ¼ D� ¼ 1. Note that N approaches the
corresponding steady-state solution (eqs. [56] and [58]) as y increases. The indices of the wave turbulence spectra are indicated, with q ¼ 2 for hard-sphere scattering,
q ¼ 5/3 for a Kolmogorov cascade, and q ¼ 3/2 for a Kraichnan cascade.
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in these cases mimics energy losses due to, for example, syn-
chrotron emission from electrons.

Figures 3 and 4 illustrate the effects of varying the values of
the escape parameter � and the systematic acceleration/loss pa-
rameter a for the q ¼ 5/3 case. In Figure 3, we set a ¼ 0 and
� ¼ 0:1, which represents a particle escape timescale that is an
order of magnitude larger than the corresponding case depicted
in Figure 2. The longer escape time allows the particles to be
accelerated to higher mean energies before diffusing out of the
plasma, and the decay of the particle density at late times takes
place much more slowly than for larger values of �. The hard-
ening of the spectra causes the quasi-exponential cutoffs to move
to higher energies, and the same effect can also be noted in the
corresponding stationary solutions. The calculations represented
in Figure 4 include additional systematic acceleration processes
that are modeled by setting a ¼ 2. The enhanced particle ac-
celeration further hardens the spectrum and shifts the cutoff to
even higher energies. Although the slope of the low-energy
particle distribution (x < x0) is not altered much when only � is
varied (see Figs. 2 and 3), this slope becomes significantly
steeper when a is increased, as indicated in Figure 4.

In the left-hand panels of Figures 5 and 6 we plot the time-
dependent solution for the Green’s function describing the es-
caping particles, Ṅ esc

G , resulting from impulsive monoenergetic
particle injection (eq. [60]) when q ¼ 5/3. The right-hand panels
illustrate the buildup of the escaping spectrum, Ṅ esc (eq. [64]),
resulting from continual injection beginning at y ¼ 0. Note the
transition to the steady-state solution, Ṅ esc

ss (eq. [65]), as y ! 1.
In Figure 5 we set � ¼ 0:1 and a ¼ 0, and in Figure 6 we set � ¼
0:1 and a ¼ 2. Included for comparison are the corresponding
spectra describing the particle distributions in the plasma at the
same values of y. We point out that the escaping particle spectra
are significantly harder than the in situ distributions, which re-
flects the preferential escape of the high-energy particles re-
sulting from the momentum dependence of the escape timescale
when q < 2 (see eq. [9]).

5. DISCUSSION AND SUMMARY

We have derived new, closed-form solutions (eqs. [46] and
[68]) for the time-dependent Green’s function representing the
stochastic acceleration of relativistic ions interacting with MHD
waves. The analytical results we have obtained describe the

Fig. 3.—Evolution of the particle distribution in the plasma resulting from monoenergetic injection with q ¼ 5/3, a ¼ 0, � ¼ 0:1, and x0 ¼ 1. Panel a depicts the
Green’s function, NG, resulting from impulsive monoenergetic injection (eq. [46]), and panel b illustrates the response to continual monoenergetic injection (eq. [54]) and
the corresponding steady-state solution (eq. [56]) for Ṅ0 ¼ D� ¼ 1.

Fig. 4.—Same as Fig. 3, except for a ¼ 2.
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time-dependent distributions for both the accelerated (in situ)
and the escaping particles. The Fokker-Planck transport equation
considered here includes momentum diffusion with coefficient
D( p) / pq, particle escape with mean timescale tesc / pq�2, and
additional systematic acceleration/losses with a rate proportional
to pq�1, where p is the particle momentum and q is the index of
the wave turbulence spectrum. This specific scenario describes
the resonant interaction of particles with fast-mode and Alfvén
waves, which is one of the fundamental acceleration processes in
high-energy astrophysics (e.g., Dermer et al. 1996).

The new analytical result complements the work of Park &
Petrosian (1995) since it is applicable for any q < 2 provided
spp ¼ q� 2, where spp is the power-law index used by these au-
thors to describe the momentum dependence of the escape time-
scale. The most closely related previous result is given by their
equation (59), which treats the case with q 6¼ 2 and spp ¼ 0, cor-
responding to a momentum-independent escape timescale. Our
analytical solution (eq. [46]) agrees with theirs in the limit q ! 2,
as expected. The general features of our new solution were dis-

cussed in x 4, where it was demonstrated that increasingly hard par-
ticle spectra result from larger values of the wave index q, smaller
values of the escape parameter �, and larger values of the sys-
tematic acceleration parameter a. The rich behavior of the solution
as a function of momentum, time, and the parameters q, �, and a
provides useful physical insight into the nature of the coupled
energetic/spatial particle transport in astrophysical plasmas.
The solutions presented here can be used to describe the ac-

celeration and transport of relativistic ions in astrophysical en-
vironments in which the turbulence spectrum is very poorly
known and can be approximated by a power law, such as �-ray
bursts, active galaxies, magnetized coronae around black holes,
and the intergalactic medium in clusters of galaxies. For exam-
ple, the hard X-ray emission from black hole jet sources such as
Cygnus X-1 (Malzac et al. 2006) and the microquasar LS 5039
(Aharonian et al. 2005) could be powered by the stochastic ac-
celeration of ions in a black hole accretion disk corona that
subsequently escape and interact with surrounding material. In
this scenario, persistent acceleration of monoenergetic particles

Fig. 5.—Evolution of the particle distribution resulting frommonoenergetic injectionwith q ¼ 5/3, a ¼ 0, � ¼ 0:1, x0 ¼ 1, Ṅ0 ¼ 1, andD� ¼ 1. Panel a treats the case
of impulsive injection, with the thin lines representing the particle distribution in the plasma (eq. [46]) and the thick lines denoting the escaping particle spectrum (eq. [60])
in units of �. Panel b illustrates the response to continual monoenergetic injection for the particle distribution in the plasma (eqs. [54] and [56]; thin lines) and for the
escaping particle spectrum (eqs. [64] and [66]; thick lines). See the discussion in the text.

Fig. 6.—Same as Fig. 5, except for a ¼ 2.
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injected into the corona, or flaring episodes averaged over a
sufficiently long time, would produce a time-averaged escaping
distribution of relativistic protons given by equation (68) for
q < 2. Assuming only stochastic acceleration, so that a ¼ 0, the
number distribution of escaping particles with x � x0 takes the
form

Ṅ esc
ss (x) / x (7�3q)=2K ��1ð Þ=2

ffiffiffi
�

p
x2�q

2� q

 !

/
x3�2q; xT

2� qffiffiffi
�

p
� �1=(2�q)

;

x (5�2q)=2 exp �
ffiffiffi
�

p
x2�q

2� q

 !
; x3

2� qffiffiffi
�

p
� �1=(2�q)

:

8>>>><
>>>>:

ð70Þ

When the escaping hadrons collide with ambient gas or stellar
wind material, they would generate X-rays and �-rays via a pion
production cascadewith a very hard spectrum leading up to a quasi-
exponential cutoff. TheGamma-ray Large Area Space Telescope
(GLAST ) will be able to provide detailed spectra from Galactic
black hole sources and unidentified EGRET �-ray sources to test
for the existence of this hard component. Our new analytical
solution can also be used to model the variability of radiation
from ions accelerated in the accretion-disk coronae of Seyfert

galaxies by changing the level of turbulence. Flaring�100MeV
to GeV radiation could be weakly detected by GLAST as a con-
sequence of this process. Additional applications of our work in-
clude studies of the stochastic acceleration of relativistic cosmic
rays in �-ray bursts (Dermer & Humi 2001).

The results we have obtained describe both the momentum
distribution of the particles in the plasma, and the momentum
distribution of the particles that escape to form energetic outflows.
Since the solutions do not include inverse Compton or synchro-
tron losses, which are usually important for energetic electrons,
they are primarily applicable to cases involving ion acceleration.
However, the new solution can be used to treat relativistic electrons
if the escape timescale is shorter than the synchrotron/inverse-
Compton timescale. In order to treat the acceleration of relativistic
electrons, a generalized calculation including both stochastic par-
ticle acceleration and radiative losses is desirable, and we are cur-
rently working to extend the analytical model presented here to
incorporate these effects. Beyond the direct utility of the new
analytical solutions for probing the nature of particle acceler-
ation in astrophysical sources, we note that they are also useful
for benchmarking numerical simulations.
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DPR-S-1563-Y. The work of C. D. D. and P. A. B. is supported
by the Office of Naval Research. The authors also acknowledge
the useful comments provided by the anonymous referee.

APPENDIX

In this appendix we explore the relationship between the momentum diffusion coefficient D( p) and the mean rate of change of the
particle momentum and kinetic energy, using the integral method outlined by Subramanian et al. (1999).

A1. MEAN RATE OF CHANGE OF MOMENTUM DUE TO STOCHASTIC ACCELERATION

In the case of pure stochastic acceleration, the transport equation (1) reduces to

@ f

@t
¼ 1

p2
@

@p
p2D( p)

@ f

@p

� �
: ðA1Þ

The mean momentum, hpi, is defined as a function of t by

h pi � 1

n

Z 1

0

4�p3f ( p; t)dp; ðA2Þ

where the number density n is related to f via equation (2). The associated mean rate of change of the momentum is given byD dp
dt

E
¼ 1

n

Z 1

0

4�p3
@ f

@t
dp: ðA3Þ

Combining this relation with the transport equation (A1) yields

D dp

dt

E
¼ 1

n

Z 1

0

4�p
@

@p
p2D

@ f

@p

� �
dp: ðA4Þ

Integrating by parts once gives D dp

dt

E
¼ � 1

n

Z 1

0

4�p2D
@ f

@p
dp; ðA5Þ

and integrating by parts a second time yields D dp
dt

E
¼ 1

n

Z 1

0

4�f
d

dp
p2D
� 	

dp: ðA6Þ
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It is sufficient for our purposes to consider the evolution of the particle distribution f satisfying the monoenergetic initial condition

f ( p; t)

����
t¼t0

¼ A0�( p� p0): ðA7Þ

Combining this relation with equation (A6), we find that at the initial time t ¼ t0,

D dp

dt

E�����
t¼t0

¼ 1

p2

d

dp
p2D
� 	�����

p¼p0

: ðA8Þ

Dropping the subscript ‘‘0’’ without loss of generality, we conclude that the mean rate of change of the momentum for particles with
momentum p at time t is given by D dp

dt

E
¼ 1

p2

d

dp
p2D
� 	

; ðA9Þ

which agrees with equation (7).

A2. MEAN RATE OF CHANGE OF KINETIC ENERGY DUE TO STOCHASTIC ACCELERATION

The mean kinetic energy, h�i, is defined by

h�i � 1

n

Z 1

0

4�p2�f dp; ðA10Þ

where � is given by equation (3). The associated mean rate of change is given byD d�

dt

E
¼ 1

n

Z 1

0

4�p2�
@ f

@t
dp; ðA11Þ

which can be combined with the transport equation (A1) to obtain

D d�

dt

E
¼ 1

n

Z 1

0

4��
@

@p
p2D

@ f

@p

� �
dp: ðA12Þ

As in the previous section, we integrate by parts to find thatD d�
dt

E
¼ � 1

n

Z 1

0

4�
d�

dp
p2D

@ f

@p
dp: ðA13Þ

Next we employ the derivative relation

d�

dp
¼ v ðA14Þ

and integrate by parts again to obtain

D d�

dt

E
¼ 1

n

Z 1

0

4�f
d

dp
vp2D
� 	

dp: ðA15Þ

Applying the initial condition given by equation (A7), we find that at the initial time t ¼ t0,

D d�

dt

E�����
t¼t0

¼ 1

p2
d

dp
vp2D
� 	�����

p¼p0

: ðA16Þ

Dropping the subscript ‘‘0’’ without loss of generality, we conclude that themean rate of change of the kinetic energy for particles with
momentum p at time t is given by

D d�
dt

E
¼ 1

p2

d

dp
p2vD
� 	

; ðA17Þ

which agrees with our equation (8) and also with equation (13) from Miller & Ramaty (1989).
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