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1. INTRODUCTION

The analyses of queuing systems, based on Markov
processes, are in most cases restricted to steady state
behavior i.e. to systems in equilibrium. The reason for
that lies in the fact that for obtaining time dependent
system state probabilities of these queuing systems, a
system of linear first order differential equations has to
be solved. Unfortunately, analytical solutions rarely
exist and if they exist, their obtaining tends to be quite
difficult and complicated.

Several authors have obtained the results time
dependent system state probabilities (properties) of
some queuing systems in analytical form. These
analytical expressions are usually obtained by use of
generating functions and transforms such as Laplace
transform, z-transform etc. The derived expressions are
very complicated and require alternative computational
techniques by the fact that they often refer to Bessel
functions.

The transient analysis of single server queuing
systems with infinite queue capacity, based on Markov
processes i.e. M/M/1, can be found, for example, in the
works of: Morse [1,2], Greenberg and Greenberg [3],
Heathcote and Winer [4], Gross and Harris [5],
Kleinrock [6], Cooper [7], Takacs [8].

The main idea of this paper is to transform, using
elementary mathematical operations, the expression for
time dependent system state probabilities of single
server queuing system with finite queue -capacity
M/M/1/K, in order to find its limit value when the
number of places in the queue (m) tends to infinity. In
another words, main idea is to obtain analytical
expression for time dependent system state probabilities
of single server queuing system with infinite queue
capacity M/M/1 indirectly without solving adequate
system of linear differential equations, in the case that
the system is empty at the beginning.
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Time Dependent System State
Probabilities of Single Server Queuing
System with Infinite Queue

Analytical expression for time dependent system state probabilities of
single server queuing system with infinite queue capacity M/M/1 is
derived. Expression is derived by finding the limit value of expression for
time dependent system state probabilities of single server queuing system
with finite queue capacity M/M/1/K, when number of places in the queue
tens to infinity, in the case that system is empty at the beginning. Only
elementary mathematical operations are used.
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2. M/M/1/K QUEUING SYSTEM

The corresponding system of linear first order
differential equations, defining the time dependent state
probabilities of the M/M/1/K queuing system, is [6]:

po(t)==A-po(1)+u-pi (1)
)= 2 pis (=R ) (1) s (1) 1)

where: A=const. is mean arrival rate, y=const. is mean
service rate, K=m+1 is maximal possible number of
units (customers) in the system, p(f) is time dependent
probability that the system at the time ¢ will be in the
state i, and p;(t)=dp;(t)/ dr is first derivation of the
pi(0) per time, i=0,1, ..., K, t > 0.

Analytical solution of differential equations system
(1) may be found in works by several authors, such as:
Morse [2], Takacs [8], Sharma and Gupta [9], Tarabia
and El-Baz [10], Bugaric [11] etc.

General analytical solution of system (1), without
integration constants expressions, may be written in the
following form [11]:

Pi(t):CO'p +(\/;) P sinHk(m).

{Jp -sin[ (i+1)- 8, (m) ] -sin (i-6, (m))} 2)

'€|:2- A-p1-cos G, (m)—/?,—,u}t

i1 m+l
i—1 . Ck

where: i=0,1,2, ..., K, p=A/u < 1 is utilisation factor,
O(m)=k-7/(m+2), C; are integration constants
determined upon initial values of system state
probabilities (7;).

The case when the system is empty at the beginning
means that there is no customers being present in the
system initially i.e. at =0. In such case the initial values
of the system state probabilities are:

1 i=0 .
7[,-—{0’ (20 (=O0L2..m+l. 3)
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Integration constants, determined upon the initial
values of the system state probabilities (3), are [11]:

Co=(-p)/1-p"*?), (4)

Cp =—2-A-sin G (m)/{(m+2)-

.[2. Al -cosﬁk(m)—/l—,u]};k =12,...m+1 ©)

By substituting (4) and (5) into (2) the final expression
for time dependent system state probabilities, whose limit
has to be found when m—>oo, has following the form:

1-p)-p -1 _ )
=L () e
mil o sin 6, (m)
kz::lm+2 2-\//1-,u-cos¢9k(m)—/1—,u ©

{Jp-sin[(i+1)-6,0m]-sin(i- 6 m)}-

ENAHLCSO (M) 1 ]

3. LIMIT OF THE SYSTEM STATE PROBABILITIES
WHEN m—e

Applying known trigonometric formulas, expression (6)
can be transformed as:

i

o m+2 2-\A-pu-cos (m)—A—pu
-{—\/;-{cos(iﬂk (m))—cos[(i+2)-0k (m)}}+ (7
+cos[(i—1)~6k(m)]—cos[(i+1)-6'k(m)]}A

'62' ﬂﬂlcosgk(m)’l — O,L 2,’m+1

On the other side, part of expression (7)
—1/(2-4JA- 41 -cos 6 (m)— A— ) is solution of definite
integral:

TeZ- A -t-cos Gy (m) .e—(/1+,u)-tdt (8)

0

Previous definite integral, using the following formulas:
1 (; —i
Cosgk(m)zg.(el 9k(m)+e l@k(m))’ i=+—1 [12]

%2» Z‘u~t‘(ei'gk(m)+e_i"9k (m))
e =

= iln : (zmt) 1Ok (m) o]

n=—o0

LA i)=1, 2w 1) [13]
can be transformed into the following form:
TIO(Z'J/%-/J -t)'e_(’H’u)'tdt-i-
. . ©)
+2- Y cos(n-6; (m)).jln(z. [A- .,).e—(/1+ﬂ)-td,

n=1 0
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where In(2'1//1-ﬂ -t) is modified Bessel function of

the first kind of order n (n - integer number). [14]
Solution of definite integral: (10)

Tln (2-41-,11 -t)-e_(’ﬂﬂ)"dt ,n=0,1, ..., involves
0

(A+u)
function and for 4-A-u/(A+u)* <1 (450, 1>0 and
A<p) it is:

i F[n;1+rjr(l+;+rj22rn‘ .{m]zr+n
r=0r(”2“j.r(1+’;j~(/1+y).r!~(n+r)! Atu

where F(x) is Gamma function.

1 4-4-
HypergeometricPF' QH% J+ %}, {1 + n}, A:l

Previous expression depends only from n (n =0,1,...)
and in further text it will be denoted as R(n). Analytical
values of R(n) in dependence of A and u will be
calculated later.

Finally, the solution of definite integrals given by
expression (9) i.e. (8) is:

R(0)+2- Y cos(n- 6, (m))R(n) . (11)
n=1
Replacing —1/(2-4/A- - cos6, (m)—A— ) with expre-
ssion (10), expression (7) obtains the following form:

i

1-p)- =1 _(24u)
(1) =2 (o) e

l-p
m+1 1 o
SN — | ROY+2- .6, ‘R .
1;””2 )+ HZ::lcos(n ) (m))-R(n)

-{—\/;-{cos(i -6, (m))—cos[(i+2) -6, (m)]}+ (12)
+cos[(i ~1)-6, (m)]—cos[(i—i-l) -6, (m)}}.

ENAHLCOSO (M) 012 gl

For further analysis, previous expression should be
written in expanded form i.e. decomposed into
individual sums per k. After multiplying and dividing
expression (12) by 7z, elementary mathematical
transformations and application of known trigonometric
formulas, a new convenient form for finding the limit of
expression (11) is following:

_l=p)p' S v e
pl.(t)_l_pwm.(m e .
+1
| {_ VP R(0)- P' S cosli - 6 (m))- 2V AH 108 _
7T k=1
+1
—lmz cos[(i+2)~¢9k(m)]~e2' Ap-tcosby (m) |
T k=1
+1
+R(0).l.mZ: COS[(i—l)- 6, (m)]_eZ- A-pt-t-cos O (m) _
T k=1
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+1
“RO) =S cos(i+1): @ (m)] > VE#Te0sbim) _
T k=1

o St

+1
{1 mZCOS[(z+n) Gk(m)] eENA R reos O (m)
T k=1

m+1
oL S cos|(i—n)- 6 (m)]- &> ﬂ't.cosek(m)}_
T k=1

- §R(n).

m+1
{71: S cos[(i+n+2)- 6 (m)]- 2 VAH TS0 L (13
k=1

+1
+i chos[(l—n+2) Hk(m)] 2N AHcosOy (m)}}+
7T k=1

+ X R(n)

n=l1
m+1
{l S cos|(i +n—1)- G’k(m)] ZNA M oSO (m)
T k=1

m+1
+i S cos|(i—n—1)- Hk(m)] e ﬂ't'cosg"(m)}—
T k=1

_ iR(n).

1 m+l N
-{— S cos|(i+n+1) 6?k(m)].e2 Apretcosf (m)
T k=1

m+1
AL S cos|(i—n+1)- 6, (m)]- e* ﬂ”tcmg’c(m)}}
T k=l

i=0,1, ..., m+1.
According to definition of definite integral, integral

sum becomes definite integral if the following limit
exists [15]:

lim zf )- Ax; = jf (14)

n—oo
max Ax; %0

X; < ;i < Xitl» A)Cl' =Xipl — X i:O, 1, ceny (l’l—l)
Each of the sums in expression (13) according to
(14) can be transformed into definite integral:

)
J=[r()

&

-d@ when m—co in the following way:

(k+1)-7 k-7
m+2  m+2’

- A6 (m) =61 (m)— 6 (m) =

A6 (m)=—"— k=172, ... m+l. Values for
k 2

A, (m) are independent from k and tens to infinity
when m—oo,
— The upper bound 8, (k = m+1) of integral J is
(m+1)-7

determined with: lim ————> 71, 6, =71,
m—oo m-+
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— The lower bound 6y (k = 1) of integral J is

determined with: lim -7, 6,=0.
m—eo M+ 2

According to the previous text, limit when m—oo and
AG;, (m) — 0 of first sum per k in expression (13) is:

1 m+l
lim —- 3 cos(i- Gk(m)) A-pu-:c08 8y (m) “AG, (m) =
m—yee I =]
Agk—>0
1 ”® At
:—-jcos(i-e)-ez lﬂtcose-dﬂ.
o

Previous definite integral is, in fact, a modified
Bessel function of the first kind of order i of argument

At ie. [14, 16]:

T
L Teos(i-6)- 2VF#1e50 qg - 1o JZ 1 1),
V4
0
The limit of all sums per k in expression (13) when

m—>c0 and A@;,(m)— 0 can be determined in the same

way.
The limit of the first addend in expression (13) for p
< 1 when m—eo is:

(1-p)- o'

lim 2B (1-p)-p',i=12, ., 00 (15)

m—yoo 1—p

Replacing all sums per k in (13) with its limit and
first addend of (13) with expression (15), the limit of
time dependent system state probabilities when m—oo,
is obtained as:

pi(1)=(1-p)-p ~2-({p) -
RO {0 [ (TR 1) a2V T 1)

iy (2E )Ly (2 E o))+

L Rp (2 ) 1 (2B 1))
—Ii+n+2(2‘W‘t)—li_m(zm-t)}
RN o R

Lienst (2 E B )= E (22101

i=0,1,...,00

Previous expression, using known relation between
modified  Bessel  functions of  first  kind

In_l(x)—lnﬂ(x):aln(x), can be reduced to [13]:
X

pi(t)=(1-p) o _/1.(\/;)‘—1 Lo (Audt

{R(o){—p-% Ll T o)

+2L'Ii(2’m't)}+

At
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+§1R(”){_ {z (\l/ﬂ_l) t+n+1( '\/m't)"'(”)

2 (1—n+1
2 \/— l n+1( mt)‘|+
2-(l+n)

+2.m z+n( \/ﬁ t)
2. (l— )

Yodhat ol u t)}},i=o,1,...,oo

Analytical values of R(n) can be determined
indirectly from expression (17). First, it is necessary to
replace initial conditions (3) into (17) i.e. for t=0,
pp0)=1, p;(0)=0,i=1,2, ..., 0

In order to determine the values of expression (17) for
t=0, for each system state probability the L'Hospital-
Bernoulli rule has to be applied to solve undefined forms
of type 0/0 which will appear. Also, the formula for
differentiation of modified Bessel functions of the first

dI(x):l[

kind: (041,44 (x)] as well as the fact that

Ip(0)=1 and 7,(0)=0,n=1,2, ..,

Applying previous to expression (17) for various
values of parameter i (different system state
probabilities), the system of recurrent formulas suitable
for determining analytical values of coefficients R(n),
n=0,1,2, ..., is obtained as:

1=1-p+ [ R(0)-R(2)]
0=p-p* = 2[R(0)-R(2)]+

A-p [R(1)-R(3)]

0=p>-p*~2-Jp [R(1)-R(3)]+ (18)
+2-p-[R(2)-R(4)]

0=p>-p*+2-Jp-p [R(3)-R(5)]-
~1p[R(2)-R(4)]

etc.

In order to solve the system (18) it is necessary to
know first two values of coefficients R(n) i.e. R(0) and
R(1). Those values can be obtained by solving definite
integral (10) for n=0 and n=1.

General analytical solution of the system (18) is:

R(n)=/p)"-

Finally, by replacing (19) in (17), analytical expression
for the time dependent system state probabilities of single
server queuing system with infinite queue capacity M/M/1,
obtained as the limit value of the system state probabilities
of single server queuing system with finite queue capacity
M/M/1/K when the number of places in the queue (m)
tends to infinity, has the following form:

have to be applied.

R T (19)
m—A
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orl I o +0) 1o I )
+i(x/;)"'[—x/;'(i+”+1)'Ii+n+1(2'm'f)—(20)
_\/_ n+l tn+1(2'm't)+

+(i+n)- t+n( mt)

Loy i=ot, e

4. SIMULATION MODEL OF M/M/1 QUEUING
SYSTEM

+(i—n)-1i_

Validation of the expression for the time dependent
system state probabilities of single server queuing
system with infinite queue capacity M/M/1 (20) will be
done by using adequate simulation model (discrete
event simulation). The reason for that is the fact that the
system of infinite differential equations can not be
exactly solved with known numerical methods.

START

AW, No_, d,

sim’ smz int

=
|
|
|

initial system state

w\)

un

X; - histogram of absolute frequencies X
of single system states in dependence -
of given interval length d,,,
considering all simulation
experiments;

f_'

Pl

p; - histogram of relative frequencies
(probablllte%) of single system states, i
X / (No\lnl Xl)?’l) !

END

Figure 1. Algorithm of simulation model.
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arrival

=N+l

ws

service

Figure 1. Algorithm of simulation model. (continue)

The simulation model used for validation of
expression (20) as output has only change of system
state probabilities in time in dependence of A - mean
arrival rate and p - mean service rate i.e. utilisation
factor p. The algorithm of the developed simulation
model is shown in figure 1. Initial conditions for
simulation model (experiment) are:

— number of units in the system as well as in the queue
in equal to zero,

— servicing channel is free (in the state "waiting"), and

— first unit comes to the system at 7=0.

Inter arrival times of units to the system are
generated according to exponential distribution with
parameter A, while unit servicing times are generated
according to exponential distribution with parameter u.

For every time unit during simulation time, in each
simulation experiment, time and system state are written
in separate database (depending on system state).

When given number of simulation experiments are
finished, from created databases, absolute frequencies of
system states in given time intervals are calculated
(histogram of absolute frequencies). After that relative
frequencies histogram i.e. system state probabilities, in
given time intervals, are calculated.

Overview of labels used in the simulation model:

— State - state of servicing channel: "Wo" - work,

"Wa" - waiting,

— Noyg;,, - number of simulation experiments,
— N, - current number of units in the queue,
— N, - current number of units in the system,

— - current system time,
— t,- moment of arrival of new unit to the system,

634 = VOL. 45, No 4, 2017

— tgim - duration of simulation experiment,

— 5 - moment of service completition i.e. change of
servicing channel state,

— tyr - servicing duration,

— d;,; - interval length for system state absolute and
relative histograms,

— X,isr - time dependent system state vector for each
simulation experiment,

— X; - time dependent absolute frequencies of j-th
system state,

— pj - time dependent relative frequencies (proba-
bilities) of j-th system state,

— RN - random number generated according to uni—

form distribution in interval from O to 1.

Duration of each simulation experiment is 6000 time
units, the number of executed simulation experiments is
4000 for one pair of values for A and u i.e. utilisation
factor p.

5. COMPARISON OF ANALYTICAL AND SIMULA-
TION RESULTS

Diagrams in pictures 2, 3, 4 and 5 show change in time
of the first four system state probabilities (pg, p;, p» and
p3) of single server queuing system with infinite queue
capacity M/M/1, for different values of utilisation factor
p, such as 0.35, 0.5, 0.65 and 0.8 respectively. Time
dependent system state probabilities obtained as a result
of simulation are marked with symbols (*, +, , ),
while time dependent system state probabilities obtained
using expression (20) are not marked.

1,00

0,80

System state probabilities

0,00
0 1000 2000 3000 4000 5000 6000

Time

Figure 2. Time dependent system state probabilities
(p=0.35).

System state probabilities

0 1000 2000 3000 4000 5000 6000
Time

Figure 3. Time dependent system state probabilities
(p=0.5).
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System state probabilities

0 1000 2000 3000 4000 5000 6000
Time

Figure 4. Time dependent system state probabilities (p=0.65).

1,00

0,40

System state probabilities

0 1000 2000 3000 4000 5000 6000
Time

Figure 5. Time dependent system state probabilities (p=0.8).

Analysis of results presented in figures 2+5, shows
that the values of the system state probabilities obtained
as a result of simulation match values of the system state
probabilities calculated using expression (20). This leads
to the conclusion that expression (20) for time dependent
system state probabilities of single server queuing system
with infinite queue capacity M/M/1 is correct.

6. CONCLUSION

In this paper, analytical expression for time dependent
system state probabilities of single server queuing system
with infinite queue capacity M/M/1 is derived as a limit
value of expression for the time dependent sys—tem state
probabilities of single server queuing system with finite
queue capacity M/M/1/K. The limit value is found in the
case when the number of places in the queue tends to infi—
nity and the case that the system is empty at the beginning.

Validation of derived expression for the time
dependent system state probabilities of single server
queuing system with infinite queue capacity M/M/1 is
done by developed simulation model.

The application of derived expression can be found in
the analysis of non-stationary working regimes of trans—
portation devices in industry. For example, the source of
transportation units (pallets) is an output from production
(final goods), while service consists of storing pallets into
warehouse using one AS/RS device. All pallets have to be
stored in the warehouse, so the limitation of input zone
(queue) of the warehouse, theoretically, does not exists.
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BEPOBATHORE CTABA Y 3ABUCHOCTH O[]
BPEMEHA JEJJTHOKAHAJIHOI' CUCTEMA
MACOBHOTI OIICJIY/KUBABA CA
HEOT'PAHUYEHUM PEJIOM

VY. Byrapuh, /I. [lerpoBuh, M. I'epacumoBuh,
3. lerposuh

AHaNIMTHYKA H3pa3 3a BepoBaTHOhe crama Yy
3aBHCHOCTM OJl BPEMEHA, jeOHOKAHAJHOI CHCTeMa
MacOBHOT OICIY)XHBamba Ca HEOrPAaHMYCHHM peIoM
M/M/1, je wm3BemeH. M3pa3z je HM3BeACH HaTaXECHEM
rpaHUYHE BPEIHOCTH HM3pa3a 3a BepoBaTHohe crama y
3aBHCHOCTH OJI BpEMEHa jeJHOKAHAIHOT CHCTEMa
MacOBHOT OICIYXXHBamka Ca OrPAaHHYCHHM PEIOM
M/M/1/K, xama Opoj Mecta y peny TexXH
0CCKOHAYHOCTH, V CITy4ajy Kaja je CUCTeM Ha MOYETKY
pama mpasad. [lpu u3Bohemy KopumheHe cy camo
elIeMEHTapHEe MAaTeMaTHIKe OIepalyje.
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