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We develop a new algorithm based on the time-dependent variational principle applied to matrix

product states to efficiently simulate the real- and imaginary-time dynamics for infinite one-dimensional

quantum lattices. This procedure (i) is argued to be optimal, (ii) does not rely on the Trotter decomposition

and thus has no Trotter error, (iii) preserves all symmetries and conservation laws, and (iv) has low

computational complexity. The algorithm is illustrated by using both an imaginary-time and a real-time

example.

DOI: 10.1103/PhysRevLett.107.070601 PACS numbers: 05.10.Cc, 02.70.�c, 03.67.�a, 75.40.Gb

The density-matrix renormalization group (DMRG) is

arguably the most powerful tool available for the study of

one-dimensional strongly interacting quantum lattice sys-

tems [1]. The DMRG—now understood as an application

of the variational principle to matrix product states (MPSs)

[2]—was originally conceived as a method to calculate

ground-state properties. However, there has been a recent

explosion of activity, spurred by insights from quantum

information theory, in developing powerful extensions al-

lowing the study of finite-temperature properties and non-

equilibrium physics via time evolution [3]. The simulation

of nonequilibrium properties with the DMRG was first

attempted in Ref. [4], but modern implementations are

based on the time-evolving block decimation algorithm

(TEBD) [5] or the variational matrix product state ap-

proach [6].

At the core of a TEBD algorithm lies the Lie-Trotter

decomposition for the propagator expðidtĤÞ, which splits

it into a product of local unitaries. This product can then be

dealt with in a parallelized and efficient way: When ap-

plied to an MPS, one obtains another MPS with a larger

bond dimension. To proceed, one then truncates the MPS

description by discarding irrelevant variational parameters.

This is such a flexible idea that it has allowed even the

study of the dynamics of infinite translation-invariant lat-

tice systems via the infinite TEBD [7]. Despite its success,

the TEBD has some drawbacks: (i) The truncation step

may not be optimal; (ii) conservation laws, e.g., energy

conservation, may be broken; and (iii) symmetries, e.g.,

translation invariance, are broken (although translation

invariance by two-site shifts is retained for nearest-

neighbor Hamiltonians). The problem is that when the

Lie-Trotter step is applied to the state—stored as an

MPS—it leaves the variational manifold and a representa-

tive from the manifold must be found that best approxi-

mates the new time-evolved state. There are a variety of

ways to do this based on diverse distance measures for

quantum states, but implementations become awkward

when symmetries are brought into account.

In this Letter, we introduce a new algorithm to solve the

aforementioned problems—intrinsic to the TEBD—with-

out an appreciable increase in computational cost. The

resulting imaginary-time algorithm quickly converges to-

wards the globally best uniform MPS (uMPS) approxima-

tion for translational-invariant ground states of strongly

correlated lattice Hamiltonians, and the corresponding

real-time evolution evolves an initial state without violat-

ing energy conservation for constant Hamiltonians or the

conservation of any other quantities dictated by symmetry.

The complexity of our approach can be made to scale as

D3, comparable with current implementations, where D is

the bond dimension of the uMPS. The low complexity of

the algorithm developed here should have implications for

related fields. For example, in the case of ultracold atoms

moving in an optical lattice [8] it should be possible, via a

straightforward truncation, to carry out accurate simula-

tions of the atomic motion for systems involving large

densities of strongly interacting particles. Another appli-

cation is to the calculation of spectral functions Sðk;!Þ for
interacting particle systems: The improved method de-

scribed here will directly translate (via a double Fourier

transform as in the second reference of [5]) to better

estimates for these quantities.

We now introduce the variational manifold MuMPS of

uniform MPS for an infinite lattice of spin-d=2 degrees of

freedom, parameterized via

jc ðAÞi ¼
X

d

fskg¼1

vy
L

�

Y

n2Z

Asn

�

vRjsi; (1)

where jsi � j . . . s1s2 . . .i and vL and vR are two

D-dimensional vectors, which are presently argued to be

irrelevant. The variational parameters A comprise the set of
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D�D matrices As (s ¼ 1; 2; . . . ; d) and are denoted via

a dD2 vector with entries Ai ¼ As
�;�, with i ¼ ð�; s; �Þ a

collective index. The uMPS variational manifold has

a gauge invariance: Replacing As
� GAsG�1 for inverti-

ble G results in an identical state. We do not fix the gauge

and simply assume that As are completely general complex

matrices. We do, however, assume that the transfer matrix

E ¼
P

d
s¼1 A

s � �As has precisely one eigenvalue 1 with

corresponding left and right eigenvectors ðlj and jrÞ of

length D2, to which we can associate D�D matrices l
and r, respectively, by simply reshaping them. These ma-

trices are Hermitian and positive and assumed to have

full rank. We choose the normalization so that ðljrÞ ¼
TrðlrÞ ¼ 1. In addition, we assume that all other eigenval-

ues of E lie strictly within the unit circle; i.e., the spectral

radius of E� jrÞðlj is smaller than 1. These conditions

allow one to write for any local operator Ô acting on n
contiguous sites

Oð �A;AÞ ¼ hc ð �AÞjÔjc ðAÞi=hc ð �AÞjc ðAÞi

¼ ðlj
X

d

s;t¼1

Ot1...tn;s1...sn
ðAs1 � � �AsnÞ � ð �At1 � � � �AtnÞjrÞ:

The boundary vectors vL and vR do not feature in normal-

ized expectation values and thus do not contain any varia-

tional degrees of freedom.

Denote a translation-invariant nearest-neighbor

Hamiltonian as Ĥ ¼
P

n2ZT̂
nĥT̂�n, where T̂ is the shift

operator and ĥ acts nontrivially only on sites zero and one.

We now try to approximate the time evolution generated by

Ĥ of a uMPS jc ðAÞi without ever leaving the variational

manifold of uMPS with fixed bond dimension D, by

introducing a time-dependent parameterization AðtÞ.
Insertion into the time-dependent Schrödinger equation

results in _Aij@ic ðAðtÞÞi ¼ �iĤjc ðAðtÞÞi, where we de-

note @i for @=@A
i. Whereas the left-hand side (LHS) is a

linear combination of the tangent vectors j@ic ðAðtÞÞi
that span the tangent plane TAMuMPS, the right-hand

side (RHS) is a general vector in Hilbert space, and

this equation does not have an exact solution for _Ai.

The best approximation is obtained by minimizing

k _Aij@ic ðAðtÞÞi þ iĤjc ðAðtÞÞik. The minimizer _Ai is

found by orthogonally projecting the evolution vector

Ĥjc ðAðtÞÞi onto the tangent plane, as illustrated in

Fig. 1, resulting in

h@�|c j@ic i _Ai ¼ �ih@�|c jĤjc i: (2)

TheLHS of Eq. (2) contains the dD2 � dD2 Grammatrix

of the tangent vectors G�{;jð �A; AÞ ¼ h@�|c ð �AÞj@jc ðAÞi.

Expressions for this Gram matrix and the vector in the

RHS of Eq. (2) are given by

B0�{G�{;jB
j ¼ jZj½ðljEB

B0 jrÞ þ ðljEA
B0ð1� EÞ�1EB

AjrÞ

þ ðljEB
Að1� EÞ�1EA

B0 jrÞ

þ ðjZj � 1ÞðljEA
B0 jrÞðljEB

AjrÞ�;

B�{h@�{c jĤjc i ¼ jZj½ðljHAA
ABjrÞ þ ðljHAA

BAjrÞ

þ ðljHAA
AAð1� EÞ�1EA

BjrÞ

þ ðljEA
Bð1� EÞ�1HAA

AAjrÞ

þ ðjZj � 2ÞðljEA
BjrÞðljH

AA
AAjrÞ�;

where EA
B ¼

P

d
s¼1 A

s � �Bs (note the identity E ¼ EA
A)

andHAB
CD ¼

P

d
s;t;u;v¼1hs; tjĥju; viðA

uBvÞ � ð �Cs �DtÞ. In these

expressions, ð1� EÞ�1 should be interpreted as the pseu-

doinverse of (1� E); i.e., it produces zero when acting

on the left or right eigenvector of E with eigenvalue 1:

ðljð1� EÞ�1 ¼ 0 ¼ ð1� EÞ�1jrÞ. The overall factors jZj
are a consequence of the infinite volume of our system and

cancel, as they appear in both the LHS and RHS of

Eq. (2). The additional divergent terms on the last line

of the brackets disappear if we restrict ourselves to tangent

vectors that are orthogonal to the uMPS itself, so that

hc ðAÞj@ic ðAÞBi ¼ jZjðljEB
AjrÞ ¼ 0. The evolution along

jc ðAÞi changes the norm or phase of the state, which is

not a desired effect.

This construction can also be derived from an action

principle and is known as the time-dependent variational

principle (TDVP) [9,10]. The resulting TDVP equations

[Eq. (2)] can be shown to be sympletic [11]. Hence, they

respect energy conservation as well as conservation of all

constants of motion, such as the expectation value of

generators of symmetries. Since only expectation values

occur in the equations of motion, one can use techniques

familiar from DMRG, including the decomposition of the

matrices Ai into irreducible representations of the relevant

symmetry group. Furthermore, this approach is manifestly

translation-invariant. For time-reversal-invariant operators,

FIG. 1. A sketch of the manifold M ¼ MuMPS (wire frame)

embedded in state space. The tangent plane TAM toM (rotated

gray square) in a uMPS jc ðAÞi (black dot) is spanned by

generally nonorthogonal coordinate axes j@1c ðAÞi and j@2ðAÞi
(dotted lines). The direction iĤjc ðAÞi of time evolution (arrow

with solid head) is best approximated by its orthogonal projec-

tion into the tangent plane (arrow with open head). The optimal

path jc ðAðtÞÞi (gray curve) follows the vector field generated by

these orthogonally projected vectors throughout M.
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the TDVP equations are also invariant under time reversal

(see [12] for a Trotter-based approach that recovers time-

reversal invariance). This approach does not require any

truncation and is thus globally optimal within the manifold

MuMPS.

Constructing the relevant quantities and solving Eq. (2)

for _Ai involve operations with a computational complexity

of OðD6Þ. Using an iterative method to implement

ð1� EÞ�1 and then solving for _Ai can reduce this toOðD3Þ.
However, the matrix G�{;j is not invertible: Because of the

gauge invariance in the (u)MPS parameterization, not all

dD2 tangent vectors are linearly independent. Defining the

action of a 1-parameter group of gauge transformations

Gð"Þ ¼ expð"XÞ as Asð"Þ ¼ Gð"ÞAsGð"Þ�1, we obtain

that dAs=d" ¼ XAs � AsX. Because of gauge invariance,

there is no corresponding change in jc ðAð�ÞÞi and thus

djc ðAð"ÞÞi=d" ¼ ðdAi=d"Þj@ic i ¼ 0. Indeed, any vector

Bi
X defined by Bs

X ¼ XAs � AsX produces a zero norm

state, evident when introducing it into the explicit form

of Bij@ic ðAÞi. The vectors Bi
X thus span the null space of

G�|;i. Any vector B in the tangent plane is gauge equivalent

to B0 ¼ Bþ BX,8 X 2 CD�D. There are D2 � 1 linearly

independent choices of BX, as we can easily prove by

noting that BX ¼ 0 requires that
P

d
s¼1ðA

sÞylBs
X ¼ 0 ¼

P

d
s¼1ðA

sÞylXAs � lX. Since E has a single eigenvalue 1,

and l has full rank, the only solution to this equation is

X ¼ 1. In order to invert G�{;j, we fix the gauge which

eliminates D2 � 1 components of B. Norm preservation

[ðljEB
AjrÞ ¼ 0] fixes one more component, resulting in a

ðd� 1ÞD2-dimensional tangent plane.

Different choices for fixing the gauge of tangent vectors

result in different effective Gram matrices with different

condition numbers. By using the gauge-fixing condition

ðljEB
A ¼ 0—which also includes norm preservation and

imposes the condition that the eigenvalue and left eigen-

vector of the transfer matrix do not change to first

order—the effective Gram matrix reduces to B0�{G�{B
j ¼

jZjðljEB
B0 jrÞ and all nonlocal contributions are effectively

canceled. Let us now explain how to exploit this result even

further. We start by defining the D� dD matrix L�;ðs�Þ ¼

½ðAsÞyl1=2���. Clearly, the null space of this matrix is

Dðd� 1Þ-dimensional. Let the Dd�Dðd� 1Þ matrix VL

with entries ½VL�ð�sÞ;� be a matrix of orthonormal basis

vectors for this null space, which can be obtained from,

e.g., the singular value decomposition of L and thus sat-

isfies LVL ¼ 0 and Vy
LVL ¼ 1. We also introduce the

notation Vs
L for theD�Dðd� 1Þmatrix with components

½Vs
L��;� ¼ ½VL�ð�sÞ;�. If we now group the ðd� 1ÞD2 inde-

pendent components of B in a Dðd� 1Þ �D matrix x, we

can use a parameterization BðxÞ given by BsðxÞ ¼

l�1=2Vs
Lxr

�1=2. One can check that this parameterization

satisfies the left gauge-fixing constraint ðljEBðxÞ
A ¼ 0,

since VL contains only null vectors of L, and that

B0�{ðxÞG�{jB
jðyÞ ¼ jZjtr½xyy�, since the vectors in VL are

orthonormal. Up to the overall diverging factor jZj that
cancels in the LHS and RHS of Eq. (2), we have found a

linear parameterization BðxÞ for which the effective Gram

matrix is the unit matrix. This same parameterization

cancels the last two terms in h@�{c jĤjc i. The third term

is still nonlocal and requires the inversion of 1� E. This is
a pseudoinverse as E has a single eigenvalue 1 and 1� E is

thus singular. Let ðKj ¼ ðljHAA
AAð1� EÞ�1. We can safely

replace ðljHAA
AA by ðljHAA

AA � hðlj, where h ¼ ðljHAA
AAjrÞ,

since ðljð1� EÞ�1 ¼ 0. Then, by replacing 1� E with

the nonsingular matrix 1� Eþ jrÞðlj, we iteratively solve

for the D�D matrix K from

K �
X

d

s¼1

ðAsÞyKAs þ tr½Kr�l ¼ ½ðljHAA
AA� � hl

with ½ðljHAA
AA� ¼

P

stuvhstjĥjuviðA
sAtÞylðAuAvÞ. Tracing

this equation shows that tr½Kr� ¼ ðKjrÞ ¼ 0 as required.

Finally, we define the Dðd� 1Þ �D tensor F

F ¼
X

s;t¼1

dðVs
LÞ

yl1=2CstrðAtÞyr�1=2

þ
X

d

s¼1

ðVs
LÞ

yl�1=2

�

X

d

t¼1

ðAtÞylCts þ KAs

�

r1=2;

where Cst ¼
P

uvhstjĥjuviA
uAv. This definition allows

us to write kBiðxÞj@ic i � Ĥjc 2ik2 ¼ jZjtr½xyx� xyF�
Fyxþ const�. This expression is minimized by choosing

x ¼ x� ¼ F and thus _Ai ¼ �iBðx�Þ. Note that, thanks to

the iterative solver, all steps can be performed in OðD3Þ
computation time.

Having now an explicit construction of _Ai, the simula-

tion of time evolution with the TDVP now boils down to

integrating a set of nonlinear coupled differential equa-

tions. The simplest numerical integrator is built on the

Euler method and proceeds as follows. (i) Construct

x� ¼ F from the previous paragraph. (ii) Set Aðtþ dtÞ ¼
AðtÞ � idtBðx�Þ. (iii) Fix the gauge and norm of A by

rescaling A. (iv) Calculate the energy and evaluate the

step, change the time step dt if necessary.
Step (iii) is required since the gauge-fixing condition

only fixes the norm and left eigenvector up to first order,

and higher-order corrections are generally present. This

simple implementation is already useful for finding ground

states through imaginary-time evolution (dt ! �id�). The
TDVP produces the best approximation to a gradient de-

scent in the full Hilbert space, in contrast to a pure gradient

descent in parameter space (see [13]). For real-time evo-

lution, a simple first-order Euler integrator does not inherit

the symplectic properties of the differential equations, and

a more advanced integrator (see [10]) should be used.

We now illustrate the power of our approach. Using

imaginary-time evolution with the Euler implementation,

we have obtained a uMPS approximation for the ground

state of the S ¼ 1 Heisenberg antiferromagnet. The TDVP
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stops when h@�{c jĤjc i ¼ 0, which indeed signals a mini-

mum in the energy expectation value. Since the gradient

has zero length at the minimum, it automatically decreases

in size as we approach it, and there is typically no need to

reduce the size of the time step. This should be compared

with the (infinite)TEBD case, where reduction of the time

step, and thus automatic slowing-down, is necessary to

overcome the Trotter error. An ordinary laptop or PC

allows one to find the ground state up to D ¼ 1024 in less

than 1 h (without exploiting symmetries), resulting in a

ground-state energy density e ¼ �1:401 484 038 971 2ð2Þ
obtained with step size dt ¼ 0:1. Since we can easily

calculate the norm of the gradient as � ¼ kx�k, we can

continue the evolution until � has converged below a

specified tolerance level. The convergence of the energy

density can be shown to be Oð�2Þ and can already be far

beyond machine precision. This allows a much more ac-

curate localization of the energy minimum than with the

ordinary variational principle based on convergence of the

energy and is useful to, e.g., obtain an accurate conver-

gence in the entanglement spectrum. The entanglement

spectrum can offer valuable information but is not con-

verged very accurately by other approaches (see [14] for an

example). Table I shows how the first Schmidt values of the

uMPS ground state for the Heisenberg chain atD ¼ 128 at

� ¼ 10�10 accurately reproduce the degeneracy according

to half-integral spin representations. We can also assess

the error of being confined to the manifold and derive from

this a construction to optimally increase the bond dimen-

sion. Rather than starting from a random state atD ¼ 1024,

we can progressively build better approximations at

larger D [10].

Using the time-reversal-invariant numerical integrator

discussed in Ref. [10], we can simulate a real-time evolu-

tion using the TDVP equations. We start with the D ¼ 128

uMPS ground-state approximation of the XX model with

magnetic field� ¼ 1=2 along the z axis, which is a critical

model with nonzero magnetization hŜzi � 0, whereas

hŜxi ¼ hŜyi ¼ 0 due to the Uð1Þ symmetry. We evolve

this state according to the critical S ¼ 1=2 Heisenberg

antiferromagnet, so the expectation values Ŝx;y;z should

be conserved due to the SUð2Þ symmetry. Comparative

results for the TDVP implementation and a second-order,

translation-invariant TEBD implementation based on

Ref. [15] are shown in Fig. 2 and illustrate that TDVP is

much more capable of describing the evolution of con-

served quantities.

In this Letter, we have introduced a new algorithm for

simulating real- and imaginary-time evolution with (uni-

form) matrix product states. The algorithm is shown to be

globally optimal within the variational manifold while

conserving all symmetries in the system.
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[3] U. Schollwöck and S. R. White, in Effective Models for

Low-Dimensional Strongly Correlated Systems, edited by

G.G. Batrouni and D. Poilblanc (AIP, New York, 2006).

[4] M.A. Cazalilla and J. B. Marston, Phys. Rev. Lett. 88,

256403 (2002); 91, 049702 (2003); H. G. Luo, T. Xiang,

and X.Q. Wang, Phys. Rev. Lett. 91, 049701 (2003).

[5] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004); S. R. White

and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004);

A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J.
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FIG. 2. Comparison of real-time simulation results at D ¼ 128

with time step dt ¼ 5� 10�3 for conserved quantities e (energy
density), hŜxi, and hŜzi with TDVP (dashed lines) and TEBD

(dotted lines).

TABLE I. First 24 Schmidt values of the D ¼ 128 uMPS

approximation for the ground state of the S ¼ 1 Heisenberg

antiferromagnet. The degeneracy in the Schmidt spectrum as a

result of SUð2Þ symmetry manifests itself, not by exploiting the

symmetry, but rather by converging up to ‘‘state tolerance’’

� ¼ 10�10. (Roman type, S ¼ 1=2; bold type, S ¼ 3=2; italic
type, S ¼ 5=2.)

0.696 198 978 2 0.005 770 050 5 0.001 487 766 9

0.696 198 978 2 0.005 770 050 5 0.001 487 766 9

0.086 098 881 5 0.005 770 050 5 0.001 487 766 9

0.086 098 881 5 0.005 770 050 5 0.001 487 766 9

0.086 098 881 5 0.001 665 909 3 0.001 487 766 9

0.086 098 881 5 0.001 665 909 3 0.001 487 766 9

0.020 013 261 6 0.001 665 909 3 0.001 106 527 3

0.020 013 261 6 0.001 665 909 3 0.001 106 527 3
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