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Chapter 12

Time-Derivative Models of Pavlovian
Reinforcement

Richard S. Sutton
Andrew G. Barto

This chapter presents a model of classical conditioning called the temporal-
difference (TD) model. The TD model was originally developed as a neuron-
like unit for use in adaptive networks (Sutton and Barto 1987; Sutton 1984;
Barto, Sutton and Anderson 1983). In this paper, however, we analyze it
from the point of view of animal learning theory. Our intended audience
is both animal learning researchers interested in computational theories of
behavior and machine learning researchers interested in how their learning
algorithms relate to, and may be constrained by, animal learning studies.
For an exposition of the TD model from an engineering point of view, see
Chapter 13 of this volume.

We focus on what we see as the primary theoretical contribution to
animal learning theory of the TD and related models: the hypothesis that
reinforcement in classical conditioning is the time derivative of a compos-
ite association combining innate (US) and acquired (CS) associations. We
call models based on some variant of this hypothesis time-derivative mod-
els, examples of which are the models by Klopf (1988), Sutton and Barto
(1981a), Moore et al (1986), Hawkins and Kandel (1984), Gelperin, Hop-
field and Tank (1985), Tesauro (1987), and Kosko (1986); we examine
several of these models in relation to the TD model. We also briefly ex-
plore relationships with animal learning theories of reinforcement, including
Mowrer’s drive-induction theory (Mowrer 1960) and the Rescorla-Wagner
model (Rescorla and Wagner 1972).

Although the Rescorla-Wagner model is not a time-derivative model, it
plays a central role in our exposition because it is well-known and success-
ful both as an animal learning model and as an adaptive-network learning
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algorithm (Widrow and Hoff 1960). We use the Rescorla-Wagner model
as an example throughout the paper, and we use its limitations to mo-
tivate time-derivative theories of reinforcement. We also show that all
predictions of the Rescorla-Wagner model can be obtained from a simple
time-derivative theory of reinforcement closely related to that advocated
by Mowrer and others in the 1950’s.

One reason adaptive network models are of interest as animal learning
theories is that they make predictions about the effect on learning of intra-
trial temporal relationships. These relationships strongly influence learn-
ing, but little of modern animal learning theory deals explicitly with them. 1

The most well-studied effect is that of the CS–US inter-stimulus interval
(ISI) on the effectiveness of conditioning. The attempt to reproduce the
main features of this effect in a real-time computational model has driven
much of the theoretical development of these models (e.g., Blazis and Moore
1987; Desmond, this volume; Grossberg and Levine 1987; Wagner 1981).
In this paper, we systematically analyze the ISI behavior of time-derivative
models, using realistic stimulus durations and both forward and backward
CS–US intervals. The models’ behaviors are compared with the empirical
data for rabbit eyeblink (nictitating membrane) conditioning. We find that
our earlier time-derivative model (Sutton and Barto 1981a) has significant
problems reproducing features of these data, and we briefly explore partial
solutions in subsequent time-derivative models proposed by Moore et al.
(1986), Klopf (1988), and Gelperin et al. (1985).

The TD model was designed to eliminate these problems by relying
on a slightly more complex time-derivative theory of reinforcement. In
this paper, we motivate and explain this theory from the point of view of
animal learning theory, and show that the TD model solves the ISI prob-
lems and other problems with simpler time-derivative models. Finally, we
demonstrate the TD model’s behavior in a range of conditioning paradigms
including conditioned inhibition, primacy effects (Egger and Miller 1962),
facilitation of remote associations, and second-order conditioning.

Theoretical Framework

This section introduces the framework within which we discuss theories of
reinforcement in classical conditioning. The presentation is largely tutorial,
and readers already familiar with theories of classical conditioning may
prefer simply to consult Equations 1 and 2 and then to skip to the following
section, where we discuss time-derivative theories.

In a typical classical conditioning experiment, two stimuli, called the
conditioned stimulus (CS) and the unconditioned stimulus (US), are paired
in close succession. After sufficient pairings, the CS comes to produce a
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response, called the CR, similar to the response originally produced only
to the US. For example, in rabbit eyeblink conditioning, the CS might be
the sound of a buzzer and the US might be a puff of air to the rabbit’s eye
that reflexively causes the eye to blink. After appropriate CS–US (buzzer–
airpuff) pairings, the buzzer alone comes to elicit eyeblink CRs, providing
evidence for the existence of a CS–US association. We consider experi-
ments in which multiple CSs are used, either on the same or on different
trials, but usually consider only one US. One theoretical interpretation of
classical conditioning is that it is the process by which the animal infers
causal relationships between stimulus events (Dickinson 1980). A related
interpretation, to which we return later, is that classical conditioning is a
manifestation of the animal’s attempt to predict the US from cues provided
by CSs.

A learning theory should predict how the associations between CSs and
USs change. The most basic observation is that, in order for an association
to change, the CS and US, or processes directly related to them, must
occur at roughly the same time. Accordingly, almost all theories propose
a multiplicative relationship between CS processing and contemporaneous
US processing in determining the change in the association’s strength, V :

∆V = (level of US Processing)× (level of CS Processing). (1)

The amount of learning is thereby proportional to both the level of CS
processing and the level of US processing, as long as these occur at the
same time (cf., Dickinson 1980, p. 124; Wagner 1978). Some theories
emphasize the effect of variations in CS processing, others the effect of
variations in US processing. By virtue of the multiplicative interaction
between these processes, many experimental results can be explained by
reference to either.

For example, suppose two CSs, A and B, are presented simultaneously
and paired with the US (written AB–US). It is generally found that one
of the two CSs, say B, will be overshadowed by the other, A, in that it
becomes much less strongly associated with the US than it would have in
simple B–US pairings without A. Mackintosh’s (1975) theory explains the
deficit as due to competition between A and B for a limited CS processor;
when presented together, one or both of the stimuli must get a significantly
smaller share of the processor than it would if presented alone. Rescorla
and Wagner’s (1972) theory, on the other hand, explains the deficit by
reference to competition for US processing. They propose that the level of
US processing depends on how unexpected the US is. As A and B become
associated with the US, they each reduce its unexpectedness, and thereby
subtract from the amount of US processing available for the other. Again,
at least one CS suffers a significant deficit.



500 Sutton and Barto

As another example, consider a blocking experiment, in which extended
A–US pretraining is followed by a second stage of AB–US training. The
resulting association to B is found to be much weaker than that formed by
an equivalent amount of AB–US training without A having been pretrained.
According to Mackintosh’s theory, A’s pretraining identifies it as a useful
CS; more attention is then paid to it, at B’s expense, in second stage
training. According to Rescorla and Wagner’s theory, pretraining with A
reduces the unexpectedness of the US in AB–US training, thus reducing
the learning to both A and B during this stage.

Reinforcement and Eligibility
The US process is widely associated with the concept of Pavlovian rein-
forcement. Throughout this paper, we use the term reinforcement as a
shorthand for “level of US processing” in the sense of Equation 1. It is
also convenient to have a simple term for the level of CS processing. CS
processing is associated with concepts such as attention, salience, stimulus
traces, and rehearsal. Collectively, these concepts have to do with deter-
mining which CSs have their associations changed by reinforcement and
which do not. We say that they determine which associations are eligible
for change, should reinforcement occur; the level of processing of a CS is
termed its eligibility (cf. Klopf 1972, 1982).

Using the new terms, we rewrite Equation 1 as

∆V = Reinforcement× Eligibility. (2)

Although the eligibility term is always positive (or zero), the reinforcement
term can be either positive or negative. We refer to a positive reinforce-
ment term as positive reinforcement, and to a negative reinforcement term
as negative reinforcement. Because eligibility is always non-negative, incre-
ments in associative strength are always caused by positive reinforcement
and decrements in associative strength are always caused by negative rein-
forcement.

In these terms, Rescorla and Wagner’s theory explains blocking and
overshadowing by reference to a theory of reinforcement, while Mackin-
tosh’s theory explains it by reference to a theory of eligibility. In this pa-
per, we consider real-time models of both reinforcement and eligibility, but
focus on reinforcement models. The models of eligibility we do consider—
various forms of stimulus traces—are very simple compared to Mackintosh’s
theory or to other theories of CS processing (e.g., Pearce and Hall 1980;
Lovejoy 1968; Zeaman and House 1963; Sutherland and Mackintosh 1971;
Grossberg and Levine 1987). Like the Rescorla-Wagner model, our time-
derivative models will most often invoke variations in reinforcement, i.e., in
US processing, to explain results such as blocking and overshadowing.
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Trial-level Theories and Real-time Theories
We have discussed one major distinction between theories—that some em-
phasize variations in reinforcement and others variations in eligibility. An-
other important distinction is whether their update equations, such as
Equations 1 or 2, apply at every moment in time, both within and between
trials, or only at the end of entire trials treated as wholes. Models that treat
entire trials as wholes are called trial-level models. The Rescorla-Wagner
model, for example, is a trial-level model: it makes predictions about what
is learned from a trial based only on what CSs and USs were presented dur-
ing the trial. Its predictions do not depend on the temporal relationships
between these stimuli.

Models that apply continuously, on a moment by moment basis, are
called real-time models. Hull’s stimulus trace hypothesis (Hull 1939) is
a simple example of a real-time model. According to that model, the
internal representation of a CS persists for several seconds after CS offset.
This stimulus trace determines the CS’s eligibility, and thus the amount
by which the CS’s association is changed by reinforcement. The more
time that passes between CS and US, the more the trace has faded by the
time of the US, and thus the smaller the predicted change in associative
strength. Unlike trial-level theories, such a real-time theory is able to make
predictions about the effect on learning of intratrial temporal relationships
among stimuli.

Both trial-level and real-time models have a long history in animal
learning theory. Real-time models have the advantage that do not re-
quire a division of the animal’s experience into trials by an experimenter
or theorist. Trial-level models may describe animal learning behavior with-
out specifying how it could come about. Such theories are harder to map
into neural hardware, harder to convert into useful engineering algorithms,
and ultimately less satisfying as scientific explanations. In addition, trial-
level models do not consider intratrial temporal relationships, yet these are
known to have significant effects on learning. Trial-level models can be
applied successfully only when intratrial factors are held constant.

Nevertheless, the success of trial-level theories in predicting the results
of experiments with constant intratrial temporal relationships is impressive.
The trial-level Rescorla-Wagner model, for example, is the most influential
current theory of classical conditioning. It has attained this status by accu-
rately predicting the effects of a wide range of experimental manipulations
while being a simple model clearly expressable by a few equations (as we
discuss below). The challenge to real-time models is to achieve a compa-
rable level of simplicity, clarity, and predictive accuracy while including
variations in intratrial temporal relationships. Here we analyze one class
of real-time models, which we call time-derivative models, relate them to
previous models, and evaluate how well they have met this challenge.
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Time-Derivative Theories of Reinforcement

In this section we briefly present the Rescorla-Wagner model and explore
its inherent limitations as a trial-level model. As a way of overcoming these
limitations, we introduce the simple time-derivative theory of reinforcement
used in the SB and DR models (Sutton and Barto 1981a; Klopf 1988). We
show that this time-derivative theory makes all the same predictions as the
Rescorla-Wagner model when the Rescorla-Wagner model applies, but, in
addition, correctly accounts for phenomena beyond the scope of that model.

The Rescorla-Wagner Model
The central idea of the Rescorla-Wagner model (Rescorla and Wagner 1972)
is that learning occurs whenever events violate expectations, in particular,
whenever the actual US level received on a trial differs from the level ex-
pected. In other words, Rescorla and Wagner hypothesized that reinforce-
ment is the discrepancy between expected and actual US events. They
denoted this discrepancy λ − V̄ , where λ represents the actual US level
on the trial and V̄ represents the expected or predicted level. The predicted
level, V̄ , is a composite or total prediction depending on the associative
strengths of all the CSs present on the trial. Typically, it is assumed to be
simply the sum of those associative strengths. The symbol λ represents
the effectiveness of the US received on the trial; if the US is absent, λ is
zero, otherwise λ is some positive number combining, in an unspecified
way, the US’s intensity, duration, and temporal relationship with the CSs.
If training is continued with the same CSs, then their composite prediction,
V̄ , should approach λ .

To write the Rescorla-Wagner model in the form of Equation 2, a
notation is needed for indicating whether or not a CS is present on the trial.
Let Xi = 1 mean that the ith CS, CSi , is present on the trial, whereas
Xi = 0 means that CSi is absent. Let Vi denote the associative strength
of CSi . With this notation, the prediction V̄ is written V̄ =

∑
i ViXi ,

and the Rescorla-Wagner model is written

∆Vi = β(λ− V̄ )× αiXi, (3)

where β and αi are positive constants depending on the US and CS re-
spectively. For example, αi generally reflects CSi ’s salience. Equation
3 is in the form of Equation 2, where αiXi is the eligibility and λ − V̄

is the reinforcement. 2 The final term, Xi , is usually omitted from the
equation defining the Rescorla-Wagner model, and instead it is stated in
words that the equation applies only to the associative strengths of CSs
that are present on a trial. Because Xi is 1 for CSs present on a trial and
0 for those not present, it is clear that Equation 3 represents this selective
application of the usual equation.
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Figure 1

Illustration of variations in a US’s reinforcing effect, λ , within a single trial. With a long

duration US, a CS preceding its onset can become positively associated with the US, whereas

a CS preceding its offset can become negatively associated.

A limitation of the Rescorla-Wagner model becomes apparent in
second-order conditioning. In this procedure, a CS, A, is paired with the
US, and then another CS, B, is paired with A. B can acquire a significant
positive association with the US in this way (see Rescorla 1980a), a result
contrary to the prediction of the Rescorla-Wagner model. On all trials on
which B is present, the US does not occur, and thus λ is zero, and the
reinforcement λ− V̄ in Equation 3 is negative or zero. Thus, the Rescorla-
Wagner model incorrectly predicts that B’s associative strength could only
decrease or remain the same as a result of second-order conditioning.

To apply the Rescorla-Wagner model successfully to second-order con-
ditioning one must hypothesize that pretrained CSs such as A create a
positive λ . In particular, this λ might be assumed proportional to A’s
associative strength. Once this has been done, the Rescorla-Wagner model
correctly predicts the development of B’s associative strength and the effect
of substituting other CSs for B. The Rescorla Wagner model makes explicit
predictions given a particular λ , but it does not specify what value λ

should have.
This limitation is particularly significant for a real-time theory of re-

inforcement, because λ appears to vary even within trials. For example,
Segundo et al. (1961) paired a long-duration shock US with two CSs, one
preceding US onset, the other preceding US offset, as shown in figure 1.
The CS that preceded US onset was found to develop a positive association
with the US, while the CS that preceded US offset developed a negative
association. Apparently, USs produce reinforcement—nonzero λ s—of op-
posite sign at their onset and offset (Mackintosh 1974, p. 113). The idea
that changes in US level determine reinforcement, rather than the level
itself, is the basis of time-derivitive theories of reinforcement.

The Ẏ Theory
Second-order conditioning shows that CSs as well as USs can generate re-
inforcement if the CSs are associated with a US. Let us hypothesize that
the reinforcing effects of a CS occur at its onset and offset, just as the
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reinforcing effects of a US appear to occur at its onset and offset. In par-
ticular, suppose that each CSi with association of strength Vi produces
reinforcement +Vi at its onset and −Vi at its offset. The US can be
viewed as having a large fixed association of strength VUS such that it
produces reinforcement +VUS at its onset and −VUS at its offset. 3 Thus,
all stimuli, CSs and US, generate reinforcement +V at their onset and
−V at their offset. For any given time, let Y represent the sum of the
associative strengths of all stimuli, including the US, that are present at
that time. Note that Y is not constant over a trial but changes as stimuli
are presented and removed. Let Ẏ denote the change in Y over a small
increment of time:

Ẏ (t) = Y (t)− Y (t−∆t).

Clearly, Ẏ is zero except when some stimulus with a nonzero associative
strength turns on or off, at which time it is +V for an onset or −V

for an offset. 4 If several stimuli turn on or off simultaneously, then Ẏ is
the sum of all the individual reinforcements. Thus, we can formalize the
central idea of the time-derivative theory as being that reinforcement at
any time is given by Ẏ , the time-derivative of the net association, innate
and acquired, between the current set of stimuli and the response. We call
this the Ẏ (“Y dot”) theory of Pavlovian reinforcement.

The Ẏ theory is sufficient to account for all the predictions of the
Rescorla-Wagner model. Suppose the CSs present on a trial have simulta-
neous onsets and offsets, the offsets coinciding with US onset, and consider
the reinforcement generated during the trial. The onsets of the CSs produce
some reinforcement, but because no CS precedes this reinforcement, no CS
associative strength is affected by it. There is a much better temporal re-
lationship between the CSs and the reinforcement produced at the time of
their joint offset (and the US onset). The CS offsets produce reinforcement
of net strength −V̄ and the simultaneous US onset produces reinforcement
of strength +VUS . The net reinforcement at this time is thus VUS − V̄ . If
we identify VUS with λ , then this reinforcement is identical to that used in
the Rescorla-Wagner model. Hence, for this special case, the Ẏ theory and
the Rescorla-Wagner model predict exactly the same changes in associative
strengths.

So far we have ignored the reinforcement produced at US offset. This
is appropriate if the US is long enough that reinforcement at its offset is
in a very poor temporal relationship with the CSs. A shorter US compli-
cates the analysis but does not change the conclusion. US offset produces
reinforcement of −VUS . Presumably, however, the presented CSs are less
eligible at this time because some time has elapsed since their offset; let
us say they are half as eligible. The change in associative strength at this
time is then − 1

2VUS , for an overall change on the trial of
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VUS − V̄ − 1
2
VUS =

1
2
VUS − V̄ ,

which is again of the same form as the reinforcement term in the Rescorla-
Wagner model, in this case with λ = 1

2VUS . Similar adjustments must be
made to the value of λ to deal with trace intervals between CS offset and US
onset, but again the agreement with the Rescorla-Wagner model is retained.
In general, for any trial in which the CSs begin and end simultaneously,
the Ẏ theory and the Rescorla-Wagner model predict exactly the same
changes in associative strengths.

The Ẏ theory was first formulated as stated here in our 1981 real-time
model (Sutton and Barto 1981a). Hull’s drive-reduction theory (Hull 1943)
was perhaps the first to emphasize the role of changes in giving rise to re-
inforcement. According to that theory, however, only US offset produced
reinforcement, and that reinforcement was positive rather than negative as
it is in the Ẏ theory. Mowrer’s drive-induction theory (Mowrer 1950) is
closer to the Ẏ theory in proposing that US onset produces positive rein-
forcement, but does not assign a reinforcing role to offsets. Later Mowrer
(1960) proposed that both onsets and offsets of both CSs and USs were
reinforcers. Although Mowrer did not express his ideas as compactly as we
have here in the Ẏ theory, the basic idea can nevertheless be seen in his
1960 book. It is interesting to note, therefore, that the predictions of the
Rescorla-Wagner model follow as a consequence of this idea. Klopf (1988)
was the first to point out the relationships between the Ẏ theory, which is
also used in his DR model, and Mowrer’s work.

The Ẏ theory of reinforcement is not just consistent with the Rescorla-
Wagner model, it is also a real-time extension of that model. The Ẏ theory
can be applied to any experiment, not only to those with simultaneous CSs,
and thus has a larger scope than the Rescorla-Wagner model and the po-
tential to unify disparate results. Before this can be explored, however,
we should be clearer about the informal ideas we have been using regard-
ing good and poor temporal relationships. Because this is a question of
eligibility, we now turn to formalizing a real-time theory of eligibility.

Real-Time Theories of Eligibility

As noted earlier, a theory of eligibility can include the effects of attention,
salience, generalization, contrast, stimulus traces, and other phenomena
involving the representation of CSs and the eligibility of their associations
for being affected by reinforcement. Although all of these are important
phenomena, they are beyond the scope of this paper, and we do not attempt
to include them. As theories of eligiblity we consider only several simple
kinds of stimulus traces.
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Figure 2

The role of the stimulus trace in bridging the trace interval between CS and US. The trace

overlaps the US even though the CS does not.

Hull’s Stimulus Traces
In classical conditioning experiments, the CS often terminates before the
onset of the US. The interval of time between CS and US during which
no stimuli are present is called the trace interval. Conditioning is found
to be more effective as the trace interval decreases, but it can still occur
at substantial intervals. Apparently, a CS leaves behind some short-term
memory, or trace, indicating that is has recently been presented. Figure 2
illustrates the role of such a stimulus trace within a trial. The idea is to
preserve the framework of Equations 1 and 2, in which contiguity of US and
CS processes is required for learning to occur. Because the CS itself does
not persist until the time of the US, some CS process must be postulated
that does.

The time course marked CS in figure 2 represents the external,
experimenter-defined stimulus. More important for learning, however, is
the subject’s internal representation of the stimulus. That these two can
be different should be clear; for example, consider a brief flash of light and
its afterimage. It is possible, then, that while the external CS terminates
abruptly as shown in figure 2, the internal representation follows a differ-
ent time course, perhaps one more like that shown for the stimulus trace.
Hull (1939) proposed exactly this, that the stimulus trace is identical with
the internal representation of the stimulus, and that all such internal rep-
resentations persist for several seconds after the removal of the external
stimulus.

Eligibility Traces
An alternative to Hull’s stimulus trace is a trace that is distinct from the
internal representation of the stimulus used to generate behavior. Such
a distinct stimulus trace is responsible only for enabling learning, not for
generating behavior; its effect is solely to influence the eligibility term of
Equation 2. We distinguish this kind of stimulus trace from Hull’s by calling
it an eligibility trace (Klopf 1972, 1982). Of course, both kinds of stimulus
traces could be used together.
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Figure 3

A simple eligibility trace. The time course of the trace X̄ follows and lags behind the internal

representation X of the CS.

An advantage of using eligibility traces is that it is then not required
that the internal representation of the CS be delayed or spread out in
time. A delayed or spread out CS representation can make it difficult to
produce rapid or precisely-timed responses. With eligibility traces, the
internal representation is less constrained and can better support this sort
of behavior. We have further discussed the advantages of eligibility traces
elsewhere (Sutton and Barto 1981a; Barto and Sutton 1982). All the models
we consider here use eligibility traces.

The simplest eligibility trace builds up while a CS is presented and
fades away when it is removed, as illustrated in figure 3. Let Xi denote
the level of the internal representation of CSi at each moment in time.
For the moment, we assume that the internal representation is simply iden-
tical to the external one, that is, we assume that Xi = 1 when CSi is
present, and that Xi = 0 when CSi is absent. The eligibility trace we
denote by X̄i , and we think of it as a running average of recent values of
Xi . The eligibility trace illustrated in figure 3 is obtained by continuously
incrementing X̄i at a fixed rate toward Xi . A complete specification for
X̄ is given in the appendix.

The SB Model
Our 1981 model, which Moore et al. (1986) called the Sutton-Barto, or SB,
model, is obtained by combining the Ẏ theory of reinforcement with the
X̄ eligibility trace:

∆Vi = βẎ × αiX̄i,

where β and αi are positive constants as in the Rescorla-Wagner model.
Since this is a real-time model, the equation applies at every moment within
and between trials, rather than only once for each trial as in the Rescorla-
Wagner model. We have previously shown the SB model to be consis-
tent with a wide variety of empirical results, including all those where the
Rescorla-Wagner model is applied, plus others including second-order con-
ditioning, limited ISI dependency, and primacy effects (Sutton and Barto
1981a; Barto and Sutton 1982).
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Figure 4

Illustration of the SB model. Shown are the associative strengths after each trial of a simulated

experiment involving simple acquisition (Trials 1-10), blocking (Trials 11-20) and primacy

(Trials 21-35). See text. Reprinted with notational changes from Sutton and Barto (1981a).

Figure 4 shows an example of the SB model’s behavior. For the first
10 trials, a CS, A, is presented alone followed by the US; acquisition of the
corresponding associative strength, VA , is shown. Trials 11-20 correspond
to the second stage of a blocking experiment: A has already been condi-
tioned, and now B is introduced with the same time course as A, followed
by the US. The model shows complete blocking, with VB remaining at its
intial value of zero during these trials. Finally, in trials 21-35, B is extended
so that its onset precedes A. B is now in a good temporal relationship to
pick up the positive reinforcement ( Ẏ ) produced at the onset of A. Not
only does B acquire associative strength during these trials, no longer being
blocked by A, but A actually loses associative strength. Although we did
not realize it at the time these results were first published, the SB model’s
prediction that A will lose associative strength under these conditions is
novel and surprising. Why should a well-trained CS that continues to be
paired with the US in a good temporal relationship lose associative strength
just because a new CS is introduced with no initial association and in a



Time-Derivative Models of Pavlovian Reinforcement 509

poorer temporal relationship to the US? One might expect the original CS
to block or limit conditioning to the new CS, but the SB model predicts
that the original CS rather than the new one will show a decrement in asso-
ciative strength. Recently, Kehoe, Schreurs, and Graham (1987) tested and
confirmed the prediction that the original CS can lose associative strength
under these conditions. They also noted that alternative theories do not
make this prediction and have considerable difficulty in explaining the re-
sult.

Problems with Time-Derivative Models

Although the SB model successfully accounts for primacy effects, stimulus-
context effects, and some effects of intratrial temporal relationships, it has
also been found to have several problems. In this section, we review these
problems and several new models that have been proposed to remedy them.
In order to simplify the presentation we focus on two ways of evaluating a
model. One is by comparison with empirical data regarding the effect on
conditioning of the CS–US inter-stimulus interval. The second is by repeat-
edly presenting the model with a long serial-compound stimulus containing
a different component CS for every time step before, during, and after the
US. The response topography learned under these conditions is completely
under the model’s control and reveals something essential about the model.

Inter-Stimulus-Interval Dependency
One of the main reasons for exploring real-time models is that they are able
to make predictions based on intratrial temporal relationships among stim-
uli. One of the simplest cases in which this issue arises is that in which there
is exactly one CS and one US. Empirically, the most important determinant
of conditioning rate and asymptotic level is the time interval between the
onset of the CS and the onset of the US, called the inter-stimulus interval
or ISI. figure 5 shows the empirical relationship between the ISI and the
effectiveness of two kinds of conditioning of rabbit nictitating membrane
response. The shape of the empirical ISI dependency is roughly as shown
here for all species and response systems, but the time course varies sub-
stantially (see, e.g., Macintosh 1974). The two kinds of conditioning for
which data are shown are delay conditioning and what we call fixed-CS con-
ditioning (see figure 6). In fixed-CS conditioning, the CS duration is fixed
and independent of ISI. Fixed-CS conditioning includes trace conditioning,
in which the ISI is greater than the CS duration, but also includes shorter
and backward intervals. In delay conditioning, the CS duration is equal to
the ISI, which is always positive.
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Figure 5

The empirical ISI dependency for the rabbit nictitating membrane response. Data is shown

for both fixed-CS and delay conditioning (figure 6). The general shape of the ISI dependency

is constant accross species and response systems, but its time course varies substantially.

Figure 6

Temporal relationships in fixed-CS and delay conditioning. The indicated stimulus durations

are commonly used in rabbit NMR conditioning. These durations were also used to obtain the

simulation data shown in figures 8, 12, and 18, under the interpretation that one simulation

time step is equivalent to 50 ms.
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Figure 7

ISI dependency of the SB model for fixed-CS conditioning with a long US. (Reprinted from

Sutton and Barto 1981a)

In Sutton and Barto 1981a, we compared the empirical data in figure
5 with the simulation data in figure 7 for fixed-CS conditioning of the SB
model. In both cases, associative strength is near zero at zero ISI (simul-
taneous CS–US presentation), rises quickly to a maximum at intermediate
ISIs, and then falls off gradually at long ISIs. If we identify each simula-
tion time step with approximately 50 ms., then there appears to be a good
match between model and data. However, this comparison is limited by
the fact that the simulation used a very long US, equivalent to about 1500
ms., whereas a US of 100 ms. is more typical in real experiments. In ad-
dition, delay conditioning and backward fixed-CS conditioning paradigms
were not simulated. If we repeat the simulation experiment, extended and
made more realistic in these ways, we obtain the data shown in figure 8.

The SB model’s ISI behavior shown in figure 8 deviates from the em-
pirical data in figure 5 for delay conditioning at long ISIs and for fixed-CS
conditioning at short forward and backward ISIs. In delay conditioning, the
SB model predicts effective conditioning at all long ISIs, whereas the most
prominent feature of the empirical ISI dependency of delay conditioning is
the reduction in effectiveness of conditioning with increasing ISI. In fixed-
CS conditioning, the SB model predicts strong inhibitory conditioning for
both forward and backward conditioning when the CS and US overlap. The
empirical data are not as clear here, as special tests must be run to detect
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Figure 8

ISI dependency of the SB model. Shown is the CS associative strength V after 80 acquisition

trials as a function of the CS–US ISI. This simulation used a short-duration US. The intratrial

temporal relationships were as shown in figure 6.

inhibitory associations, but the studies that have been done do not support
the SB model’s prediction of strong inhibitory conditioning with short USs
(e.g., Prokasy et al. 1962). First we consider efforts to solve the delay
conditioning problem and then efforts to solve the fixed-CS conditioning
problem.

Solving the Delay Conditioning Problem
In Sutton and Barto 1981a, we explained the empirical reduction in ef-
fectiveness of delay conditioning at long ISIs by appealing to differences
between external CS representations and internal (subjective) CS represen-
tations. Whereas the external CS remains constant during the ISI in delay
conditioning, it is likely that the CS as perceived by the subject changes
during the ISI. In particular, the beginning of the CS is probably repre-
sented more saliently than its end. For example, a long external CS such
as that shown in figure 9a might give rise to a shorter internal CS repre-
sentation such as that shown in figure 9b. If this were the case with the
long CSs used in delay conditioning, then the SB model’s ISI dependency
for delay conditioning would look more like that for fixed-CS conditioning;
that is, it would diminish with increasing ISI in qualitative accord with the
empirical data.

The principal virtue of this explanation is that it leaves the SB model
intact. The principal weakness of this explanation is that special internal
CS representations have had to be hypothesized to deal with one of the sim-
plest of classical conditioning experiments. As we consider more complex
experiments, will the model’s explanations involve increasingly complex hy-
potheses about internal representions? Relying on such hypotheses would
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Figure 9

External and possible internal stimulus representations for a long overt CS.

Figure 10

ISI dependency of the SBD model. The US duration was 30 ms; the CS duration in fixed-CS

conditioning was 250 ms. These data are from Moore et al. (1986).

make it extremely difficult to unambiguously determine the predictions of
the model.

Moore, Desmond, Blazis, et al. (Moore et al. 1986; Blazis et al. 1986),
proposed modifying and extending the SB model to form the Sutton-Barto-
Desmond (SBD) model. Although they were primarily concerned with
matching behavioral and neurophysiological data on CR topography, their
changes also resulted in a better match to the empirical ISI data for delay
conditioning. They distinguished internal and external stimulus represen-
tations, but proposed a specific way of transforming one to the other so
that this step could not be manipulated in an ad hoc manner. Among
other changes, they hypothesized that the rate of decay of the eligibility
trace increases as a function of CS duration. Figure 10 shows their simula-
tion data for the ISI dependency of the SBD model in fixed-CS and delay
conditioning. The SBD model correctly predicts a reduction in the effec-
tiveness of delay conditioning at long ISIs. However, they also found weak
inhibitory conditioning at some small ISIs in forward delay conditioning,
depending on parameter settings (Blazis and Moore 1987). Data were not
published for backward or simultaneous conditioning, but the model appar-
ently did not significantly ease the SB model’s problem of strong inhibitory
conditioning (Blazis, personal communication).
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Klopf (1988, 1986) proposed a simpler way of modifying the SB
model to obtain weakened delay conditioning at long ISIs. In his Drive-
Reinforcement (DR) model, eligibility does not increase during a CS but is
triggered by CS onset and then follows a fixed time course whether or not
the CS continues. Figure 11 illustrates such an onset-triggered eligibility for
the case in which the time course of eligibility is a simple decay. 5 Because
CS duration does not affect the time course of eligibility, fixed-CS and delay
conditioning both lose effectiveness at long ISIs. Klopf (1988) demonstrated
this in simulations, but has not published the complete ISI dependency of
his model. Figure 12 shows the ISI dependency of what might be consid-
ered a simplified DR model—a model formed by using Ẏ for reinforcement
and onset-triggered eligibility whose time course is a simple delay.

Figure 12a shows the ISI dependency of the simplified DR model for
fixed-CS conditioning after 80 trials. Note that strong inhibitory condi-
tioning still occurs for simultaneous and backward CS–US presentation.
Figure 12b shows the ISI dependency of the simplified DR model for de-
lay conditioning after 80, 400, 2000, and 10,000 trials. In all cases, delay
conditioning decreases in effectiveness at longer ISIs, in accord with the
empirical data. However, the ISI at which the decrease begins increases
with the number of conditioning trials. In fact, if conditioning proceeded
to asymptote, delay conditioning at all ISIs would equal a maximal value
determined by the intensity and duration of the US. For delay condition-
ing, this model predicts that associative strength increases toward the same
high value for all ISIs, increasing faster at some ISIs than at others. Few
experiments with animals have included the many thousands of trials that
would be required to test this prediction, but the conventional interpreta-
tion of the available empirical results is that asymptotic conditioning level
as well as rate of conditioning decreases at long ISIs (e.g., Bitterman 1964).

A second problem with onset-triggered eligibility is that it predicts that
long CSs will not extinguish. Extinction in models using Ẏ as reinforce-
ment is normally caused by the decrement in Y , and hence negative Ẏ ,
at CS offset. However, if eligibility begins fading at the onset of a long CS,
then it can be very small or zero by CS offset (see figure 11). Thus, it is in-
correctly predicted that a sufficiently long excitatory CS will not extinguish
through non-reinforced presentation, where “sufficiently long” is defined as
longer than than the maximum ISI at which delay conditioning is effective.
In general, the model predicts an inverse relationship between CS length
and rate of extinction. The empirical data currently available do not di-
rectly contradict this prediction, but they are not supportive of it (e.g., see
Schneiderman 1966). Morgan and Klopf (personal communication) have
verified with simulations that the DR model makes these predictions.
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Figure 11

An onset-triggered eligibility trace. As in Klopf’s DR model, the trace is incremented only at

the onsets of CSs. For a very long CS, eligibility can nearly equal zero at CS offset.

Figure 12

Interim and asymptotic ISI dependency of the simplified DR model. Top: Fixed-CS condi-

tioning, 80 trials. Bottom: Delay conditioning, various numbers of trials. The parameter

values used here were δ = 0.06 , β = 1 and α = 0.2 . The δ parameter was chosen to

approximately match the effect of Klopf’s (1988) choices for his learning rate parameters c1

through c5 .
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Solving the Fixed-CS Conditioning Problem
In fixed-CS conditioning, the SB model predicts strong inhibitory condi-
tioning at simultaneous and near-simultaneous ISIs (figure 8), but this is
not confirmed by the available empirical data. Strong inhibitory condition-
ing is predicted because of the good temporal relationship between the CS
and the offset of the US. Inhibitory conditioning is in fact predicted by the
SB model whenever the CS and US overlap, even in a forward arrangement
with a long ISI. In the simplified DR model, inhibitory conditioning is pre-
dicted only for backward and simultaneous conditioning, but for those cases
the inhibitory conditioning is very strong (see figure 12). The full DR model
apparently makes similar predictions (Morgan and Klopf, personal commu-
nication), as does the SBD model (Blazis, personal communication). Em-
pirically, backward and simultaneous conditioning have occasionally been
found to produce weak inhibitory conditioning, but more often they pro-
duce weak excitatory conditioning (see Mackintosh 1974, 1983; Gormezano
et al. 1983; Prokasy et al. 1962). Although further empirical studies are
needed, it is clear that the predictions of strong inhibitory conditioning
made by all of these models are counter to actual animal behavior.

One way of eliminating these problematic predictions is to use a mod-
ified Ẏ theory in which only the onsets of USs create reinforcement, as
in Gelperin, Hopfield and Tank’s (1985) Limax model. This is effectively
what we did in our original experiments with the SB model by using a very
long US. If the US is long enough, its offset will occur when none of the
CSs are eligible, and thus negative reinforcement at this time has little or
no effect. This is the way we produced the fixed-CS ISI dependency for the
SB model shown in figure 7, which shows less of a problem with inhibitory
associations than does the ISI dependency shown in figure 8. However,
ignoring US offset in this or any other way is questionable. For example,
it is known that US duration affects conditioning (Gormezano, Kehoe and
Marshall 1983, p. 233-4; Frey and Butler 1973) and that US offset can cause
inhibitory conditioning (Segundo et al. 1961).

To better understand the SB model’s problems when CS and US over-
lap, consider the case of complete overlap, that in which the CS and US
begin simultaneously and end simultaneously. The reinforcement created
at their joint onset causes no conditioning in the SB model because the
CS is not yet eligible. However, the reinforcement at their joint offset,
−VUS−VCS , is negative initially and causes VCS to become negative. The
learning process stabilizes when the reinforcement at offset is zero, that is,
when VCS = −VUS . At this point the reinforcing effect of the US is exactly
cancelled by that of the CS, both at offset and onset. This means that if a
second CS is added that precedes the US, it will not acquire any associative
strength. In fact, this prediction of the SB model does not depend on the
simultaneous CS having been trained first. Even if the CS that precedes
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the US is trained to a strong excitatory asymptote, a subsequently added
simultaneous CS will become a strong inhibitor and cause the preceding CS
to lose all its associative strength.

These are problematic predictions because conditionable stimuli with
time courses similar to the time course of the US are invariably present in
all conditioning experiments. For example, an airpuff to the eye acts as a
US, but also produces conditionable stimuli. The time course of some of
these stimuli will be similar to the time course of the US, whereas others
will be longer, shorter, and with various delays; some may be initiated at
US offset. We have shown that US cancellation results in Ẏ models if only
a US-simultaneous CS is present, but what if all these other CSs are present
as well? This brings up the wider question of how the models behave when
presented not with one or two stimuli, but with a whole collection of them.
We now show that US cancellation tends to result in this case as well.

Behavior in Response to Complete-Serial-Compound Stimuli
The learning behavior of an animal or real-time model is often limited by the
temporal pattern of CSs presented to it. For example, whenever no stimuli
are present, Y must be zero, and, whenever the CSs present are constant,
Y must be constant. Animals too are strongly influenced by the temporal
pattern of CSs, but can partially overcome these limitations. For example,
when animals are presented with a very long-duration CS, followed by the
US, they eventually learn to repond differentially to the earlier and later
portions of the CS. If the earlier and later portions are distinguishable, e.g.,
if they are tones of two different frequencies, then animals find it easier to
respond differentially to them. Turning the original CS into a sequence of
stimulus components, called a serial-compound stimulus, frees the animal
to more easily exhibit what is in some sense its natural response. Taking
this idea to its extreme, the animal or model could be presented with a
distinguishable stimulus component for every small segment of time before,
during, and after the US. If such a stimulus sequence completely covers the
intratrial interval, then we call it a complete serial-compound stimulus, or
CSC stimulus.

A complete-serial-compound experiment is an experiment in which a
CSC stimulus is presented on each trial along with a US. In simulations of
CSC experiments, a separate component CS is provided for every time step
during a trial. The model is then able to produce a different, independent
response level, Y , for each simulation time step during a trial. The be-
havior of Y during a trial is not constrained by the CSs, but is entirely
a function of the model’s properties. It reveals what the model would do
in every experiment with the US, if the model were not limited by the
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Figure 13

Intratrial behavior of Y for the SB model in a CSC experiment. A separate CS has been

provided for every time step before, during, and after the US. Shown in each graph is the

behavior of the composite association Y during a single trial. The first graph (trial 0) shows

the timing of the US, as initially Y is equal to the US signal. The height at each intratrial time

shows the association to the component CS occurring at that time, plus the US association

when the US is present. Initially, CSs preceeding the US become positively associated, but

eventually the SB model learns only inhibitory associations such that all effects of the US are

cancelled. The US is 8 time steps long, and the intratrial time period shown is 40 time steps

long.

stimulus representation. Because Y is presumably related to the CR, the
intratrial behavior of Y also has implications for theories of intratrial CR
topography.

Figure 13 shows the intratrial behavior of Y developing over trials
in a CSC experiment with the SB model. The height at each intratrial
time shows the association to the component CS occurring at that time
(plus the US association for times when the US is present). Although
there is some transient conditioning to CSs that precede the US, eventually
this extinguishes, leaving only CSs occuring during the US with nonzero
associative strengths. These CSs are conditioned inhibitors having identical
strength, −VUS . Their effect is to exactly cancel the reinforcing effect of the
US. The SB model thus predicts that there can be no asymptotic excitatory
conditioning if a rich set of CSs are available.

The US cancellation problem shown most clearly by this CSC experi-
ment is apparently an inherent consequence of the Ẏ theory of reinforce-
ment. For example, the same cancellation results if Ẏ reinforcement is
used in conjunction with an onset-triggered eligibility. Morgan and Klopf
(personal correspondence) have verified that the DR model, which uses Ẏ
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reinforcement, also cancels the effect of the US if presented with a simul-
taneous CS. This result also seems inevitable for the SBD model, which
uses a modified Ẏ theory of reinforcement. From the equations of the the
SBD model it is clear at least that if the simultaneous CS initially cancels
the US, then no reinforcement and thus no learning changes will occur. In
general, learning stops in a Ẏ theory of reinforcement whenever Ẏ = 0 is
attained at all times during a trial. One way this can occur is by cancelling
the US, but this is inappropriate for a model of classical conditioning.

One possible source of the US-cancellation problem is that primary
and acquired reinforcers are treated nearly identically in the Ẏ theory.
They are identical except that the reinforcing effect of primary reinforcers is
presumed to be fixed and permanent, whereas that of acquired reinforcers is
subject to the learning process. This appeared initially to be consistent with
the operational definition of primary reinforcers as reinforcers that retain
their reinforcing effect even when repeatedly presented and not followed by
another reinforcer, i.e., that do not extinguish. However, we have seen that
the effects of primary reinforcers as well as the effects of acquired reinforcers
tend to extinguish in models using Ẏ reinforcement. This suggests that
primary reinforcers should be modeled as being different from acquired
reinforcers in some more essential way than is done in the Ẏ theory.

We have discussed a number of attempts to solve problems with the
ISI dependency of the SB model in delay and fixed-CS conditioning, none of
which is completely successful. Most of the attempts to solve the problems
in delay conditioning are modifications to the eligibility term. The fixed-CS
conditioning problems, however, seem to implicate the reinforcement term.
In the next section we take a more theoretical approach and derive a new
reinforcement term, that used in the TD model, and show that it solves
both kinds of problems.

The TD Model’s Theory of Reinforcement

Classical conditioning can be viewed as a manifestation of the subject’s
attempt to predict the arrival of the US. In terms of the Rescorla-Wagner
model, V̄ is the predicted US level on the trial and λ is the actual US
level. Their difference λ − V̄ drives the learning process as the model’s
reinforcement term. How can we extend these trial-level ideas to form a
real-time model? In this section we show how the computational theory
of TD methods as prediction algorithms (Sutton 1988; see also chapter
13 of this volume) provides an answer to this question that solves the ISI
problems of the other time-derivative models.

In the Rescorla-Wagner model, λ for a trial depends on the US’s in-
tensity and duration. A more intense or longer US results in a larger λ

for that trial. In a real-time model, we let λ change over time within a
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Figure 14

Time course of primary reinforcement, λ , for 4 USs of different intensities, durations, and

repetitions. In all cases, the area under the curve represents the overall reinforcing effect.

Figure 15

Time course of correct predictions near a US. A: Primary reinforcement; the correct prediction

at each time t relates to the future area under this curve. B: The correct predictions at each

time t of this future area. C: With imminence weighting, correct predictions fall as the area

becomes temporally remote.

trial. Its value at each time represents the strength of the US, or rather
the strength of its reinforcing effect, at that time. A more intense US is
represented by a correspondingly larger λ value at the times when the US
is present, and a longer duration US is represented by a longer period of
over which λ is non-zero. A double US is represented by two intervals
over which λ is non-zero. In general, it is reasonable to propose that the
area under the λ curve (see figure 14) corresponds to the total primary
reinforcement on the trial.

From a real-time perspective, then, we might consider the animal to
be predicting the area under the λ curve. Of course, at each time we
would only be concerned with predicting the area for future λ ’s. If the
current time is half-way through a US, then the current prediction should
be a prediction only of the remaining half, as shown in figure 15a. Figure
15b shows the correct predictions of future areas under the λ curve at each
point in time before, during, and after the presentation of the US. After
the US, there is no future area and the correct prediction is zero. Before
the US, all the area lies ahead and the correct prediction is constant and
equal to the total area. During the US, the area remaining in the future
falls linearly from all of it at US onset to none at US offset. The arrow
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in figure 15b indicates the height that corresponds to the shaded area in
figure 15a.

If the future areas in figure 15b are viewed as the predictions the sub-
ject is trying to learn, one problem is immediately apparent: the prediction
level is equally high for all times prior to the US, whereas, empirically, ani-
mals seem to learn a weaker prediction for CSs presented far in advance of
the US. The simple future-area view is also problematic theoretically. What
if the US is so delayed that the experimenter considers it to be part of the
next trial? Should the animal be predicting the sum of the areas of all
the USs that will be delivered in the experiment? In its lifetime? Clearly,
temporally remote primary reinforcement ( λ values) should be discounted
in some way. Primary reinforcement that is immediate should carry full
weight; when slightly delayed, it should carry slightly less weight; when
long-delayed, it should carry very little weight. In other words, upcom-
ing primary reinforcement should be weighted according to its imminence.
With imminence weighting, the correct prediction for each point in time
near the US would look something like what is shown in figure 15c.

Another example of the effect of imminence weighting is shown in figure
16. Figure 16a shows a sequence of primary reinforcement created by a se-
quence of USs; this is a λ curve. Figure 16b shows the imminence weighting
function, specifying the way the weight given to primary reinforcement falls
off with delay with respect to a particular time t . Figure 16c shows how
the original sequence is transformed by the imminence weighting function
applied at time t to give reduced weight to delayed primary reinforcement.
We propose that the quantity the subject is attempting to predict at time
t is the area under this curve rather than the area under the λ curve.
To obtain the correct predictions for other times, the weighting function is
slid along the time axis so that its base starts at the time in question, the
λ sequence is reweighted according to the new position, and the new area
is totalled. An example for another time t′ is shown in figures 16d and
16e. By repeating this process for every time, one obtains the sequence
of correct predictions shown in figure 16f. This is what an animal should
predict when faced with the US pattern in figure 16a, if it is attempting to
predict imminence-weighted areas.

It is useful to formalize these ideas with explicit reference to time.
For the moment we assume time is divided into small discrete steps. Let
λt denote the primary reinforcement received at time step t , where t =
1, 2, 3, . . . Let V̄t denote the prediction made at time t about values of λ

for times later than t . Our initial theory, without imminence weighting, is
formalized by saying that the prediction should equal the sum of all future
λ values:

V̄t “ = ” λt+1 + λt+2 + λt+3 + λt+4 + · · ·
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Figure 16

Imminence weighting. A: A temporal sequence of primary reinforcement (USs). B: Exponen-

tial imminence-weighting for time t —the weight given at time t to primary reinforcement

at each later time. C: Primary reinforcement weighted for prediction at time t ; the correct

prediction at time t is the area under this curve. D: Imminence weighting for time t′ . E:

Primary reinforcement weighted for prediction at time t′ ; the correct prediction at time t′

is the area under this curve. F: The correct predictions at each time; the heights at times t

and t′ equal the total areas in C and E.

where the quotation marks indicate that this is a desired relationship and
not one that necessarily holds. We can introduce imminence weighting by
discounting delayed primary reinforcement by some fraction γ , 0 ≤ γ < 1 ,
for each step that it is delayed. One-step delayed primary reinforcement
would then be discounted by γ , two-step delayed primary reinforcement
by γ2 , three-step delayed by γ3 , and so on. The prediction at time t

should be

V̄t “ = ” λt+1 + γλt+2 + γ2λt+3 + γ3λt+4 + · · · (4)

This is the form of discounting used to produce the desired predictions
plotted in figures 15c and 16 (using a very small time step).

Derivation of a Reinforcement Term
If the goal is to obtain predictions as given by Equation 4, what can we
conclude about the reinforcement term for use in our standard framework
given by Equation 2? Sutton has recently developed a new computational
theory of prediction methods, called Temporal-Difference (TD) methods,
which suggests an answer. That theory provides a methodology for con-
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structing TD learning methods specialized for predicting quantities in the
form of Equation 4. We follow that methodology now to derive a suitable
reinforcement term.

The discounted sum that we seek to predict, given by Equation 4, can
be divided into two parts, one of which is the immediate reinforcement, and
one of which is a new discounted sum containing all the later reinforcements:

V̄t “ = ” λt+1 + γ
[
λt+2 + γλt+3 + γ2λt+4 + · · ·

]
. (5)

The quantity in brackets is very similar to the overall sum to be predicted
given by Equation 4. In fact, it is exactly what the prediction V̄t+1 is
supposed to be. That is, if we write out Equation 4 for the desired value
for V̄t+1 :

V̄t+1 “ = ” λt+2 + γλt+3 + γ2λt+4 + γ3λt+5 + · · · ,

we see that we can exactly substitute V̄t+1 into Equation 5 to obtain

V̄t “ = ” λt+1 + γV̄t+1.

Thus, we can simply state the desired prediction for one time step in terms
of the primary reinforcement and desired prediction for the next time step.
We want the prediction at each time step to equal the primary reinforcement
received on the next step plus the next prediction (discounted by γ ). The
discrepancy or error is then the difference between these quantities:

λt+1 + γV̄t+1 − V̄t.

This discrepancy is much like the discrepancy used in the Rescorla-Wagner
model, λ − V̄ , where the role of λ in their model is being taken here
by λt+1 + γV̄t+1 . This suggests that we use this discrepancy directly as
a reinforcement term. If this is done in combination with the X̄ model
of eligibility, one obtains the temporal-difference (TD) model (Sutton and
Barto 1987):

∆Vi = β
(
λt+1 + γV̄t+1 − V̄t

)
× αiX̄i,

where β and αi are positive constants as in the Rescorla-Wagner model,
and where the equation applies at each moment in time as in all real-time
models. 6

Although the TD model does not use Ẏ as its reinforcement, we con-
sider it to be a time-derivative model of reinforcement. In the theory above,
V̄t and λt+1 + γV̄t+1 are viewed as predictions, formed on successive time
steps, of the same quantity, a discounted sum of λ values. The discrep-
ancy between these two predictions is thus a discrete-time analog of the
time derivative of the prediction of that quantity. This discrepancy rep-
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Figure 17

Intratrial behavior of V̄ for the TD model in a CSC experiment. The highest curve repre-

sents the theoretically correct predictions as given by Equation 4. The lower curves are the

predictions generated by the TD model in a CSC experiment after various numbers of trials,

as indicated. A different component CS is presented for every time step during the trial.

The height at any intratrial time represents the associative strength of the component CS

presented at that time. The peak of the predictions is one time step before US onset—when

the US is temporally closest but still lies entirely in the future. The US is 8 time steps long,

and the intratrial time shown is 40 time steps.

Figure 18

ISI dependency of the TD model. Unlike the other models, the TD model’s ISI dependency

is a good match to the empirical data in figure 5. These associative strengths were obtained

after 80 trials. See figure 6 for the temporal relationships between stimuli.
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resents how the model’s expectation of discounted future λ changes from
one time step to the next. In Chapter 13, we show in more detail how this
view of the TD model fits into a computational framework.

Since the TD model is based on a theory of reinforcement in which the
correct predictions follow the time course shown in figure 15c, one might ex-
pect it to produce similar actual predictions in a complete-serial-compound
experiment. Figure 17 shows that indeed it does. The highest curve rep-
resents the theoretically correct intratrial predictions as given by Equation
4. The lower curves are the prediction topographies generated by the TD
model at various trials of a simulation experiment in which a different CS
is provided for each time step before, during and after the US. The ac-
tual predictions gradually approach the ideal ones. This shows that the
new model has solved the problems with cancellation of USs demonstrated
earlier for the Ẏ models.

Figure 18 shows the ISI dependency of the TD model for fixed-CS and
delay conditioning. These curves are a good match to the empirical data
for rabbit NMR in figure 5. Delay conditioning decreases in effectiveness
at long ISIs, and there is no problem of strong inhibitory conditioning in
fixed-CS conditioning at near-zero ISIs.

Demonstrations of the TD model

The TD model seems to solve many of the problems with other time-
derivative models, but does the TD model retain the desirable properties
of these models on the wide range of experimental conditions in which they
have been explored? We have previously shown (Sutton and Barto 1987)
that it does, and that, in fact, it is in slightly better accord with the data
than is the SB model. In addition, we have shown that the TD model is
consistent with the data on serial-compound experiments to a degree that
has not been shown for previous models such as the SB model or Klopf’s
DR model. 7 Below we review some of these demonstrations. We present
results showing the behavior of the TD model in a range of conditioning
paradigms including blocking, facilitation of remote associations, primacy
effects, and second-order conditioning.

The TD model exhibits complete blocking if first-stage training is con-
ducted until asymptotic associative strength is achieved and the CS added
in the second stage has exactly the same time course as the first CS. This
follows directly from Equation 2 and the use of an X̄ eligibility trace. From
Equation 2, the only way to have a different change in associative strength
for two CSs is for their eligibilities to differ. But the X̄ eligibility traces
of two CSs with the same time course are identical. Therefore, if the pre-
trained CS no longer undergoes any change in associative strength in the
second stage of a blocking experiment, then neither can the new CS. The
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pretrained CS remains fully associated, and the new CS remains with zero
associative strength.

One of the well-known failings of the Rescorla-Wagner model is that,
in its simplest form, it predicts that a CS with a negative association,
a conditioned inhibitor, will extinguish if presented alone. Empirically,
this extinction has not been observed (Zimmer-Hart and Rescorla 1974).
However, this incorrect prediction results from the assumption that the
composite association, V̄ , is a simple sum of associative strengths of the
CSs present on a trial. If one assumes instead that V̄ is the sum if that
sum is positive, and zero otherwise, then the model correctly predicts that
conditioned inhibitors will not extinguish. Donegan, Gluck and Thompson
(1989) and others have noted this for the Rescorla-Wagner model; Moore et
al. (1986) showed essentially the same thing for the SB model (by similarly
assuming Y is always non-negative), and Klopf (1988) has shown this for
the DR model. We (Sutton and Barto 1987) followed their example and
specified the TD model’s V̄ to be

∑
ViXi when that sum is positive and

to be zero when the sum is negative. We now show that this produces the
correct behavior in a conditioned inhibition experiment. 8

Figure 19 shows the behavior of the TD model (with V̄ restricted
to be non-negative) in a conditioned inhibition (CI) training regime. In
CI, reinforced and unreinforced trials of the two types shown in figure 19a
are intermixed. CS+ is followed by the US except in the presence of
CS− . CS+ is found empirically to become positively conditioned whereas
CS− becomes a conditioned inhibitor. This result was also found in the
simulation. In the extinction phase of the simulated CI experiment, both
stimuli were presented individually without the US. The result shown in
figure 19 is the same as that found empirically: the association to the excitor
extinguishes, but the association to the inhibitor does not (Zimmer-Hart
and Rescorla 1974).

Real-time conditioning models are interesting primarily because they
make predictions for a wide range of situations that cannot be represented
by trial-level models. These situations involve conditionable stimuli that
occur together but not strictly simultaneously. A compound stimulus whose
components do not both begin and end at the same time is called a serial
compound. It should be recognized that almost all learning involves se-
rial compounds, either because the animal distinguishes earlier and later
portions of a stimulus that may be viewed as a single stimulus by the ex-
perimenter, or because the animal’s behavior gives rise to a predictable
sequence of situations leading to reinforcement, as in maze running. Ke-
hoe (1982) surveys the theoretical issues and empirical results relevant to
serial-compound conditioning.

One of the theoretical issues arising in serial-compound conditioning
concerns the facilitation of remote associations. It has been found that
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Figure 19

Conditioned inhibition and its extinction in the TD model. In this and in all following sim-

ulations, V̄t was forced to be non-negative. A) Time traces showing the two kinds of trials

presented alternately in a conditioned inhibition experiment (trials 1-80) and in a subsequent

attempt to extinguish the resultant associations (trials 81-130). B) Behavior over trials of the

associative strengths of CS+ and CS− . During acquisition, the associative strength of CS+

becomes positive, while the associative strength of CS− becomes negative. The association

of CS+ , but not of CS− , is extinguished by nonreinforcement. Both CSs were 200 ms. in

duration and the US was 100 ms. in duration.
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if the empty trace interval between the CS and the US is filled with a
second CS to form a serial compound stimulus, then conditioning to the
first CS is facilitated. Figure 20b shows the behavior of the TD model in a
simulation of such an experiment, the timing details of which are shown in
figure 20a. Consistent with the experimental results (see Kehoe 1982), the
model shows facilitation of both the rate of conditioning and the asymptotic
level of conditioning of the first CS due to the presence of the second CS.

As discussed earlier, a strength of real-time models is their ability to
make predictions about the effects on conditioning of intratrial temporal
relationships. One of the best-known demonstrations of such an effect is
an experiment by Egger and Miller (1962) that involves two overlapping
CSs in a delay configuration as shown in figure 21a. Although CSB is in
a better temporal relationship with the US, the presence of CSA reduces
conditioning to CSB substantially as compared to controls in which CSA
is absent. Figure 21b shows the same result being generated by the TD
model in a simulation of this experiment.

Earlier we discussed similar results for the SB model (figure 4) from
an earlier paper (Sutton and Barto 1981a). That simulation experiment
differed from the Egger-Miller experiment in that the shorter CS was given
prior training until it was fully associated with the US. When the longer,
earlier CS was introduced, the association to the pretrained short CS de-
creased as training continued. As we discussed earlier, this is a surprising
and then-untested prediction, subsequently confirmed by Kehoe, Schreurs,
and Graham (1987), who also noted that alternative (non-time-derivative)
theories do not make this prediction and have considerable difficulty in ex-
plaining the result. The behavior of the TD model under these conditions
is shown in figure 22. This behavior is actually in slightly better accord
with the data than is the SB model’s behavior, in that the association to
the pretrained short CS is reduced after the introduction of the long CS,
but not completely eliminated.

Figure 23 shows the behavior of the TD model in a second-order con-
ditioning experiment. In the first phase (not shown in the figure), CSB is
pretrained with the US. In the second phase, CSA is paired with CSB in
the absence of the US, in the sequential arangement shown in figure 23a.
Empirically, CSA is found to acquire associative strength even though it is
never paired with the US. In the TD model, CSA first acquires a substan-
tial association and then that association and CSB’s association extinguish.
The same pattern is seen empirically.

Figure 24 shows the ISI dependency of the TD model for second-order
conditioning. It plots the associative strength after 10 trials as a function of
the CSA–CSB ISI. This ISI curve differs from the CS–US ISI curve shown
in figure 18 in that here simultaneous presentation results in the forma-
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Figure 20

Facilitation of a remote association by an intervening stimulus in the TD model. A: Temporal

relationships among stimuli within a trial. B: The behavior over trials of CSA’s associative

strength when CSA is presented in a serial compound, as in A, and when presented in an

identical temporal relationship to the US, only without CSB.

Figure 21

The Egger-Miller or primacy effect in the TD model. A: Temporal relationships among stimuli

within a trial. B: The behavior over trials of CSB’s associative strength when CSB is presented

with and without CSA.
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Figure 22

Temporal primacy overriding blocking in the TD model. A: Temporal relationships between

stimuli. B: The behavior over trials of CSB’s associative strength when CSB is presented

with and without CSA. The only difference between this simulation and that shown in figure

21 was that here CSB started out fully conditioned—CSB’s associative strength was initially

set to 1.653, the final level reached when CSB was presented alone for 80 trials, as in the

“CSA-absent” case in figure 21.

Figure 23

Second-order conditioning of the TD model. A: Temporal relationships between stimuli. B:

The behavior of the associative strengths associated with CSA and CSB over trials. The

second stimulus, CSB, has an initial associative strength of 1.653 at the beginning of the

simulation.
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Figure 24

Effect of the CSA-CSB ISI on second-order conditioning of TD model. A: Temporal relation-

ships between stimuli. B: Resultant value of CSA’s associative strength after 10 trials as a

function of CSA-CSB ISI.

tion of a large negative association instead of a small positive one. The
TD model treats the reinforcement due to USs and previously conditioned
CSs differently: US signals directly cause reinforcement, whereas changes
in the signals of previously conditioned CSs cause reinforcement. Thus, in
simultaneous presentation, a US’s reinforcement is delivered thoughout the
presentation, whereas a previously conditioned CS delivers reinforcement
only at its onset, and negative reinforcement at its offset, so that a simulta-
neously paired CS will be much more affected by the negative reinforcement
than by the positive reinforcement.

Empirically, second-order conditioning is observed to occur with both
simultaneous and sequential CSA–CSB pairings. To explain this observa-
tion in terms of the TD model we must appeal to indirect associations,
which are outside the scope of the model per se. That is, the model
clearly predicts that no direct CSA–US association will develop, but does
not preclude the development of both CSA–CSB and CSB–US associa-
tions, which together could have the effect of a CSA–US association. This
explanation of second-order conditioning is in fact partially confirmed em-
pirically. One observed difference between simultaneous and sequential
second-order conditioning is that responding to CSA is eliminated by ex-
tinguishing CSB after simultaneous second-order conditioning, but not after
sequential second-order conditioning (Rescorla 1980b). This suggests that
simultaneous second-order conditioning in fact does not result in a direct
CSA–US association. These simulation results also suggest the prediction
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that simultaneous pairing in second-order conditioning should result in a
negative CSA–US association. To our knowledge, this has not been tested.

Conclusion

The hypothesis that Pavlovian reinforcement is the time derivative of a
composite US and CS association accounts for many aspects of classical
conditioning. As Mowrer noted thirty years ago, it provides a unified ac-
count of single-CS acquisition, higher-order conditioning, primacy effects,
and many instrumental learning phenomena that we have not considered
here. As we noted in 1981, it also accounts for a wide range of stimulus
context effects by virtue of its reduction to the Rescorla-Wagner model
for the special case of simultaneously presented CSs. Once formalized and
combined with appropriate stimulus traces, time-deriviative models also
predict the effects of variations in intratrial temporal relationships. In par-
ticular, we have shown that the TD model reproduces salient features of
the empirical data in all three of these areas.

In comparing different time-derivative models, we have focussed on
their predictions about the effect of the CS–US interstimulus interval on
single-CS acquisition conditioning. The predictions of our 1981 model de-
viate from the empirical data for both fixed-CS and delay conditioning.
The related models proposed by Moore et al. (1986) and Klopf (1988) ease
some but not all of these problems. In particular, all of these models in-
correctly predict that a CS simultaneous with the US will become strongly
inhibitory and block conditioning to CSs that precede the US. Only the
TD model reproduces the main features of the empirical ISI dependency
without additional assumptions about subjective stimulus representations.

A distinguishing feature of the TD model is that it is based on a theory
about the function of classical conditioning. It is based on the supposition
that the goal of learning is to accurately predict at each point in time the
imminence-weighted sum of future US intensity levels. Given this goal, the
equations of the TD model follow from a computational theory of adaptive
prediction algorithms (Sutton 1988; Barto, Sutton and Watkins, this vol-
ume). The TD model thus both predicts features of classical conditioning
behavior and provides an account of their function as part of a mechanism
for accurate prediction.

Finally, we note that the TD model is of course not a complete model
of classical conditioning. Among the major classes of phenomena not di-
rectly addressed by the model are attention, salience, configuration, and
learning to learn (e.g., see models by Mackintosh 1975; Pearce and Hall
1980; Kehoe 1988; Gelperin, Hopfield and Tank; Schlimmer and Granger
1986; Grossberg and Levine 1987). Models of many of these phenomena
could be added to the TD model as a “front end”, or pre-processing stage,
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intervening between the external stimuli and their representation to the TD
model. At the output end, the TD model has significant implications for
CR topography, but would need to be augmented with a reponse rule be-
fore forming a full model of response generation (e.g., see models by Moore
et al. 1986; Frey and Sears 1978; Blazis and Moore 1987; Desmond, this
volume). Finally, we have noted that indirect associations, as revealed, e.g.,
in sensory preconditioning experiments, are beyond the immediate scope
of the model. To include indirect associations, the model would need to
be extended from an adaptive-element model to a adaptive-network model
(e.g., see models by Moore and Stickney 1980; Schmajuk and Moore 1986;
Sutton and Barto 1981b; Sutton and Pinette 1985).

Acknowledgments

The authors acknowledge their indebtedness to John Moore, Harry Klopf,
and Jim Kehoe; this work is the result of a long collaboration with them.
We also thank Jim Morgan, Diana Blazis, Mark Gluck, and Chuck An-
derson for helpful discussions, Marcy Rosenfield for figure reconstructions,
and particularly Jim Morgan for performing simulation experiments to ver-
ify our analyses of the DR model. Richard Sutton thanks the enlightened
management of GTE Laboratories for making this work possible. Andrew
Barto acknowledges the support of the Air Force Office of Scientific Re-
search through grant AFOSR-87-0030.

Appendix: Details of TD Model Simulations

The equations in the text were left slightly ambiguous in order to avoid a
distracting complication of the notation. For clarity, the equations actu-
ally used in the TD model simulations are given here in full, with explicit
reference to time:

Vi(t + 1) = Vi(t) + β

(
λ(t + 1) + γ

⌊∑
j

Vj(t)Xj(t + 1)

⌋

−

⌊∑
j

Vj(t)Xj(t)

⌋)
αX̄i(t + 1),

where bxc is x unless x < 0 , in which case it is 0 , and

X̄i(t + 1) = X̄i(t) + δ
(
Xi(t)− X̄i(t)

)
.

When a stimulus was present, the corresponding input signal ( Xi(t) or
λ(t) ) was set to 1, and when the stimulus was absent, the signal was set
to 0. All associative strengths, Vi , and eligibility traces, X̄i , were zero at
the start of training, except in the few cases explicitly noted.
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The time interval between trials was long enough for all traces to fall
to zero. Since no stimuli were presented during the inter-trial interval, it
is clear that reinforcement will be zero during this time, and that therefore
no learning will occur. Thus, the inter-trial interval was simulated simply
by setting the traces to zero.

The parameter values used were α = 0.1 , β = 1.0 , δ = 0.2 , and
γ = 0.95 . These values were chosen to approximately match ISI data for
the rabbit nictitating membrane response (figure 5) under the interpretation
that each time step corresponds to 50 ms. To produce the same behavior
under a different interpretation of the time step, different parameter values
must be used. For example, if one switched to an interpretation of a simu-
lation time step as 10 ms., then five times as many time steps would have
to occur in the same amount of clock time. Each of the learning rates α
and δ would therefore have to be reduced by a fifth, to 0.02 and 0.04 re-
spectively, so that approximately the same amount of learning would occur.
The rate at which imminence-weighting decreases, determined by γ , must
also be reduced by a fifth. This is done by cutting the drop from 1.0 to γ
by a fifth. In this case, by changing γ from 0.95 to 0.99. Finally, note that
the associative strengths, Vi , represent predictions of future areas, that is,
of sums of future λ values. Sampling time more finely means there will be
proportionally more λ values to add up in the same amount of clock time.
This means that associative strengths learned using different time scales
can only be compared if the time scale is taken into account. For example,
figure 18 shows associative strengths under optimal conditions reaching val-
ues of approximately 1.7. If a five times smaller time step was used, then
the associative strengths would instead reach approximately 5×1.7 = 8.5 .
All of these adjustment rules are only approximate, but should give good
results as long as the time step is kept small.

Notes

1. Wagner’s (1981) SOP model is a notable exception.

2. We drop the US-dependent constant β in discussing reinforcement terms because we

generally consider only a single US.

3. One may ask, “what is the US’s association with?” The US can either be considered

to be associated with itself, just as the CSs are associated with the US, or both US

and CSs can be considered to be associated with the response produced by the US.

In either case, it makes sense for the US’s association to be large and permanent.

4. For this purpose we ignore changes in the individual associative strengths.

5. Klopf (1988) actually proposed a time course of eligibility that was inverted-U shaped,

like the empirical ISI dependency. However, for our purposes this difference is prob-

ably not significant.

6. See the appendix for specification of the TD model with explicit reference to time and

for a listing of the parameter values used in the simulation experiments that follow.

7. Klopf and Morgan (personal communication) have recently obtained results for the

DR model that in some cases parallel those presented here.
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8. The outcomes of the experiments previously described are not affected by this redefi-

nition of V̄ , because none of them involved inhibitory associations.
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