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We consistently show that in large equity markets, the dividend-price ratio is signifi-

cantly related with the growth of future dividends. In order to uncover this relationship,

we use monthly dividends and a mixed data sampling technique which allows us to cope

with within-year seasonality. Our approach avoids the use of overlapping observations,

and at the same time reduces the implications of the impact of price volatility on the
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1 Introduction

A main theoretical implication of the present value approach on firm valuation is that the

dividend-price ratio should be significantly related to at least one of future returns and future

dividend growth. Since the late ’80s, the starting point for testing this hypothesis is mainly

the work of Campbell and Shiller (1988a,b). Campbell and Shiller generalized the result

of Williams (1938) and Gordon (1962) by obtaining an approximate relationship, which

describes the log dividend-price ratio, dy, as the difference between expected discounted

future log returns and expected discounted future dividend growth (plus a constant).1

More than twenty-five years since the publication of the Campbell-Shiller model, the

finance literature seems to have reached a consensus about the existence of a significant

linear relationship between dy and future returns. The examination, however, of the rela-

tionship between dy and future dividend growth has not yielded uniform conclusions (Ang

and Bekaert, 2007, Koijen and van Nieuwerburgh, 2011, Maio and Santa-Clara, 2014).2 In

order to explain the lack of consistent results among different countries, a series of recent

studies provided evidence that in large equity markets, dividend growth predictability by dy

1From another perspective, several theoretical models that examine the information embedded in dividend
announcements predict that changes in dividend policy convey news about future cash flows (Bhattacharya,
1979, John and Williams, 1985, and Miller and Rock, 1985). Specifically, dividend increases (decreases)
convey good (bad) news. According to Acharya and Labrecht (2011) executives in companies adjust dividend
payments to market expectations at the company level in order to keep their shareholders satisfied and
therefore keep their positions. Although asymmetric information theories view the dividend process from a
different angle, they nevertheless suggest that we should expect to observe a significant negative relationship
between dy and future dividend growth, if good firm prospects are embedded in the stock price while
dividends are sticky or smoothed.

2Lettau and Ludvigson (2005) concluded that although US dividend growth rates are predictable by
an estimated consumption-dividends-labor income ratio, they are not predictable by dy itself. Lettau and
Nieuwerburgh (2008) concluded that the simple dividend-price ratio does not predict future dividend growth.
They also used an adjusted, locally demeaned, dividend-price ratio, but even then they did not find any
evidence of dividend growth predictability. Cochrane (2008) used the absence of evidence supporting a
significant negative relationship between dy and subsequent dividend growth, in order to argue that this
fact provides strong evidence against the hypothesis that returns are not forecastable. Van Binsbergen and
Koijen (2010) found that while US market-wide dividends are predictable, the lagged price-dividend ratio
does not contribute to a higher R2. They finally achieved a higher R2 by filtering out the information in the
dividend-price ratio which is related to expected return variation. Engsted and Pedersen (2010) concluded
that “... real dividend growth in the US is unpredictable in the pre war period but significantly predictable
in the ’wrong’direction in the post war period.”Maio and Santa-Clara (2014) conclude that at the market
level dividends are not predictable by dy, while this is not true for portfolios of small and value stocks.
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is weak or even absent, arguing that this is a result of dividend smoothing policies applied

mainly by large firms (Chen, 2009, for the US in the post WWII period, Rangvid et al.,

2014).3

All aforementioned results are based on annual dividends, mainly due to the strong sea-

sonality issues that emerge when higher frequency dividends are used. Moreover, the studies

which provided evidence on dividend growth predictability in large equity markets (mainly

the U.S.), were unable to relate this predictability with dy. In other words, so far the dividend

growth predictability relationship which stems from Campbell-Shiller’s approximate identity

seems not to be supported by the empirical evidence. In this paper, we argue that the use

of time-aggregated (annual) dividends in dy washes out significant information concerning

dividend growth predictability. We use time-disaggregated dividend-price ratios in order to

reveal the link between dy and future dividend growth.4 We deal with possible seasonality

effects by applying the Mixed frequency Data Sampling (MiDaS) approach of Ghysels et al.

(2004). MiDaS allows us to use annual data for the dependent variables (dividend growth)

and data sampled at a higher than annual frequency for the variables on the right hand side

of our regressions.5 It also allows us to avoid the use of overlapping observations.

Because the current literature relates large market size with the absence of dividend

growth predictability by dy, our empirical analysis focuses on four of the world’s largest equity

markets, namely, S&P 500 (U.S.), FTSE 100 (U.K.), SPTSX 60 (Canada) and Nikkei 225

(Japan). Our findings suggest that for every country in our sample, the time-disaggregated

dividend-price ratio, which involves monthly dividends, is significantly related with the future

3Chen et al. (2012) showed that at the firm level, “... even if dividends are supposed to be predictable
without smoothing, dividend smoothing can bury this predictability in a finite sample.”

4By the term ‘time-disaggregated dividend-price ratio’we refer to any dividend-price ratio in which the
value of the dividend corresponds to the aggregate dividends paid within a period of less than one year. In
that sense, the term ‘aggregation’corresponds to aggregation of information in the time domain, and not to
summation of higher frequency variables.

5In a very recent paper, Golez (2014) uses data from derivatives on the S&P 500 at monthly frequency in
order to extract information that predicts future returns and dividend growth for the period January 1994 -
June 2011. Specifically, Golez combines the futures pricing (cost-of-carry) and put-call parity formulas under
no-arbitrage, and extracts implied dividend yields (IDY ) for S&P 500. Then, he defines the implied dividend
growth as idg = ln(IDY )− dy, where the log twelve-month trailing sum of dividends, d12, is involved in dy,
and shows that idg predicts the growth of d12 over a horizon of one, three, six and twelve months.
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dividend growth. The results also identify a component of the time-disaggregated dividend-

price ratio, which, in all cases, offers predictive power. We also repeat our analysis using

quarterly dividends but then the predictability of dividend growth vanishes, implying that the

effect of time-aggregation is significant even when higher-than-annual frequencies are used.6

The existence of dividend growth predictability by the dividend-price ratio, especially for the

U.S., is in contrast with what is suggested in recent studies (see Chen, 2009, and Rangvid

et al., 2014)7. It is worth noting, however, that in a recent paper, Kelly and Pruitt (2013)

show that the use of cross-sectionally disaggregated (firm level) information in a latent factor

system can significantly improve the predictability of dividend growth at the market level.

On the other hand, their analysis concerning future cash flows is based on annual data and

uses information from the cross section of book-to-market ratios due to the lack of dividend

payments for a substantial fraction of U.S. firms in their sample.

The paper is organized as follows. Section 2 describes the main variables and the set

of equations that are used as a starting point in our analysis. This section also outlines

MiDaS. Section 3 presents how MiDaS is used in order to obtain the predictive regression for

dividend growth. Section 4 presents the results of our empirical analysis. Section 5 concludes

the paper.

2 Preliminaries

In this section we introduce the variables used throughout the paper and we briefly present

the model of Campbell and Shiller (1988a,b). Then, we outline the Mixed Data Sampling

approach.

6Monthly (quarterly) dividends of an index correspond to the aggregate dividends paid by all companies
in the index during the period of one month (quarter) and not to annual dividends sampled at monthly
(quarterly) frequency.

7Rangvid et al. (2014) suggest that dividend growth predictability via dividend yield for the US is
accidental and the result does not extent to the other large equity markets.
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2.1 Dividend Predictability

Let Pt and Dt denote the price of a stock (or the value of an index) at time t and the

corresponding aggregate dividend that has been paid during the time interval (t − 1, t],

respectively. Let also pt := lnPt and dt := lnDt. The returns are defined by:

rt = ln

(
Pt +Dt

Pt−1

)
.

The log dividend-price ratio is given by dyt = dt − pt . The literature on dividend

predictability has been motivated from the work of Campbell and Shiller (1988a,b). They

showed that a good approximation of dyt is given by:

dyt ' c+ Et

∞∑
i=1

ρi−1rt+i − Et
∞∑
i=1

ρi−1∆dt+i , (1)

where Et is the conditional expectation operator at time t. Equation (1) implies that dyt

should predict revisions on future returns and/or dividend growth.

Considering the approximate identity (1), a reasonable starting point for the identification

of the main driving force of equity markets is to model the vector [rt,∆dt, dyt]
′ as a VAR(1)

process, where the first two columns of the coeffi cients’matrix are zeros (see Cochrane, 2008

and 2011, and Chen et al., 2012). Specifically, the vector autoregression can be expressed as

∆dt+1 = c0 + c1dyt + ut+1,d (2)

rt+1 = c0,r + c1,rdyt + ut+1,r (3)

dyt+1 = c0,y + c1,ydyt + ut+1,y , (4)

where a common approach is to use annual data for every variable in order to avoid sea-

sonality issues. The approximation of Campbell and Shiller (1988a) determines the set of

admissible joint null hypotheses on the coeffi cients of the VAR. For example, under the as-
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sumption that c1,y < 1, we cannot assume a null hypothesis where c1,r = c1 = 0, which

implies that at least one of rt+1 and ∆dt+1 must be significantly related with dyt (Cochrane,

2008). A consequence of this observation is that if the empirical evidence supports the null

hypothesis {c1 = 0}, then it also supports the rejection of the hypothesis {c1,r = 0}. On the

other hand, a rejection of the hypothesis {c1 = 0} is not informative about whether c1,r = 0.

2.2 The Mixed Frequency Data Sampling Approach (MiDaS)

A useful tool for empirical analyses, when regressor and regressand are sampled at different

frequencies, is the Mixed Data Sampling approach (MiDaS), introduced by Ghysels et al.

(2004). MiDaS has been extensively applied in financial data for assessing volatility predic-

tions and stock returns (i.e. Forsberg and Ghysels, 2006 and Ghysels et al., 2006), as well as

in forecasting macroeconomic variables using intra-annual data (i.e. Bai et al., 2009, Kuzin

et al., 2011 and Clements and Galvao 2008, 2009) and more recently, in forecasting annual

fiscal data using quarterly announcements (Asimakopoulos et al., 2013). To the best of our

knowledge, it is the first time that MiDaS is applied on a dividend growth predictability

model.

Let us assume that the higher frequency data (monthly in our case study) and the low

frequency data (annual data) are denoted byXM
t and Y A

t , respectively. The standard MiDaS

regression is:

Y A
t+1 = β0 + β1B(L1/m;θ)XM

t + εt+1 (5)

where L1/m is the higher frequency (monthly) lag operator (here m = 12), and B(L1/m;θ) =∑K−1
j=0 ωj (θ)Lk/m is a polynomial of L1/m that also depends on a vector of parameters, θ,

which determine the curvature of the weighting scheme.

The above expression determines the effect of the higher frequency explanatory variable

on the lower frequency dependent variable. Ghysels et al. (2007) provide several weighting

schemes. They show that the exponential Almon lag polynomial has the most flexible shape
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and therefore is assumed to be the most general weighting scheme and this is the main reason

that we also incorporate that to our analysis. The exponential Almon lag polynomial is fully

determined by two parameters θ1 and θ2, hence θ = (θ1, θ2)
′. The corresponding weights,

ωj (θ), are given by

ωj (θ) =
exp{θ1j + θ2j

2}∑m
j=1 exp{θ1j + θ2j2}

. (6)

The advantage of MiDaS when compared to alternative approaches, such as State Space

and mixed frequency VAR models that use Kalman filter, is that it is parsimonious and less

sensitive to specification errors due to the use of non-linear lag polynomials. In addition,

MiDaS does not suffer from the parameter proliferation issue. This is important in our

analysis because the time span of the data is not large enough for most of the countries in

our sample. Concerning the small sample size issue, Ghysels et al. (2006) show that MiDaS

performs better than State Space models that make use of Kalman filter, as the time span

of data decreases.

Another significant advantage of MiDaS is that the weighting scheme is purely data driven

and no prior assumption is necessary. Note that it is common in the literature to simply

take the average of the higher frequency variables to transform them into low frequency,

but the equal weighting assumption might lead to ineffi cient and, in some cases, to biased

or inconsistent estimators (Andreou et al., 2010). By definition, MiDaS avoids this issue.

On the other hand, when compared to a purely high frequency model, MiDaS avoids the

seasonality issues that appear in higher frequencies due to the lower frequency sampling of

the regressand and the flexibility of the weighting scheme.

3 MiDaS Predictive Regression for Dividend Growth

The literature on dividend growth predictability uses annual observations in order to avoid

potential seasonality issues that appear in higher frequency dividend data (see, e.g. Rangvid

et al., 2014, among others). This approach, however, ignores potentially important informa-
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tion from higher frequency observations, which vanishes when aggregated over the periods

that correspond to the lower frequency. In this paper, we propose a solution to this problem

using mixed frequency data.

We consider that the lower frequency observations are annual and that the time variable,

t, takes integer values and corresponds to the last day of the corresponding year. Specifically,

pt is the logarithm of the value of an equity index the last day of year t, and dt is the logarithm

of the aggregate dividend paid by all companies in this index during year t. By t − j/12,

j ∈ {0, 1, . . . , 11}, we denote the months within year t. For example, Pt−1/12 is the value

of the index the last day of November of year t, pt−1/12 = log(Pt−1/12), while Dm
t−1/12 is

the aggregate dividend paid by all companies in the index during November of year t and

dmt−1/12 = log(Dm
t−1/12). The corresponding monthly log dividend-price ratio is denoted by

dymt−1/12 := dmt−1/12 − pt−1/12 . Note that by dymt−j/12, j ∈ {0, 1, . . . , 11}, we denote the log

dividend-price ratio of month t− j/12, where the dividends correspond to this month only,

and not to the twelve-month period ending at the end of month t− j/12.

3.1 A first model with monthly dividend-price ratios

Our first task will be to introduce higher frequency (monthly) variables in (2). We will

maintain the low frequency dividend growth on the left hand side of the equation in order

to avoid the effects of high frequency seasonalities. Concerning the right hand side, the

reasoning behind the choice of a mixed frequency method implies that we have to incorporate

a higher frequency variable. Specifically, we will use the monthly dividend-price ratios,

dymt−j/12 .

A ‘naive’approach would be to replace dyt in (2) by dymt :=
∑11

j=0 dy
m
t−j/12 yielding the

following equation

∆dt+1 = c0 + c1dymt + ut+1 . (7)

We observe that dymt /12 is the average monthly dividend-price ratio during year t. In other
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words, dymt is the annualized average monthly dividend-price ratio for year t. When compared

to dyt, dymt combines more synchronous information, because while the annual dividend in

dyt aggregates throughout a whole year, the price in dyt corresponds to the end of year t.

When compared to (2), the right-hand side of (7) is much less sensitive to end-of-year price

volatility, while dymt may be seen as a smoothed version of the dividend-price ratio.8 The

correlation of dymt with dyt, corr(dymt , dyt), is high. This should be expected because dt is

a transformation of the information contained in every dmt−j/12 within year t, while pt−j/12

is strongly persistent. The high value of corr(dymt , dyt) is also supported by our dataset.

Specifically, we find that the sample correlation between dymt and dyt is 0.93 for the U.S.,

0.87 for the U.K., 0.93 for Canada and 0.85 for Japan.

Concerning the applicability of equation (7), we have to bear in mind that its purpose is

mainly to show the direction we have to follow in order to introduce higher frequency variables

in a model for the predictability of dividend growth without having to resort to other variables

than monthly dividend-price ratios. Unfortunately, the use of dymt on the right hand side of

(7) has two main drawbacks. First, although dymt involves monthly dividend-price ratios, it

is a variable constructed at the annual frequency as a simple equally-weighted sum. This fact

does not support the identification of different sensitivities between ∆dt+1 and dymt−j/12 for

different values of j. An argument supporting the existence of different sensitivities at the

aggregate, country level, is that only a relatively small number of companies of an index pay

dividends at monthly frequency, while the value of an index depends on the prices of all its

constituents. A second argument, concerns the fact that prices of the late months of the year

represent expectations based on a richer information set than the one that corresponds to the

early months of the same year. Moreover, it should be noted that dymt is highly persistent.

This is supported by the high correlation it has with dyt, and also, by an initial inspection of

the statistical properties of dymt for the data involved in our analysis. Specifically, for each

8In fact, dymt /12 is a smoothed version of the monthly dividend-price ratio. However, the use of dy
m
t

instead of dymt /12 in (7) and its subsequent variations does not affect the signs and p-values in the results
of the corresponding regressions. Note that the dividends in dymt do not correspond to ovelapping periods.
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country in our sample, the values of the ordinary least squares estimator, ρ̂, of the coeffi cient

of an AR(1) specification for dymt , dymt = ρdymt−1 + εt, are: 1.002 for the U.S., 0.994 for the

U.K., 0.997 for Canada and 0.99 for Japan. Although based in a very small sample, these

estimates provide an indication that dymt is strongly persistent.
9 In case that the persistence

of dymt is of a unit root type, a nonzero c1 in equation (7) would imply that ∆dt+1 has a unit

root too, contradicting the empirical findings that are reported in the relevant literature so

far (see van Binsbergen and Koijen, 2010, among others). From another perspective, since

the persistence of ∆dt+1 is much weaker than that of a (near) unit root process, if dymt has

a unit root the estimated value of c1 will converge to 0 as the sample size increases.10

In the next subsection we relax equation (7) in order to allow for deviations from the

underlying assumptions of (1) and (7). The resulting model nests (7). In other words, we

embed equation (7) in a more general framework, allowing for the data to “tell their story.”

3.2 The Role of Time and MiDaS

In the previous subsection we identified two main drawbacks in equation (7). These draw-

backs concern the selection of the explanatory variable and are (i) the persistence of dymt ,

and (ii) the fact that although dymt consists of monthly dividend-price ratios, it is still a low

frequency variable.

In order to deal with the first drawback, the near unit root behavior of dymt , we relax

equation (7) by also incorporating the changes (first differences) of dymt on the right hand

side. Specifically, we allow for the sensitivity of ∆dt+1 to recent information on the dividend-

price ratio (∆dymt ) to be different from the sensitivity of ∆dt+1 to dymt−1. This leads to the

following equation:

∆dt+1 = c0 + c1∆dymt + c2dymt−1 + ut+1 . (8)

9Further examination of the persistence of dymt is provided in the empirical section of the paper.
10This is an implication of the fact that the percentage of time a unit root process passes outside any

fixed bounded interval tends to 1, while the time series on the left hand side of the regression is stable.
The observation that a persistent right-hand side could lead to serious over-rejections, is not novel (see, for
example, Nelson and Kim, 1993, and Campbell and Yogo, 2006).
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We observe that equation (8) nests (7) as the special case where c1 = c2. In this sense,

equation (8) is not incompatible with (1). However, equation (8) allows for the sensitivity

of ∆dt+1 to the strongly persistent term, dymt−1, to be determined separately from ∆dymt

which might contain significant information for the future dividend growth. Therefore, if

only c1, and not c2, appears to be significant we will have identified ∆dymt as the informative

component of dymt .

Equation (8) seems to deal with the persistence issue of dymt . It is, however, reasonable

for us to wonder if there is an explanation in terms of economic behavior or asset pricing that

supports a relationship between the first differences of the dividend-price ratio and future

dividend growth. We will not provide a general answer to this question, but we will focus in

the case where prices are formed under the perspective that dividend smoothing takes place.

This is the relevant case in our study, because dividend smoothing is a well documented

characteristic of dividend policies in large equity markets after the WWII (see Chen, 2009,

among others).

We start by rewriting the first difference of the dividend-price ratio as ∆dyt := dt −

pt − (dt−1 − pt−1) = ∆dt − ∆pt . At the end of period t, investors are already informed

about the change in the dividend paid during period t. The price, pt, of the corresponding

asset is, however, sampled at the end of period t. Therefore, the information set used for

the formation of pt includes the change of dividends, ∆dt. Note that over the years, many

theories considered dividends either as a signaling device to mitigate information asymmetry

problems or as an effi cient way to resolve agency problems.11

In case that an increase in ∆dt is considered as “good news” for future cash flows, pt

increases accordingly. Dividend smoothing implies that expectations on future cash flows

are higher than the ones revealed by the increase of ∆dt . Consequently, in order to capture

the effect of dividend smoothing on ∆dt investors set the price pt at an even higher level,

which leads to a smaller ∆dyt . On the other hand, future dividend growth has to be higher

11Allen and Michaely (2003), Frankfurter and Wood (2003), Baker (2009), and DeAngelo, DeAngelo, and
Skinner (2009) provide excellent reviews of these theories and the related empirical facts.
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in order to compensate for the smoothed change in the current dividend. In other words,

under rational expectations, an increase in the expectations of future cash flows implies that

the growth rate of future dividends has to increase with respect to current dividend growth,

because the latter was suppressed due to dividend smoothing. Similarly, a specific decrease

of ∆dt under dividend smoothing, signals lower expectations of future cash flows than in the

case of no dividend smoothing. Consequently, pt is set at a lower level than in the case of the

same ∆dt under no dividend smoothing, leading to a higher ∆dyt. Again, the future change

of dividend growth has to be negative in order to compensate for the smoothed change of

the current dividend. The previous reasoning leads us to conjecture that when investors

know that dividends are smoothed, a negative relationship exists between the change of the

dividend-price ratio and future dividend growth.12

Equation (8) can be considered as an intermediate step towards the derivation of an

even more flexible model that will be able to exploit any differences in the sensitivities of

the variables that correspond to high frequency (monthly) information. In order to derive

a model with this feature, we focus on the component of (8) that corresponds to recent

information, ∆dymt . We observe that

∆dymt =
11∑
j=0

[
(dmt−j/12 − pmt−j/12)− (dmt−1−j/12 − pmt−1−j/12)

]
(9)

where each summand of the right hand side of (9) corresponds to the annual growth of

a monthly log dividend-price ratio, gdymt,j := (dmt−j/12 − pmt−j/12) − (dmt−1−j/12 − pmt−1−j/12),

0 ≤ j ≤ 11. According to (8), the sensitivity of ∆dt+1 to each gdymt,j, 0 ≤ j ≤ 11, is the

same. Because each term, gdymt,j, corresponds to information available at a different point in

time, it is reasonable for us to require a more flexible structure than ∆dymt , that will allow

12It would be tempting to try using this reasoning in order to obtain a similar relationship for the pre-
dictability of returns. However, an increase of the smoothed current dividend growth does not imply higher
future returns, given that investors have already incorporated this smoothing in the formation of the current
price.
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for different sensitivities.13 A straightforward approach would be to estimate the following

relaxed version of (7):

∆dt+1 = c0 +
11∑
j=0

c1,jgdy
m
t,j + c2dymt−1 + ut+1 . (10)

Unfortunately, equation (10) has fourteen degrees of freedom! This fact alone would make

any estimation result unreliable, given that the availability of monthly dividends at the

market level covers at most two and a half decades, which corresponds to less than twenty-

five annual observations. We deal with the issue of parameter proliferation by using the

approach of MiDaS.

As described in the previous section, MiDaS imposes a structure on c1,js. Specifically,

according to MiDaS, c1,j = c1wj, 0 ≤ j ≤ 11, where the wjs are determined by the parameters

θ1 and θ2 of the Almon lag polynomial. The corresponding MiDaS equation becomes

∆dt+1 = c0 +
11∑
j=0

c1wjgdy
m
t,j + c2dymt−1 + ut+1 = c0 + c1∆wdymt + c2dymt−1 + ut+1 , (11)

where

∆wdymt =
11∑
j=0

wjgdy
m
t,j . (12)

Equation (11) can be considered as a version of (2) which is robustified with respect to end-

of-year price volatility, and which allows for separate treatment of information of different

lags, annual and monthly. It also nests equations (7) and (8) as special cases. Therefore, (11)

is not incompatible with the Campbell-Shiller model, while, at the same time it allows for

deviations from the strict structure of equation (7).14 Moreover, the term with the higher

frequency observations, ∆wdymt , has low persistence, because it involves annual changes

13As already mentioned, only a small number of companies pay dividends every month. This fact causes
time-variation to the number of companies that pay dividends each month, and consequently implies that
the degree at which monthly dividends affect market expectations on future dividend growth may be also
varying; probably following approximately the same pattern every year.
14These deviations may be a result of a violation of the underlying assumptions of equation (7).
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of monthly dividends at monthly frequency. In other words, although the changes of the

monthly dividend-price ratios in ∆wdymt correspond to overlapping periods, the monthly

dividends involved in this term correspond to periods of one month. Each of these periods

is considered only once in the derivation of ∆wdymt .

Note that in MiDaS regressions as (11), the term ∆wdymt can not be considered as a

simple weighted average where the weights are known a priori, because the high frequency

coeffi cients wj, 0 ≤ j ≤ 11, are estimated along with c0, c1, and c2. In other words, equation

(11) is a compact way to describe model (10) under the restriction c1,j = c1wj, 0 ≤ j ≤ 11,

where the wjs are determined by the estimated θ1 and θ2.

As far as the number of degrees of freedom of equation (11) is concerned, five coeffi cients

(c0, c1 and c2 along with θ1 and θ2) are estimated when equation (11) is considered without

any restriction. On the other hand, under the joint hypothesis that ∆dt+1 does not have a

unit root while dymt−1 has a unit root, we can estimate (11) under the restriction c2 = 0. In

this case, only four coeffi cients are estimated.15

We finally note that c1 is not affected by a possible strong correlation between the high

frequency components of ∆wdymt . A significant c1 in equation (11) is interpreted as evidence

that the annual changes of the monthly dividend-price ratios contain significant information

with respect to future dividend growth.

4 Empirical Results on Dividend Growth Predictabil-

ity

In this section we present the results concerning the predictability of dividend growth using

index data from U.S., U.K., Canada and Japan. Specifically, we consider the following in-

dices: S&P 500 (U.S.), FTSE 100 (U.K.), SPTSX 60 (Canada) and Nikkei 225 (Japan). The

15As we will see in the next section, the results concerning the significance and the sign of c1 under the
assumption c2 = 0 are almost always in agreement with the corresponding results from the estimation of the
unrestricted equation (11).
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aggregate monthly dividend paid by all companies in the index is reported by Bloomberg.

The available information on monthly dividend starts at 1988 for U.S., and 1994 for U.K.,

Canada and Japan.16 The end point of the analysis for every country is the end of 2012.

The sample size for each country depends on the availability of the corresponding monthly

dividends.17 An approach to obtain monthly dividends prior to this date is to interpolate

quarterly dividends. For the U.S. in particular, monthly dividends via interpolation are pro-

vided in Robert Shiller’s web page (www.econ.yale.edu/∼shiller/data.htm). Note, however,

that this approach does not recover the information in the variation of higher frequency

dividends, and cancels the benefit of using a mixed frequency data sampling approach. The

importance of monthly information becomes apparent in the following subsections.

4.1 On the time series properties of dymt

Before we proceed to the main results of this section, we will look for indications of nonsta-

tionarity for the time series
{
dymt

}
. Table 1 presents the results of a set of unit root tests

including an intercept for
{
dymt

}
for each country in our sample. We observe that the results

seem to support the null of a unit root in
{
dymt

}
for the U.S., Canada and Japan. In addi-

tion, the KPSS LM-statistic has a p-value of less than 10% under the null of stationarity for

Canada and Japan. However, the KPSS statistic does not exceed the 10% critical value for

the U.S. Concerning U.K., the combined results seem not to support the unit root hypothesis,

while the p-value of the KPSS stationarity test is well above 10%. Taking into consideration

16For each index, monthly dividends are calculated by aggregating all dividends paid withing the corre-
sponding month. Bloomberg aggregates daily information since 1988 for S&P 500, and since 1994 for FTSE
100, SPTSX 60 and Nikkei 225. Concerning S&P 500, Standard & Poor’s began reporting daily dividends
in 1988.
17Japan is the only country in our dataset, for which the problem of zero monthly dividend occurred.

Specifically, during the nineteen years of monthly dividend data for Japan, April dividends were always zero,
while nonzero October dividends occurred only twice. In view of this fact, our analysis actually omits these
two months for Japan. On the other hand, concerning the same country, we had to deal with an additional
number of thirteen zero monthly dividends. This number is relatively small when compared with a dataset
of 190 observations (after the exclusion of April and October zero dividends). In order to avoid the issue of
applying the logarithmic function to zero, we treat the zero dividends as not available data when MiDaS is
used.
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the results for all countries, we conclude that the univariate tests do not provide a clear

indication about whether the time series
{
dymt

}
is stationary or not, in general.

[Table 1 about here]

Another approach to the stationarity issue of
{
dymt

}
is that of performing unit root tests

for pooled data. Table 2 reports the results of the tests of Levin, Lin and Chu (2002) for a

common unit root in the four series, and of Im, Pesaran and Wu (2003), as well as the Fisher

tests based on the Augmented Dickey-Fuller and Phillips-Perron statistics, for individual

unit roots. All results seem to support the unit root hypothesis.

[Table 2 about here]

We have to bear in mind that the small number of observations for
{
dymt

}
may render

the tests used in Table 1 and Table 2 unable to reject the null hypothesis of a unit root.

Consequently, in the subsequent analysis we have to estimate equation (11) both under no

restrictions and under the restriction c2 = 0 (which corresponds to the acceptance of the unit

root hypothesis). As we will see, however, the results under the two alternatives are almost

always similar, and the acceptance of the theoretical arguments supporting the stationarity

of
{
dymt

}
(hence, focusing on the unrestricted specification) does not have any implications

in the main findings of our analysis.18

4.2 Dividend growth predictability

The results of our empirical study concerning dividend growth predictability are presented

in Tables 3 to 8. Each one of Tables 3 to 7 has two panels (Panel A and Panel B). Panels

A concern regressions with the annual dividend growth, ∆dt, being the dependent variable.

18Given the strong persistence of
{
dymt

}
, and the mixed results of Tables 1 and 2, we are obliged to

examine both specifications (c2 ∈ R and c2 = 0) for reasons of statistical consistency.
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Panels B present results for the same regressions, but with the left hand side variable, ∆dt,

being replaced by the average annual growth of monthly dividends, given by

∆admt :=
1

12

11∑
j=0

(
dmt−j/12 − dmt−1−j/12

)
.

Finally, note that none of the regressions in our empirical analysis will use overlapping data.

4.2.1 One-year-ahead predictability of dividend growth

The results on one-year-ahead dividend growth predictability are presented in Table 3. The

first block of columns of Table 3 corresponds to equation (2). The second block of columns

corresponds to an application of MiDaS without the decomposition of the dividend-price

ratio. In other words, although mixed frequency data are used in the second regression, the

high frequency data correspond to monthly dividend-price ratios, dymt−j/12, 0 ≤ j ≤ 11. The

corresponding equations are given by:

∆dt+1 = c′0 + c′1wdy
m
t + ut+1 , (13)

where

wdymt =
11∑
j=0

w′jdy
m
t−j/12 .

The third block of columns corresponds to equation (11). As already mentioned, Panel 3.B

presents the results of the same regressions with ∆dt replaced by ∆admt .

[Table 3 about here]

The results of the first (annual frequency) regression of Panel 3.A can be compared with

the corresponding results in Rangvid et al. (2014). Only for Canada the dividend-price ratio

seems to be a significant component of dividend growth variability, with a p-value equal to
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9%. On the other hand, the dividend-price ratio does not significantly affect the future

dividend growth for both U.S. and U.K. This result is comparable and towards the same

direction with previous studies, which are mostly based on U.S. data (i.e. Chen, 2009). The

corresponding results in Panel 3.B indicate no significant relationship between dy and ∆admt

for all countries in our sample.

When monthly dividend-price ratios, as described in equation (13), are used instead of

annual dividend-price ratios, the results are not uniform (second block of columns in Table

3). Specifically, when∆dt is the dependent variable (Panel 3.A), only for the cases of Canada

and Japan, we observe statistically significant dividend-price ratios with a p-value of 4% and

8% respectively. On the other hand, when ∆dt is replaced by ∆admt , the coeffi cients that

correspond to U.K., Canada and Japan are significant, with p-values between 1% and 2%,

while no significant relationship is identified between ∆admt and wdy
m
t , concerning S&P500.

The results indicate that a simple approach that directly applies MiDaS to higher frequency

dividend-price ratios, does not consistently reveal signs of dividend growth predictability.

When equation (11) is estimated, the situation changes radically. The decomposition

of the dividend-price ratio and the application of MiDaS to its growth component yields

significant results for all countries. Specifically, ∆wdymt is always significant and the sign of

c1 is always negative, in agreement with the theoretically expected sign. Table 3 also reports

the results of a test on the hypothesis that c1 = c2 for all countries. The only country for

which this hypothesis cannot be rejected is Canada when ∆dt is the dependent variable,

while the hypothesis cannot be rejected for Canada and U.S., when ∆admt is the dependent

variable. Finally, Table 3 presents the results of the estimation of equation (11) under the

restriction c2 = 0. Again, for all countries, the coeffi cient of the growth of the smoothed

dividend-price ratio is statistically significant. In the supplemental material of the paper, we

present the figures of the estimated and realized dividend growth through equation (11) for

the four markets under consideration.

Figure 1 illustrates the weighting schemes of the four markets as they result from the
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MiDaS estimation of equation (11). It reveals that the dividends paid during the late months

of the year, play a much more significant role in the prediction of the annual dividend growth

than the dividends paid during the early months of the year. This fact provides and indication

of the importance of allowing different weights, and, therefore, of the MiDaS approach.

[Figure 1 about here]

Concerning equation (11), it would be reasonable to wonder whether the application of

an additional MiDaS scheme to its second term would yield different results. To answer this

question, we would have to estimate the following equation:

∆dt+1 = c0 + c1∆wdymt + c2wdy
m
t−1 + ut+1 . (14)

The results of the second block of table 3 provide a first indication about whether c2 in

equation (14) is statistically significant. Specifically, when wdymt is included as the only re-

gressor of ∆dt+1 there is no evidence of a significant relationship between these two variables.

Therefore, it seems unlikely that the lagged value of wdymt is significantly related to ∆dt+1,

given that another regressor is also included in equation (14). The results of the estimation

of equation (14) verify this conjecture. Specifically, ∆wdymt remains statistically significant

while the same does not hold for wdymt−1. For economy of space, the corresponding results,

are included in the supplemental material of the article.

Summarizing the results of Table 3, we conclude that the decomposition of the (smoothed)

dividend-price ratio revealed a component (∆wdymt ) that always contains predictive informa-

tion. On the other hand, the remaining component (dymt−1) of the dividend-price ratio is not

always significant. For each country, the sign of the relationship between future dividend

growth and the corresponding significant component of the dividend-price ratio is always

negative, being in agreement with the theoretically predicted sign. Concerning the U.S., in

particular, it is worth noting that our conclusions seem to be in contrast with what has been
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suggested for the post WWII period in the literature so far (see Chen, 2009, and Rangvid

et al., 2014).19

4.2.2 The importance of high frequency data

Table 3 provided evidence that the involvement of dividends at a higher than annual fre-

quency, changes the picture concerning the predictability hypothesis of dividend growth.

Consequently, it is reasonable to ask whether the selection of monthly frequency is neces-

sary. Table 4 presents the results of a MiDaS estimation of equation (11) with the only

difference that quarterly data are used (in other words, we have only four subperiods each

year). It is directly observed that when ∆dt is the dependent variable, only for the U.S. a

significant relationship between ∆dt+1 and ∆wdymt is still identified (with a p-value of 6%),

while for Japan, the only significant relationship is between ∆dt+1 and dymt−1. As far as

∆admt is concerned (Panel 4.B), the only significant c1 corresponds to U.K. data. Under the

restriction c2 = 0, c1 is not statistically significant for all countries in panel 4.A, while it

remains significant for U.K. in Panel 4.B. The results of Table 4 reveal the importance of the

choice of the highest possible (monthly) frequency in order to obtain globally uniform results.

They also reveal how quickly time aggregation destroys useful information concerning the

relationship between future dividend growth and ∆wdymt .

[Table 4 about here]

4.2.3 Predictability of dividend growth at longer horizons

Let us now examine the relationship between the dividend-price ratio and the future dividend

growth at longer horizons. Table 5 presents the results of the estimation of equation zt+i =

19Any predictability of future dividend growth shown in previous studies, did not stem from the dividend-
price ratio.
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c0+c1∆wdymt +c2dymt−1+ut+i, with i =2, 3 and 4, where zt = ∆dt (panel 5.A) and zt = ∆admt

(panel 5.B). We observe that the relationship between∆dt+i and∆wdymt has always negative

sign and is not significant only for Japan when i =4. Under the restriction c2 = 0, the p-

value of c1 is higher than 10% only for the U.K., for i =3, and for Japan, for i =4. When

zt = ∆admt , however, the results are not so uniform. Specifically, while c1 is always negative,

the corresponding p-values are considerably larger than 10% for S&P500. On the other hand,

the p-values of c1 for the rest three countries are less than 5% most of the times, and do not

exceed the levels of 10%, when c2 is also estimated, and 11%, under the restriction c2 = 0,

respectively.

[Table 5 about here]

Tables 3 and 5 provide evidence of a significant relationship between future dividend

growth and the monthly dividend-price ratios. Although the number of monthly dividends

involved in the estimation of equation (11) is more than 150 for all countries in our sample, it

corresponds to only 25 years for U.S. and 19 years for U.K., Canada and Japan. This implies

that an attempt to evaluate the forecasting performance of model (11) would be subject to

small-sample effects, because both ∆dt and ∆admt are sampled at annual frequency. On the

other hand, it still remains interesting to see the in-sample performance of a model which

is based only on market-level monthly dividend-price ratios. Table 6 presents the in-sample

adjusted R2 of equation zt+i = c0 + c1∆wdymt + c2dymt−1 + ut+i, with i =1, 2, 3 and 4, where

zt = ∆dt (panel 6.A) and zt = ∆admt (panel 6.B).

[Table 6 about here]

Concerning the dividend growth, ∆dt, we observe that the values of the in-sample adjusted

R2 for any horizon of up to four years, are at least 16%, 21%, 22% and 20% for U.S.,

U.K., Canada and Japan, respectively, when the unrestricted model is estimated. The

corresponding values when equation (11) is estimated under the restriction c1 = c2 are 15%,
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21%, 16% and 17%. When the sum of annual changes of the monthly dividend-price ratio,

∆admt , is the dependent variable, the values of the in-sample adjusted R
2 for any horizon of

up to four years, are at least 10%, 28%, 24% and 20% for U.S., U.K., Canada and Japan,

respectively, when the unrestricted model is estimated. The corresponding values under the

restriction c1 = c2 are 10%, 24%, 18% and 24%. It is worth pointing out that in the case of

FTSE100, the adjusted R2 of the two and four years ahead MiDaS predictive regressions for

∆admt reaches 55%.
20

4.2.4 The added value of MiDaS

The results of our analysis are based on the decomposition of the smoothed dividend-price

ratio, dymt and the application of MiDaS on its growth component, ∆wdymt . We have also

shown that the application of MiDaS alone does not suffi ce to reveal the link between the

information contained in monthly dividend-price ratios and future dividend growth (Table

3). In order to provide further support to our approach, we show that the decomposition of

dymt alone is also unable to reveal this link. Table 7 presents the results of the estimation of

equations zt+1 = c0+ c1∆dyt+ c2dyt−1+ut+1 and zt+1 = c0+ c1∆dymt + c2dymt−1+ut+1, where

zt = ∆dt (Panel 7.A) and zt = ∆admt (Panel 7.B). It can be easily observed that in most

of cases the p-values of the estimated coeffi cients are significantly larger than 10%, while

only for Canada, and only for c2, the corresponding p-values are smaller than 10% in both

regressions.

[Table 7 about here]

20Recall that MiDaS regression estimates only five parameters for the unrestricted model. Three of them
(c0, c1and c2) correspond to the low (annual) frequency part of the model, while the two coeffi cients of the
exponential Almon lag polynomial, θ1 and θ2, determine the weights of the variable which is sampled at the
higher (monthly) frequency.

21



4.2.5 Short term predictions

Let dsit be the log dividends paid within the i-th semester, i ∈ {1, 2}, and d
qi
t be the log

dividends paid within the i-th quarter, i ∈ {1, 2, 3, 4}, of year t. We examine whether a

significant relationship exists between the monthly dividend-price ratios of year t and the

growth of semi-annual and quarterly dividends, ds1t+1 − ds2t and dq1t+1 − d
q4
t , respectively. To

this end, we estimate the following MiDaS regressions:

ds1t+1 − ds2t = c0 + c1∆wdymt + c2dymt−1 + ut+1 (15)

and

dq1t+1 − d
q4
t = c0 + c1∆wdymt + c2dymt−1 + ut+1 . (16)

We have to note that although a seasonal component exists between the dividends paid in

sequential semesters or quarters (and their corresponding changes), equations (15) and (16)

avoid the implications of this type of seasonality because they avoid the interchange between

the two semesters or the four quarters, respectively. Specifically, equation (15) (equation

(16)) focuses only on the change of the dividend between the last semester (quarter) of year

t and the first semester (quarter) of year t+ 1. However, because of the existing seasonality,

it seems reasonable to wonder about the robustness of the model, which is derived under a

set of assumptions that does not include any seasonality. Table 8 presents the results from

the estimation of equations (15) and (16). It also reports the corresponding results when the

restriction c2 = 0 is imposed. The results of Table 8 seem to support the robustness of the

model.

[Table 8 about here]

Specifically, we observe that in all cases the sign of c1 is negative. Concerning the predictabil-

ity of the six-month dividend growth, ds1t+1 − ds2t , the estimated c1 has p-values smaller than

5%, as far as U.S., U.K. and Japan are concerned, while the corresponding p-values for
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Canada are approximately 10%. Concerning the predictability of the three-month dividend

growth, dq1t+1−d
q4
t , all p-values of the estimated c1 are smaller than 10%. In particular, when

the unrestricted model is estimated, the corresponding p-values for U.K., Canada and Japan

are smaller than 5%.

The conclusions of our empirical analysis can be summarized as follows: The application

of MiDaS weights to the annual growth of the smoothed dividend-price ratio, revealed a

negative and significant relationship between this component of the dividend-price ratio and

the future dividend growth. This relationship remains negative and significant at longer

horizons for all countries in our sample. When a slightly lower frequency (quarterly) on

dividend data is used, the relationship in general vanishes. It is worth noting that only the

combination of the decomposition of the smoothed dividend-price ratio with MiDaS is able

to reveal a significant relationship for all markets under consideration.

5 Conclusions

In this paper we provided evidence that a significant relationship exists between the dividend-

price ratio and the future dividend growth in large equity markets. In order to uncover this

relationship we used higher frequency (monthly) data. The analysis focused on the main

equity indices of U.S., U.K., Canada and Japan. Our motivation stemmed from the fact

that the relevant literature was unable to identify a significant relationship between the

dividend-price ratio and the future dividend growth.

Using a mixed data sampling approach (MiDaS) in order to deal with high frequency

seasonality issues, and smoothing out the effects of price volatility on the dividend-price ratio,

we found that for every country in our sample the smoothed dividend-price ratio contains

significant information on the growth of future dividends. We identified a component of

the smoothed dividend-price ratio (namely, its annual growth) that is always significantly

related with the future dividend growth. The coeffi cient of this relationship is negative for
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all countries in our sample, as theoretically expected. We also provided evidence that the

predictability of dividend growth emerges only when both MiDaS and the decomposition

of the smoothed dividend-price ratio are applied. The weights of the estimated weighting

schemes reveal that recent monthly dividends are more significant than the ones paid during

the first months of the year.

When we applied exactly the same approach using data of a relatively lower frequency,

we did not identify any significant relationship between the dividend-price ratio and future

dividend growth for most of the countries in our sample. This result supports the view that

when time-aggregated dividends are used significant information is ignored. The effect of

time aggregation is quite direct, since it appears even when quarterly dividends are used.
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Table 2: Values of pool unit root test statistics for dymt
Test Null hypothesis

Levin, Lin & Chu t* common -0.99
unit root (0.16)

Im, Pesaran and Shin individual -0.36
W-stat unit root (0.36)

ADF-Fisher individual 8.66
Chi-square unit root (0.37)

PP-Fisher individual 7.98
Chi-square unit root (0.44)

Table 2 presents the results of pool unit root tests for the series {dymt } (U.S., U.K., Canada and Japan)
with individual effects (p-values in parentheses).
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Table 4: MiDaS with quarterly dividends
Panel A With restriction

(dep. var. ∆dt+1) c2 = 0
c1 p-value c2 p-value c1 p-value

U.S. -0.07 0.06 0.01 0.90 -0.12 0.24
U.K. 0.12 0.23 -0.18 0.29 -0.13 0.16
Canada -0.07 0.22 -0.17 0.17 -0.07 0.80
Japan 0.25 0.25 -0.21 0.03 -0.57 0.66

Panel B With restriction
(dep. var. ∆admt+1) c2 = 0

c1 p-value c2 p-value c1 p-value
U.S. -0.10 0.31 0.00 0.35 -0.10 0.32
U.K. -0.26 0.02 -0.02 0.18 -0.18 0.02
Canada -0.16 0.38 -0.01 0.12 -0.13 0.25
Japan -0.59 0.63 -0.37 0.99 -0.60 0.63

Table 4 presents the results of a MiDaS estimation of equation (11) with the use of quarterly data (four

subperiods each year). p-values correspond to Newey-West t-statistics.
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Figure 1: Estimated MiDaS weights of the annual changes of monthly dividend-price ratios
for the predictive regression of dividend growth (equation 11)
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