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ABSTRACT. In this paper we deal with the equation L (d2u/dt2) +B (du/dt)+ Au f, where

L and A are linear positive selfadjoint operators in a Hilbert space H and from a Hilbert space
V C H to its dual space V, respectively, and B is a maximal monotone operator from V to

V. By assuming some coerciveness on L + B and A, we state the existence and uniqueness of

the solution for the corresponding initial value problem. An approximation via finite differences

in time is provided and convergence results along with error estimates are presented.

KEY WORDS AND PHRASES. Nonlinear second-order evolution equations, Cauchy prob-
lem, existence and uniqueness, time discretization, convergence and error estimate.

1991 AMS SUBJECT CLASSIFICATION CODES. 35M10, 35A05, 35A35.

1. INTRODUCTION.
Consider two Hilbert spaces V and H such that, by identifying H with its dual space H’,

V C H C V with dense and continuous injections. Let L H H and A V --. V be
two linear, bounded, and selfadjoint operators. In addition, it is assumed that L and A are

monotone, that is, non negative due to their linearity, and that A satisfies some condition of
coerciveness. Also, let B be a maximal monotone operator from V to V’, possibly nonlinear

and multivalued. Then, the present paper is concerned with the Cauchy problem for evolution

equations of the form

d2u du
L-d- +B- + Au 9 f in ]0, T[, (1.1)

du
u(0) u0, -(O)=vo, (1.2)

where T > 0, f :]0, T[--> V’ and u0, v0 E V are given. In the case where L coincides with
the identity operator in H, the problem (1.1-2) is well-known. The existence and uniqueness of
the solution has been originally established by Lions and Strauss [9] by using a Faedo-Galerkin
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approximation procedure. Another simple proof has been given by Brzis [3] (cf. also [1, Chap-
ter V]) in the framework of the theory of nonlinear semigroups. It should be remarked that such
a result applies to various significant cases of hyperbolic partial differential equations. For appli-
cations we refer to [1,8] and especially to [9], where other hyperbolic problems, not included in
this setting, are considered.

Here, we are interested to investigate (1.1-2) when L is possibly degenerate, provided that
the sum L + B be coercive in H. Thus, our analysis concerns initial-boundary value problems
for partial differential equations and systems, nonlinear in the first time derivative, of mixed
hyperbolic-parabolic type. The hypothesis of coerciveness for L + B implies that, in the set
where degeneration of L may occur, the operator B does not degenerate, and conversely. Also
the linear mapping A is required to be coercive, but with respect to the space V in a weak sense

(cf. the later assumption (2.15)), following a usual position (see, e.g., [1, Chapter V]). Exaxnples of
operators L, A, and even B can be constructed very easily, for instance when H (L2(f))M
and V (Hl(ft))M (U >_ 1), f denoting a bounded domain of RN (N >_ 1). Regarding this
matter, the reader can find several interesting choices still in [9,1] or in [2,11] as well. Let us just
point out that, while the selfadjoint operators L and A are obviously subgradients of convex

(and quadratic) functions, here B is merely assumed to result maximal monotone, then not

necessarily cyclically monotone. This allows to consider a wide range of applications, especially
to systems of equations (it suffices to take into account the case of linear maps from RM to RM

with M > 1). Two model examples of partial differential equations are proposed in Section 2.
By reducing B to be a linear and bounded operator in H, the resulting initial value problem

for (1.1) has been treated by Bensoussan, Lions, and Papanicolau [2], who stated the existence
and uniqueness of a weak solution. Further, some extensions of this result have been given in

[11,7,10] for a nonlinear right hand side f(u) and for operators L, B possibly depending on time.

However, a careful analysis of the linear case (already addressed in [5, Chapter 3]) is carried out
in [6], where strong solutions of (1.1) are examined and discussed under rather general conditions
on the mapping B.

In this paper we seek solutions of (1.1) with first derivative in L(0, T; V) and second
derivative in L2(0, T; H) so that the initial conditions (1.2) make sense (apparently, one should
instead specify the initial values of u and L(du/dt)). It is worth emphasizing that, consequently,
our solutions are not really weak solutions. The question whether or not, under our framework,
one can give weaker solutions to (1.1) remains open, even though it seems difficult (to find them)
having to face with the nonlinearity in du/dt. However, a partial answer is known for the reduced
equation

d--- L -- + B -- + Au 9 f in ]0, T[, (1.3)

investigated by Carroll and Showalter [5, Theorem 6.18 and Remark 6.19, pp. 223-224] when B
is monotone and hemicontinuous and A, L are symmetric continuous linear operators from V to
V’, with L monotone and A coercive. An existence and uniqueness theorem is derived for the
related Cauchy problem by tranforming (1.3) into a first order system in a suitable product space,
namely V’ x V (where V is the dual of V endowed with the seminorm <Lv, v)/, v E V).
Actually, the solution to (1.3) discussed in [15] is weak since u E WI,I(0,T; V), B(du/dt)
WI’(0, T; V), and nothing can be said on the regularity of the second derivative of u.

The objective of our work is not only to establish existence and uniqueness properties for the
solutions of (1.1-2), but also to introduce a discrete approximation of the problem, then prove
convergence of the discrete solution to the continuous one, and finally estimate their difference.
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Thus, after providing a precise variational setting for (1.1-2) and showing the uniqueness

result (see Section 2), in Section 3 we discretize the problem by a backward finite differences

scheme. Next, a priori estimates are demonstrated in Section 4 and allow us to pass to the limit

in Section 5, hence obtaining both the existence of a continuous solution and the convergence of

the discrete one. The concluding Section 6 is devoted to the deduction of error estimates with

respect to the time step of discretization.

2. FORMULATION OF THE CAUCHY PROBLEM.
First, we recall the basic notations and state precise assumptions on operators and data. Fix

some number T > 0 and let the real Hilbert space V and H satisfy V C H with dense and

continuous embedding. We identify H with its dual space and denote by V’ D H the dual space

of V. Henceforth the notation (-, will represent either the scalar product in H or the duality

pairing between V’ and V. For the sake of simplicity, the norms in V, H, V’ will be indicated

by I1" II, I" I, I1" I1., respectively.
We introduce two bilinear symmetric forms H x H - R and a V x V - R satisfying

B c > 0 I(,, z)l _< Clvl Izl v v, z 6 H, (2.1)
g(v, v) > 0 V v 6 H, (2.2)

3 Ca > 0 la(v,z)l <_ c.Ilvll Ilzll v v, z 6 v, (2.3)

and, with the position

aa(v, z) := a(v, z) + c(v, z) V c 6 R, ’ v, z 6 V, (2.4)

fulfilling
Vc>0 3w>0 a(,) >_ llvll v v, (2.5)

Hence, it results that the operator L H -- H associated with the form t, that is

(Lv, z) .(v,z) V v, z 6 H, (2.6)

is continuous and maxima/monotone. Moreover, as is symmetric, L is selfadjoint and coincides

with the subdifferential of the convex and continuous function

%o(v) e(v, v)12, v H. (2.7)

We denote by A the square root of the operator L, so that

(Av, Az) (v,z) V v, z H. (2.8)

It is straightforward to infer that A H H is continuous and selfadjoint as well. Next, let

A V V’ be the bounded linear selfadjoint operator defined by

(Av, z) a(v, z) V v, z V. (2.9)

Then, (2.5) turns out to be a coerciveness property for A. Indeed, from (2.5) it follows that for

any a > 0 the mapping cI + A (I denoting the identity in H) is strongly monotone from V
to V’.



484 P. COLLI AND A. FAVINI

As already stated in the Introduction, for the operator B we assume that

B is maximal monotone from V to V’,

with domain D(B). Also, it is required that the sum L + B is strongly monotone in H, i.e.,
there exists a positive constant C such that

(L(,, ,.) + ,, ,,, ,) > CI vl
V vl, v2 6 D(B), V wl 6 By1, V w2 6 By2. (2.11)

Let us finally specify suitable hypotheses on right hand side and initial data of the problem
(1.1-2). We set

f fl + f2, .fl W:’(O,T;V’), f: H(O,T;H), (2.12)

uo V, vo D(B), (2.13)

and prescribe the following compatibihty condition

S wo Bvo f(O) wo Auo D(o*), (2.14)

where D(p*) denotes the effective domain of the function * H oo, +oo],

’() := up {(,,,)- (,)}, (2.1)

convex conjugate of the function defined by (2.7) (see, e.g., [41 or [11 for information on convex

functions and maximal monotone operators).
In the sequel we use the symbol "’" to denote the time derivative of functions. Then the

initial value problem can be stated as follows.
PROBLEM (P). Find u Hz(O,T;H)rl W,(0,T; V) satisfying

Lu"(t) + w(t) + Au(t) f(t)

for some

a.e. with respect to ]0, T[, and

w(t) Bu’(t), (2.17)

u(0) u0, u’(0) v0. (2.18)

REMARK 1. Obviously the equation (2.16) has a meaning in V’ and it can be equivalently
rewritten as (cf. (2.6) and (2.9))

(u"(t), v) 4- (w(g), v) 4- a(u(g), v) (f(g), v) V v V.

Note that a comparison of the terms in (2.16) (see also (2.12)) yields w WI,(0,T; V’) +
L2(0, T; H). Actually, we will show that Lu" L(O, T; H), whence w L(0, T; Y’).

THEOREM 1. There exists one and only one solution u of Problem (P). Moreover Au
W2,(O,T;H).
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The existence of a solution to Problem (P) will be proved in the next sections by discretizing
the problem and then passing to the limit in the finite difference scheme. Concerning the unique-
ness, we are going to deduce it by contradiction. Let ul, u2 be two solutions of Problem (P) and
let w, f- Lu’,’- Au,, 1,2. Taking the difference of the respective equations (2.16), adding
to both sides the term L(u u’2) + ul u2, multiplying the resulting equality by u u, then
integrating from 0 to e [0, T], with the help of (2.18), (2.6), (2.9), and (2.4) we obtain

e(u’(),’()) + (LU’() + W(),U’())d

+ -al(U(t),U(t)) LU’(s) + U(s),U’(s))ds (2.19)

where V Ul- u2 and W Wl- w2. Since w,(s) 6 Bu’,(s) for a.e. s e]0, T[, ,2,
recalling (2.8), (2.11), (2.5) and using the elementary inequality

Art _< (/2)A + t2/(2) V A, t 6 R, V > 0, (2.20)

from (2.19) it is not difficult to get

Clot wlllAU,(,)I + iU,(s)12ds+ ilU(t)ll

<_ IAU’(s)12ds +- IU(s)i2ds V 6 [0,T]. (2.21)

Owing to (2.21), there is a constant C1 such that

IAU’(*)I + IIU(0112 S C1 (IAU’()I + IIU(,)II 2) d, V e [0,T], (2.22)

where, for inst=ce, C m={2, Cv/C}/min{ 1,w } for some const=t Cv fulfining

Ivl Cvllll v V. (2.23)

Then, by (2.22) =d the Gronw lemma we infer that IIU(*)ll 0 for =y [0, T], which
yields U u2. Thus, we have shown that Problem (P)h at most one solution.

Let us conclude the section by presenting, like applications of our abstract result, two simple
exples of itiM boundy ue problems, for a ptiM differentiM equationd a system.
In what follows, fl C RN (N 1) denotes a bounded domn th boldly F (of cls
C’, for inst=ce) =d outwd normM v (v,... ,v) (defined a.e. in F). As usuM, the
iable in UP is indicated by z (zl,...,z) d div, V, A stud for the respective space
differentiM operators divergence, graent, Laplaci. In addition, for the se of convenience we
t n]0, T[ =d r]0, T[.

EXAMPLE 1. The differentiM problem consists in fining a function u R which
satisfies

r(,,l + (h, +h. (,t) o , (.)
(, 0) 0(), ,(, 0) 0() e a

where hi, ha, h L() represent non negative coefficients, fin : x R R d fir
r x R R e Cathdodory functions (i.e., fin(z, ) d r(x,) meurable in x for =y
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E R and continuous in for a.e. x in or F, respectively), and G e Ha(O,T;L2(gl)),
g W2’1(O,T;L2(F)), uo, Vo HI() complete the data. Moreover, assume there are three
positive constants cl, c2, cs such that for any , r/ R one has

h,,(x) > cl for a.e. x e g/,

I/n(’,)l _< c2 (11 + 1), (/n(’,)-/n(’,))(- r) _> 0 a.e. in ,
Ir(’,)l _< c9_ ([(I + 1), (/r(’,) -/r(’,y))( r) > 0 a.e. in F,

Iht(x)( ,) / ,(x,) (x,,)] _> c31 ,1 >- 0 for a.e. x e a.

Thus, choosing V Ha(F/), H L(F/), g(v,z) fn htvz, a(v,z) fn h,Vv. Vz, D(B)
Ha(F/) and

(Bv, z) L (/3n(’,v)z + hbVv" Vz) + r/r(.,v)z
for any v, z Hl(2), and identifying fl and f2 with g and G, respectively, it is a standard
matter to see that (2.1-5) and (2.10-13) are fulfilled. Actually, the operator B turns out mono-

tone and demicontinuous from HI() to (Ha(F/)) (cf., e.g., [1, pp. 48-50]). Here, the condition

(2.14) reduces to the existence of z0 e L2(F/) such that

(G(.,O)z n(.,vo)z (hbVvo + haVu0). Vz)

/  zoz
Then we are allowed to apply Theorem I and conclude that the solution u of the related Problem
(P) lies in g(0, T; L2(2))NW,(O,T;Ha(F Note that u is a weak solution of (2.24). Indeed,
multiplying (2.16) by a test function z e H0() and integrating by parts, one concludes that

htutt +/n(.,ut)-div(haVut + haVu)= G(.,t) in H-a(), for a.e. ]0, T[.

A subsequent comparison of the terms yields div(hVut + h,Vu) C L(0, T; L2()). Therefore,
one can easily recover the boundary equality in (2.24) which, thanks to the hypotheses on fir
and g, holds even in L(0, T; L(F)).

EXAMPLE 2. Let b denote a maximal monotone graph of R2 R2, such that its domain
contains 0 (0, 0) and 0 e b(0). Now, we look for generalized solutions u (ua, u2): R2

of the following system

in Q
in Q
in Q
on

xfifl

(2.25)

where cl, c2 are positive parameters, F (F,F2) HI(O,T;(L2(n))2), both Uo and uo stay
in (H0())2. Setting Y (H0 ())2, H (L2())2, it is not difficult to verify that b induces a

maximal monotone operator B from V to V’ (H-l(g/))2. The i)oint is that, while z e b(v)
a.e. in Q whenever z E (By) H, in general an element z B(v) has no meaning almost
everywhere. Thus the relationship w b(ut) in (2.25) must be understood in a generalized
sense (this is the reason why we speak of u as a generalized solution). The definition of L and
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A being quite obvious in view of (2.25), we point out that here the validity of (2.5) extends to

a 0 and that the datum F plays as f f2 in (2.12). The further assumptions (2.11) and

(2.13-14) of Theorem 1 are ensured by additional restrictions on b, u0, v0, namely,

the graph (1, 2) (1,0) + b(l, 2) is strongly monotone,

u0 (u01, u02) (H2(f))2, v0 D(B),
::] W0 (W01 W02) C (Bvo) (L2(fl)) F(0) + a2uo2 a.e. in nW02

Hence, thanks to Theorem there exists a unique solution of the problem corresponding to (2.25).
In addition, such solution satisfies the equations of (2.25) Mmost everywhere in Q provided that,
for instance, b is linely bounded.

3. APPROXIMATION.
For the approximation of Problem (P) we introduce a backward finite differences scheme

where, n being bitry positive integer, r := T/n denotes the time step. Since the functions

fa, e continuous from [0, T] to Y’ (cf. (2.12)), for 0, 1,...,n wec set

f :: f, (ri), f ::/2(vi), /’ f; + f e Y’. (3.1)

Then the approximating problem is formulated as follows.

PROBLEM (P) Find three vectors (u,u u") Y"+ (v v v") Y"+

(wa,..., w") (V’)" such that
u u0, v v0, (3.2)

and satisfying for 1,..., n

u zi-1
v’ , (3.3)

w’ Bv’, (3.4)
U t,,t-1

+ w + Au’ f’. (3.5)
T

The next simple result states the existence and uniqueness of a discrete solution.

THEOREM 2. For any time step r > 0 the Problem (P) has one and only one solution.

PROOF. As the operators L and A are linear, thanks to (3.2-4) it suffices to prove that
for any g V there is one and only one v V solving the equation

’-Lv + Bv +rAv 9 g.

Now, the mapping "-xL + rA is monotone and continuous from V to V’. Hence it results that

(see, e.g., [1, Corollary 1.3, p. 48]) v-1L + B + vA is maximal monotone from Y to W. Also,
on account of (2.11), (2.9), and (2.5), this operator is strongly monotone. Indeed, since by (2.11)
we have that

7"-l(L(vl v2), Vl v2) + (171 r/2, Vl v2) _> C min { 1, "-1 } IVl v2l

for any vl, v2 D(B), 71 Bvl, 72 By2, then the above assertion follows from a subsequent
application of (2.5). Therefore, the operator 7--1L + B + 7-A turns out to be coercive, so that its

range coincides with V’ and the equation (3.6) has solutions. Moreover, the strong monotonicity
also implies that there is a unique solution v D(B).
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Before specifying the approximating functions useful for the sequel, let us introduce the
auxiliary vector (z,zl,... ,2n)

_
V,+I defined by

z zl, :’-- (3.7)

for 1,...,n. Then let ur, Vr, Zr E La(0, T; V) and w,., fr E La(0, T; V’) denote the piece-
wise constant functions determined by

,,(t) ’, ,(t) ,’, z(t) := z’,
wr(t) w’, f(t) := f’ if (i- 1)r < _< iv, (3.8)

for 1,...,n. We also consider the piecewise linear functions fi., 9., ,- WI’x(0, T; V)
defined by (el. (3.3) and (3.7))

,,(t) u’ + ,,’(t- i,-), ,,(t) ,,’ + z’(t i,-),
Z Zt--1

,(t) := z’ +(t- ir) if (i- 1)r < < ir, (3.9)
T

for 1,... ,n. Observe that, in view of (3.8-9), the conditions and equations (3.2-5) can be

rewritten as

a(0) o, (0) ,o,

v(t) ’(t),
w,(t) Boa(t),

Lzr(t) + Wr(t) + Aur(t) fr(t)

for a.e. E ]0, T[. Moreover, let us point out the further relationship

(3.10)
(3.11)
(3.12)
(3.13)

(3.14)Zr

Now, we are in a position to derive estimates, independent of v, for the discrete solutions.

4. A PRIORI ESTIMATE.
We start by writing the equation (3.5) also for the index 1 and then take the difference.

With the help of (3.3) and (3.7) it is straightforward to verify that

(4.1)

for 2,... ,n. Multiplying (4.1) by z’ V and recalling (2.6-7), (2.9), (2.4), we easily obtain

1 ,-1 w w,-1 v v-l)(’1- (’-)+(z’- z’-) +-(L(’- 1+T

1 1 (vi_ vi_ "r2-- al (v i, ?)’) al -- -al (z’, z’) (fi f,-1 . TLz ._ T)’, Z i) (4.2)

for 2,...,n. Next, we sum (4.2) with respect to i. Setting

Sm :--" qO(Zm) AI- E (Z*-- Zi-l) t_ E "1- (i (yi- y’-1) q- w’ w’-1, y o*-1)
i--1 i---1 T

1 r2
" al(vm, vm) "- E Tal (zi, z’) (4.3)

i-1
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for m 1,..., n, where w := w0 is defined in (2.14), it is not difficult to see that

(f’-f’-Sm=&+r
I=2 T

+ Lz’ + v’,zI (4.4)

for m 2,...,n. Consider now the equality (3.5) for 1 and multiply it by z 1. Thanks to

(3.7), (3.2-3), (2.6-7), (2.9), (2.4), and (3.1), we easily infer that

1 (fl fOqa(z 1) + $1 (f(0) wo auo,z) + -a(vo,vo) + r
r

"}- Lz -- ’v z ). (4.5)

As (f(0)- wo- Auo,z1) -(z1) < o*(f(0)- wo- Auo) because of (2.14-15), from (4.4-5)it
follows that

Sm < C + r + Lz’ + v’, z’ (4.6)
=I T

for m 1,... ,n, where C2 qo*(f(0)- wo Auo)+ a(vo,vo)/2 (see also (2.13)). But, taking

(2.7-8), (2.11), (3.7), and (2.5) into account, we have that

(4.7)

We want to estimate the right hand side of (4.6) with respect to N,,. Setting (cf. (3.1))

for 1,..., n, by (4.6-7), (3.2), (3.7), (2.6), and (2.8) it is not difficult to check that

(4.8)

4

N,., < C2 + R.(m), (4.9)

where

for m 1,... ,n. Noting that (see (4.8), (3.1), and (2.12))

for j 1,..., n and 2,..., n, by using (2.20) one can easily deduce that there is a constant

Ca fulfffiing
(M1

IR(m)l < Ca + T max I1, 11 (4.xo)
l_<j_<m
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with, for instance,

Since

w 16c. s-- IIfiIl0t0.;v, + IIv0112 + --IlYI’llL,O Z;V’"1 ’1

Ig;I -lllflll(,-,) ....;H)T

offing to the H61der inequality (cf. also (2.12)), another application of (2.20) yields

1 C ’12R(,.) <_ - IIfIIL(O,T;H + E IZ (4.11)

Letting the term R3(m) in its present form, for the estimate of Ra we recM1 (2.3) and infer
that

CV C 1R,<m) E I1’11 + I’ (4.x2)
1=1

Then, in view of (4.7) and (4.9-12), it is straightforward to cMculate a constt C, independent
of v, such that

fory k, m satisfying 1 k m n. Hence, ting the mimum with respect to k, we

obtain

< m ,<C+
Setting now g 1/(8C), N 0 we have that

N1 864, N SCt 1 + rN, (4.13)

if m 2,..., n, fory time step r Tin < . By applying the discrete GronwM1 lemma to
the finite sequences {N1,... ,N.}, from (4.13) we conclude, for instce, that

N SC exp(SCT)

for m 1,..., n. Therefore, on account of the definitions (4.7)d (3.8-9), there is a constt

C such that fory time step r < oneh

Ilhz ’I[L(O,T;H) + r llAzIIL(O,T;H + IlZllL(O,T;H)
2+ IIvll(0,r;v) + lzll,(0,r;v) c. (4.4)

REMARK 2. Let us point out that the bound only depends on the qutities a(vo, vo),
*(f(0) wo Auo), l]fllw’,’(O,T;y,), llfllZ(O,T;H), Cv, w, d C. The se holds for the
constt C, wch depends upon T well.

Owing to (4.14) Mong with (3.11), (2.13), (3.14), we eily deduce the further estimate

I111 n,(0,r;n),-(0,r;v) + Ila W.(O,T;V) C6 (4.15)
for some constt C depending only on C,.lluoll, d lvol. As L A (cf. (2.6), (2.8),d
(2.1)) note that (4.14) Mso yields

IILzll(0,r;) CC. (.)
Hence, with the help of (3.8), (3.1), (2.12),d of a compison in (3.13), it results that

I111 L(O,T;V,) is bounded independently of r. (4.17)
ThaWs to (4.14-17), ting the limit in Problem (P) as r tends to 0, we e able to find a

solution of Problem (P), thus achieving the proof of Theorem 1. This argument will be developed
in the next section.
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5. PASSAGE TO THE LIMIT.
Recalling that r T/n,-let us first state the following convergence property (see (3.8), (3.1),

and (2.12))

,i f’(s)dsIlL- fllLo,T,v,)
-1,

dt < .,- IIf’ll (5.1)L(O,T;V ,)

Then, owing to the estimates (4.14-17), there exist z, v, u, w such that, possibly taking subse-
quences,

zr z weakly in L2(0, T; H),

r v weakly star in H (0, T; H) r3 L(0, T; V),
fi,- - u weakly star in W1’(0, T; V),
Lz,. ---, Lz weakly star in L(0, T; H),
w,. -- w weakly star in L(0, T; V’)

(5.2)

(5.3)

(.4)

(.)

(.6)

as v % 0. Since (cf. (3.8-9), (3.14), and (4.14))

I1..- .’II.(O.T;H) -< max "r
l<t<n

p

T L2(O,T;H) <__ C5 T, (5.7)

by (5.3) and (4.14) we have that

v, v weakly star in L(0, T; V), (.s)

whence, due to (3.11), (3.14), and (5.2-4) as well,

u’ v, v’ z. (5.9)

Therefore, it turns out that u 6 H2(0, T; H) too, and

"= z. (.0)

In order to show the existence of solutions of Problem (P) and thus complete the proof of
Theorem 1, we establish the following result.

THEOREM 3. The above defined limit function u solves Problem (P). Moreover, the
convergences (5.2-6) hold not only for subsequences, but for the whole sequences.

PROOF. Noting that the last part of the statement follows easily from the uniqueness for the
solution of Problem (P), let us just check that u, along with the auxiliary function w specified
by (5.6), satisfies (2.16-18). In view of (3.10), the initial conditions (2.18) result from (5.3-4) and
(5.9). Next, observing that

(5.11)

because of (3.8-9) and (4.14), it is straightforward to deduce that

u,- u weakly star in L(O,T;V) (5.12)
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as r goes to 0. Hence, on account also of (5.5), (5.10), (5.6), (2.9), (2.3), and (5.1), passing
to the limit in (3.13) we obtain (2.16) a.c. with respect to E ]0, T[. Then, it remains to show

(2.17). To this aim, let us consider the following operator B from L2(0, T; V) to L(0, T; V’),

yEB(x) if and only if y(t)B(x(t)) fora.e, t]0, T[.

By standard arguments (see, e.g., [4] or [1]) it is not difficult to verify that /3 is maximal monotone.

Therefore, recalling (3.12), (5.6), (5.8-9), and Lemma 1.3 of [1, Chapter II], it suffices to prove
that

limsup (w,.(), v())d < (w(), u’())d. (.la)

Now, thanks to (a.10-), (a.3-4), (..), and (2.9) we have that

(w(t),v(t))dt e($(T),$,(T))+ (Vo,Vo)
T 1

+ e(v,(t), (fi, v,)(t))dt a(,(T), ,(T))

+ a(uo, uo)+ a((fi, u,)(t), u’ (t))dt + (k(t), Ur (t))dt (5.14)

for L and A e selfadjoint operators. Then, the convergences (5.3) and (5.1), the estimates

(5.7) and (5.11),d the lower semicontinuity of the quadratic functions specified by d a

(regarding both strongd we topology of H and V, respectively) Mlow us to infer that

T I(V0 V0)limsup (w(t), v,(t))dt g(v(T), v(T)) +
r%0

-..r,(( (rll + (,,. + (f(l,’(e. (.

But, on aecoun of (2.16) d (g.9), he right hd siae of (.) urns out to coincide wih

f(w(), u’())d, so ghag (g. la) is completely proved.

In this section we estimate he difference between the solution u of Problem (P) d the
function fi ingrodueed in (.9). By our procedure we obgNn a rae of convergence (of fi to u)
of order r/ in suigable norms. Recalling ghag the eonsgs gd e defined in Section 4

(see Retook 2), here we prove the following
HONM . here exisgs a eonstg , depending only on , w, , T, v, , d

f’,(o,r;v,I, such hag fory gime sgep r ]0,g[ ghere hods

IIA(u- ,)’ll(0,r; + Ilu- ,ll,(0,r,c0([0,m;v Cr’/. (6.1)

PROOF. Wing the difference between (2.16)d (3.13), with the help of (2.6), (2.9), (2.4),
(3.11), and (3.14) one c eily verify that

(6.2)



NONLINEAR CAUCHY PROBLEMS 403

Next, we integrate (6.2) from 0 to E [0, T] accounting for the initial conditions (2.18) and

(3.10). In view of (2.8), (2.11), (2.5), (2.3), (2.12), and (3.8), it is not difficult to infer that

where

6l[A(u,_ O)(t)[ + C [(u’ coaN(t) := - v)()lzd + -II( )(t)ll

_
Q(t),

3--1
(6.3)

Qa(*) :- IA(u’ v)(,)l=d,

( := I(,"-(11(

for any e [0, T]. Now, we estimage each one of these integrMs. Since (el. (.8-9)d (4.14))

IIA( v) r= v2 (6.4)IIL(O,T;H) [IAzllL(O,T;H) Cz

it is strghtforwd to see that

(t) I(’ (1e +cr. (.

hks to (4.14), (.2),d (.10), we hae gha IIA"ll(.,rm N /. Nee, he following
inequiy

Q(t) 2CTv (6.6)

rults from (6.4). By (2.20)d (2.23) we deduce that

C. [ C
Q() 10 ( )()d + (’- ,)()d. (.)

Recnng (5.), (4.14)d ing in the estimate of Q, we obtn

Q(t) 2CaCTr. (6.8)

Owing to (5.1)d to the Hhlder inequity, silly we have that

Q(t) 2(CT)1/ ]]f’]]L’(O,T;Y’) r. (6.9)

Therefore, due to (6.3)d (6.5-9), one c eily determine a constt Cs such that

() c + ()e e [0, rl, (.10)

where h ghe se dependences . By applying ghe GronwN1 lemma o (6.10), we find

N() N exp(T)r V [0, T],
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and, thanks to the definition of N coupled with (6.4) and (3.11), the last inequality implies (6.1).
This concludes the proof of Theorem 4.

REMARK 3. The rates of convergence in (6.1) may appear non optimal from the point of
view of the numerical analysis, in regard to the regularity of the solution u to Problem (P). But
the order r 1/2 is optimal with respect to the hyperbolic nature of the problem (an interesting and
rigorous discussion on the optimality, distinguishing between parabolic and hyperbolic Cauchy
problems, is carried out in [12]), even in the simple case where L I (el. [1, pp. 268-269]).
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