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Abstract—We propose a time-domain audio source separation
method based on multiresolution analysis, which we call mul-
tiresolution deep layered analysis (MRDLA). The MRDLA model
is based on one of the state-of-the-art time-domain deep neural
networks (DNNs), Wave-U-Net, which successively down-samples
features and up-samples them to have the original time resolu-
tion. From the signal processing viewpoint, we found that the
down-sampling (DS) layers of Wave-U-Net cause aliasing and may
discard information useful for source separation because they are
implemented with decimation. These two problems are due to the
decimation; thus, to achieve a more reliable source separation
method, we should design DS layers capable of simultaneously
overcoming these problems. With this motivation, focusing on the
fact that the successive DS architecture of Wave-U-Net resembles
that of multiresolution analysis, we develop DS layers based on
discrete wavelet transforms (DWTs), which we call the DWT lay-
ers, because the DWTs have anti-aliasing filters and the perfect
reconstruction property. We further extend the DWT layers such
that their wavelet basis functions can be trained together with
the other DNN components while maintaining the perfect recon-
struction property. Since a straightforward trainable extension of
the DWT layers does not guarantee the existence of anti-aliasing
filters, we derive constraints for this guarantee in addition to the
perfect reconstruction property. Through music source separation
experiments including subjective evaluations, we show the efficacy
of the proposed methods and the importance of simultaneously con-
sidering both the anti-aliasing filters and the perfect reconstruction
property.

Index Terms—Time-domain audio source separation,
multiresolution analysis, discrete wavelet transform, deep neural
networks.

I. INTRODUCTION

A
UDIO source separation is a technique of extracting in-

dividual source signals from an observed mixture, which

has wide applications including automatic music transcription

and music remixing according to user preferences. The recent

advent of deep neural networks (DNNs) has notably improved

Manuscript received September 18, 2020; revised December 30, 2020 and
March 3, 2021; accepted April 6, 2021. Date of publication April 13, 2021;
date of current version May 19, 2021. This work was supported in part by JSPS
KAKENHI under Grants JP19H01116 and JP20K19818, in part by JSPS-CAS
Joint Research Program under Grant JPJSBP120197203, in part by Research
Grant A of the Tateisi Science and Technology Foundation, and in part by the
Research Grant of Kawai Foundation for Sound Technology and Music. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Isabel Barbancho. (Corresponding author: Tomohiko

Nakamura.)

The authors are with the Graduate School of Information Science and
Technology, University of Tokyo, Tokyo 113-8656, Japan (e-mail: tomohiko.
nakamura.jp@ieee.org; kozuka-shihori001@g.ecc.u-tokyo.ac.jp; hiroshi_
saruwatari@ipc.i.u-tokyo.ac.jp).

Digital Object Identifier 10.1109/TASLP.2021.3072496

the performance of audio source separation in supervised set-

tings [1]. Most DNN-based methods perform source separation

in the magnitude or power spectrogram domain [2]–[5]. De-

spite their success, the methods have several drawbacks. They

ignore phase information in the separation process, which may

result in suboptimal solutions. Furthermore, to reconstruct the

separated time-domain signals, the methods typically use the

noisy phase of the mixture, which may be inconsistent with the

separated magnitude or power spectrogram of each source, i.e.,

no corresponding time-domain signal is guaranteed to exist [6].

Although several attempts to estimate an adequate phase have

been made thus far [7]–[10], recent studies have shown that one

promising direction is to adopt an end-to-end approach, which

avoids phase estimation and directly deals with time-domain

signals [11]–[16].

End-to-end DNNs can be roughly categorized into two ap-

proaches. One approach imitates the commonly used separation

procedure in the spectrogram domain [12], [14], [16]. In this

approach, the DNN architecture consists of a pair of an encoder

and a decoder, which correspond to time-frequency transform

and its inverse, respectively, and a mask estimator.

The other approach, unlike the above separation procedure,

performs the separation in the time domain [11], [15]. Wave-

U-Net is one of the state-of-the-art DNNs categorized into this

approach [11], and it is a time-domain adaptation of the U-net

architecture [17]. The key idea of this architecture is to effec-

tively capture the long-term dependence of data by successively

making the time resolution of features coarser and increasing

the receptive fields of convolution layers located between down-

sampling (DS) layers. Wave-U-Net consists of an encoder and a

decoder. The encoder successively decimates features with DS

layers, which we call the decimation layer to distinguish it from

the layer we introduce in this paper. The decoder up-samples

the features with linear up-sampling (US) layers such that the

output of the decoder has the same time resolution as the input.

The decoder can access the feature before the decimation at the

same hierarchy through so-called skip connections.

From the signal processing viewpoint, DNNs and features can

be interpreted as stacked nonlinear systems and signals prop-

agated inside these systems, respectively. This interpretation

leads to the identification of the following two problems caused

by decimation layers.

The decimation layers simply decimate the features, which

apparently causes aliasing in the feature domain according to

the Nyquist–Shannon sampling theorem. We call this aliasing

the feature-domain aliasing to distinguish it from the aliasing
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Fig. 1. Illustrations of (a) multiresolution analysis, (b) proposed MRDLA model, and (c) architecture of DS and US blocks. The blue and orange regions represent

DS and US modules, respectively. h and g (h̃ and g̃) respectively denote low- and high-pass (reconstruction) filters corresponding to the DWT (inverse DWT).
“Conv1D,” “Concat,” and “Leaky ReLU” denote a one-dimensional convolution layer, a channel concatenation of two inputs, and a leaky rectified linear unit layer,
respectively. The dashed lines represent skip connections.

of time-domain signals. Recent studies have shown that the

feature-domain aliasing degrades the performance in audio

recognition tasks [18] and image processing [19], which may

be true for audio source separation, as we will experimentally

show in Section V-E. One straightforward solution to reduce the

feature-domain aliasing is to insert anti-aliasing filters before

the decimation layers, which has been presented for image

classification [20], [21]. In [21], the insertion of anti-aliasing

filters has improved the image classification accuracy and has

made the entire DNN robust against the diagonal shift of an

input image. However, the other problem remains unsolved.

The decimation layers, even with the anti-aliasing filters,

discard parts of input features. The discarded components may

contain information useful for source separation, particularly

in the early training stage, which may degrade the separation

performance, as we will experimentally show in Section V-E.

Although the skip connection allows the decoder to access the

feature before DS, there are no guarantees that the following

convolution layer always uses the feature coming from the

skip connection. Since the weight of this convolution layer is

determined by training, whether the lack of such information

can be reduced depends on training.

The two problems may be alleviated if we can train Wave-

U-Net as we wish, but there are no theoretical guarantees that

such training can be carried out. Since the problems are due

to decimation operations, to develop a more reliable source

separation method, we should design a novel DS layer whose

architecture ensures the reduction in feature-domain aliasing and

the preservation of the entire information of input features.

To design such a DS layer, we focus on the fact that the suc-

cessive DS architecture of Wave-U-Net resembles that of mul-

tiresolution analysis [22] (see Fig. 1(a)). Multiresolution anal-

ysis repeatedly down-samples a signal with a discrete wavelet

transform (DWT), which decomposes the signal into low- and

high-frequency subband signals with half the time resolution.

By repeatedly applying an inverse DWT to subband signals,

we can perfectly reconstruct the input signal, which shows that

two subband signals obtained with the DWT include the entire

information of an input signal. Since a DWT can be seen as

a two-channel filterbank that consists of a pair of low- and

high-pass filters and satisfies the perfect reconstruction property,

the use of the DWT for DS allows us to overcome the two

problems simultaneously.

On the basis of this idea, we develop DWT-based DS layers,

which we call the DWT layers, to build a time-domain audio

source separation method, multiresolution deep layered analysis

(MRDLA) (see Fig. 1(b)). We also devise the US layers corre-

sponding to the DWT layer, which we call the inverse DWT

layer. The DWT layers can be efficiently implemented with a

computation technique of DWTs called the lifting scheme [23],

which also makes it easier to change wavelet basis functions.

Since the basis functions determine the frequency responses of

the filters of the DWTs, they may affect the separation perfor-

mance of MRDLA. We further extend the DWT layers such that
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their wavelet basis functions can be trained together with the

other DNN components. However, only making the parameters

of the DWT layers trainable cannot guarantee that this trainable

extension has the anti-aliasing filters. For this purpose, we derive

constraints that guarantee the existence of the anti-aliasing filters

and the perfect reconstruction property even during training.

Additionally, we make an architectural change of the output

layer of MRDLA for better performance. Wave-U-Net has a

constraint that the sum of all source estimates equals the input

signal. However, since this constraint restricts the range of the

possible values of the source estimates during training, the

estimation failure of one of the instruments may spill over to the

estimations of the other instruments, which leads to performance

degradation. For this reason, we do not introduce this constraint

for MRDLA.

The contributions of this paper are summarized as follows:
� From the signal processing viewpoint, we found that dec-

imation layers lack anti-aliasing filters for features and

discard parts of them.
� Focusing on the resemblance of the successive DS archi-

tecture between Wave-U-Net and multiresolution analysis,

we propose a time-domain audio source separation method,

MRDLA, by developing the DWT and inverse DWT layers,

which reduce the feature-domain aliasing and preserve the

entire information of the features.
� We extend the DWT layers such that their wavelet basis

functions are jointly trainable with the other DNN compo-

nents.
� We derive constraints of the trainable DWT layer so that

they have the anti-aliasing filters, in addition to the perfect

reconstruction property, even during training.
� Through experiments on music source separation, we show

the efficacy of the proposed models and the importance of

simultaneously considering the anti-aliasing filters and the

perfect reconstruction property for designing the DS layers.

Note that commonly used DS layers (e.g., max pooling, average

pooling, and strided convolution layers) lack either anti-aliasing

filters or the perfect reconstruction property; thus, our proposed

layers are beneficial for not only Wave-U-Net but also various

research fields using DNNs.

The rest of this paper is organized as follows: In Sec-

tion II, we clarify the relationships of the proposed layers

and MRDLA with conventional DS layers and time-domain

audio source separation methods, and review the lifting scheme.

In Section III, we describe the motivations to develop the

DWT and inverse DWT layers, and establish the MRDLA

model. In Section IV, we extend the proposed layers to train-

able ones and derive constraints to guarantee the existence

of anti-aliasing filters in addition to the perfect reconstruc-

tion property. We conducted experimental evaluations on mu-

sic source separation to show the efficacy of the MRDLA

models in Section V and finally conclude this paper in

Section VI.

Note that this paper is partially based on our international

conference papers [24], [25]. This paper has the following

seven additional contributions: (i) Although the DWT layer we

presented in the conference paper is designed only for prede-

termined wavelets, we extend it to those jointly trainable with

the other DNN modules. (ii) Since a straightforward trainable

extension of the DWT layer has no guarantees to have low-

and high-pass filters, we derive constraints to guarantee the

existence of these filters in addition to the perfect reconstruction

property. (iii) We entirely redesign experiments with modern

data augmentation techniques, which we experimentally found

to improve the separation performance, and (iv) evaluate the

proposed DWT layer having predetermined wavelets and its

trainable extensions with various model sizes. (v) We also assess

the effects of guaranteeing the trainable DWT layers to have

low- and high-pass filters during training through comparisons

of weight initialization and architectures of these layers. (vi) We

conducted objective and subjective experiments of the proposed

method with conventional time-domain audio source separation

methods to evaluate the effectiveness and perceptual quality of

MRDLA, using statistical tests. (vii) We further show the details

of the architectures of MRDLA and Wave-U-Net and those of

the implementation of the DWT layer and its relationship with

conventional DS layers, which are omitted in the conference

papers due to space limitation.

II. RELATED WORKS

A. Conventional DS Layers

The performance degradation caused by the feature-domain

aliasing has been observed in both audio processing [18] and

image processing [19]. One straightforward method of reducing

the feature-domain aliasing is to insert anti-aliasing filters, which

has been adopted in previous studies for image processing [20],

[21], [26]. Although one of such studies has shown a wavelet-

based pooling layer called the wavelet pooling [26], it outputs

only the second-order wavelet subband signals of a feature;

hence, it lacks the perfect reconstruction property. In contrast,

our proposed layers not only include anti-aliasing filters but also

satisfy the perfect reconstruction property.

The squeezing operation has been used in a normalizing flow

model for image generation [27]. The time-domain adaptation

of this operation simply splits the feature into the even- and

odd-sample components in time, and concatenates them along

the channel axis. This operation has the perfect reconstruction

property but apparently lacks anti-aliasing filters. Note that the

relationship between the squeezing operation and the proposed

layer will be shown in Section III-B2.

The subpixel convolution layer, a convolution layer followed

by the inverse of the squeezing process, has been presented to

reduce checkerboard artifacts caused by the US process using the

transposed convolution layer for US [28]. Since the aliasing of

our interests occurs in DS, the checkerboard artifacts are beyond

the scope of our manuscript. Although we can consider a DS

version of this US layer, it is defined by the squeezing operation

followed by a convolution layer and is essentially the same as

the squeezing operation. The use of this DS layer increases the

number of parameters of the DNNs, which makes it difficult to

distinguish the effect of this layer from that of the increase in

model size. Thus, we did not consider it for the comparison.

For image processing, an invertible DNN named i-Revnet has

been developed [29] and has recently been used as a trainable

time-frequency transform of a DNN-based speech enhancement



1690 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

system [30]. i-Revnet alternately performs the squeezing

operation and the application of nonlinear functions to only half

of each output of the squeezing operation. Although i-Revnet

has the perfect reconstruction property, it lacks anti-aliasing

filters. The network uses nonlinear functions for the components

corresponding to the prediction operators, which makes it more

difficult to discuss the filter characteristics of the components.

The network requires that the number of channels of the features

is the same for the forward and inverse paths; however, the

Wave-U-Net architecture does not meet this requirement. Since

changing the DNN architecture makes it difficult to distinguish

the effects of the lack of anti-aliasing filters from those of the

DNN architecture, we omitted the comparison of MRDLA with

i-Revnet in Section V. We instead compared MRDLA with a

Wave-U-Net variant that uses the time-domain adaptation of

the squeezing operations as the DS layers, which allows us to

reveal the effects of the lack of anti-aliasing filters.

B. Time-Domain Audio Source Separation

As described in Section I, Wave-U-Net uses the decimation

layers for DS, which causes the feature-domain aliasing and the

lack of the perfect reconstruction property. Similarly to MRDLA

and Wave-U-Net, a noncausal extension of WaveNet, proposed

in [15], directly performs separation in the time domain. This

model uses dilated convolution layers with exponentially in-

creasing dilation factors to capture the long-term dependence

of music signals. Although the use of a dilated convolution

layer can avoid the lack of the perfect reconstruction property,

it requires a large amount of memory for training since this

layer keeps the time steps of features. This layer is identical to

a layer consisting of the following two steps: (i) converting a

feature into a down-sampled feature with the same number of

subbands as the dilation factor by using the squeezing operations

and (ii) applying the convolution operations to each subband of

the feature using the weights shared by all subbands. The layer

thus causes the feature-domain aliasing unless the weights are

adequately trained.

For speech separation, Conv-TasNet is one of the state-of-

the-art DNNs in the approach of imitating the conventional

spectrogram-domain separation procedure [14]. However, since

it uses the dilated convolution layers with exponentially in-

creasing dilation factors, the same problems as those of the

above-mentioned WaveNet extension occur.

C. Lifting Scheme

A DWT is naively implemented as two concurrent finite

impulse response (FIR) filters followed by decimation with a

factor of 2. To efficiently implement a DWT, we can use the

lifting scheme [31], which factorizes a DWT into a sequence of

FIR filters. This scheme can be computed in an in-place manner

and can reduce the computational complexity.

Let us consider a time-domain signal of lengthT ,x ∈ R
T . For

simplicity, we assume that T is even. The lifting scheme consists

of four steps: time-split, prediction, update, and scaling steps.

Firstly, the time-split step splits an input signal x into the even-

and odd-sample signals, respectively denoted byx(even) ∈ R
T/2

and x
(odd) ∈ R

T/2. We denote this operation as a split operator

S . Secondly, the prediction step predicts x(odd) with a linear FIR

filter called the prediction operator P and outputs x(even) and a

prediction error d ∈ R
T/2:

d = x
(odd) − Px

(even). (1)

Thirdly, to reduce the aliasing caused by the time-split step, the

update step smoothens x(even) with a linear FIR filter called the

update operator U :

c = x
(even) + Ud, (2)

wherec ∈ R
T/2 is the smoothed even-sample signal. Finally, the

scaling step scales c and d by a normalization constant A > 0
and its reciprocal, respectively. We hereafter write the scaled

versions of c and d as c̃ and d̃, respectively. The above process

only uses one prediction operator and one update operator. How-

ever, the number of prediction and update operators, namely, I ,

may increase, depending on the chosen wavelet; these operators

may differ at the prediction and update steps, respectively. We

hereafter add a subscript i to c,d, c̃, d̃,P, and U .

Since all the steps are apparently invertible, the architecture

of the lifting scheme itself guarantees the perfect reconstruction

property. Note that the perfect reconstruction property does not

depend on the prediction and update operators, and we can

instead use nonlinear functions for these operators. As described

in Section II-A, this nonlinear extension is beyond the scope of

this paper and we leave it as our future work.

On the other hand, whether the lifting scheme has the low-

and high-pass filters depends on the choice of the prediction

and update operators. In the rest of this section, we describe

the relationship between the filters and the operators in the z-

transform domain. Let X(even)(z), X(odd)(z), C̃i(z), and D̃i(z)
denote the z-transforms ofx(even),x(odd), c̃i and d̃i, respectively.

Since each of the prediction, update, and scaling steps can be

represented as a 2× 2 matrix, the output of the lifting scheme

can be described using these matrices [32]:
[

C̃I(z)

D̃I(z)

]

= QI(z)

[

X(even)(z)

X(odd)(z)

]

, (3)

QI(z) =

[

A 0

0 1/A

]

︸ ︷︷ ︸

Scaling step

I∏

i=1

([

1 Ui(z)

0 1

]

︸ ︷︷ ︸

ith update step

[

1 0

−Pi(z) 1

]

︸ ︷︷ ︸

ith prediction step

)

,

(4)

where
∏

i denotes a sequence of matrix multiplications over i.
Importantly, it has been proven that a DWT with arbitrary FIR

filters can be factorized into the above form [32].

Now, we derive another form of Eq. (4), starting with the

z-transforms of the low- and high-pass filters of the correspond-

ing DWT, say HI(z) and GI(z). Without the loss of gener-

ality, HI(z) (GI(z)) can be represented with the even-order

filter H
(even)
I (z) (G

(even)
I (z)) and the odd-order filter H

(odd)
I (z)

(G
(odd)
I (z)):

HI(z) = H
(even)
I (z2) + z−1H

(odd)
I (z2), (5)
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Fig. 2. Illustrative examples of down-sampled features obtained with decima-
tion and DWT layers.

GI(z) = G
(even)
I (z2) + z−1G

(odd)
I (z2), (6)

which are respectively called the polyphase representations of

HI(z) and GI(z) (see [33] for details). With these notations,

the DWT can be written as follows [32]:
[

C̃I(z)

D̃I(z)

]

=

[

H
(even)
I (z) H

(odd)
I (z)

G
(even)
I (z) G

(odd)
I (z)

][

X(even)(z)

X(odd)(z)

]

. (7)

Since the first matrix of the right-hand side of Eq. (7) equals

QI(z), we can confirm that HI(z) and GI(z) are parametrized

by Pi(z) and Ui(z).

III. MULTIRESOLUTION DEEP LAYERED ANALYSIS

A. Motivation and Strategy

In this section, we describe the motivation and strategy to

develop the proposed DWT layer. As described in Section I, we

found, from the signal processing viewpoint, that the decimation

layers lack the anti-aliasing filters for the features and discard

parts of input features.

Fig. 2 shows illustrative examples of down-sampled features.

As shown in this figure, the decimation layer can output the same

features for different input features owing to the feature-domain

aliasing. Once the same features are obtained, the layers at

hierarchies higher than the decimation layer cannot distinguish

them, which means that these layers do not affect the discarded

components. Thus, there is no choice but to drive only the layers

at the lower hierarchies to handle the components discarded by

the decimation layer.

The feature-domain aliasing can be alleviated by introducing

the low-pass filters before the decimation layers, but the other

problem remains unsolved. If the layers preceding the decima-

tion layers can completely pack information useful for source

separation into the decimated features, i.e., the information in

the discarded components can be recovered from the decimated

features, the model works well. However, whether such layers

can be obtained strongly depends on the training. Although

the skip connections allow the decoder to access the features

inputted to the decimation layers, there are no guarantees that

the following convolution layers always use the features coming

from the skip connections. This is because the weight of the fol-

lowing convolution layer is determined by training and there is

no constraint that this layer always uses the features coming from

these connections. For example, the trained weight may be zeros

for the features coming from the skip connections. To access the

high-frequency components of the features coming from the skip

connections, at every channel corresponding to these features,

the trained weights must be high-pass frequency characteristics.

In addition, the convolution layer, owing to its translation in-

variance, processes the even- and odd-indexed components of

the feature coming from the skip connection in exactly the same

manner, despite the fact that only the odd-indexed components

are discarded by the decimation layer. This fact clearly means

that the convolution layer itself cannot identify which elements

of the feature are discarded or not.

Since these two problems are caused by the decimation op-

eration, we take an approach of designing a DS layer that is

guaranteed to reduce the feature-domain aliasing and preserve

the entire information of the feature. Inspired by the resemblance

of the successive DS architecture between Wave-U-Net and mul-

tiresolution analysis, we use the DWT as a DS operation, which

has an anti-aliasing filter and the perfect reconstruction property.

Owing to these characteristics, the DWT outputs distinguishable

features for different input features unlike the decimation layer,

as shown in Fig. 2. This means that the DWT can preserve the

entire information of the input feature.

B. DWT Layer

1) Implementation With Lifting Scheme: In this section, we

describe an efficient implementation of the DWT layer. The

DWT layer first applies the DWT to each channel slice of a

feature using the lifting scheme [31] and concatenates the low-

and high-frequency components obtained with the DWT along

the channel axis. For simplicity, we consider the lifting scheme

with I = 1, but the following discussion can be easily extended

for I > 1.

Let us consider the feature of K channels and T time length

and that T is even for simplicity. We denote a feature channel

index as k = 1, . . . ,K. To avoid abuse of notations, we use

the same notations used in Section II-C for the variables of

the lifting scheme part of the DWT layer except for adding a

subscript k to these variables. By interpreting the kth channel

slice of the feature, xk ∈ R
T , as a time-domain signal of length

T , we can apply the lifting scheme to it. As described in Sec-

tion II-C, xk is split into the even- and odd-sample components,

respectively denoted by x
(even)
k ∈ R

T/2 and x
(odd)
k ∈ R

T/2, in

the time-split step. Subsequently, the prediction and update steps

output the high- and low-frequency components d1,k ∈ R
T/2

and c1,k ∈ R
T/2 with the prediction and update operators P1

andU1, respectively. Finally, the scaling step scales c1,k andd1,k

are scaled by the normalization constant A and its reciprocal

to yield their scaled versions c̃1,k ∈ R
T/2 and d̃1,k ∈ R

T/2,

respectively. The lifting scheme part is summarized as follows:

Time-split step: x
(even),x(odd) = Sx,

Prediction step: d1,k = x
(odd)
k − P1x

(even)
k ,

Update step: c1,k = x
(even)
k + U1d1,k,
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Fig. 3. Block diagrams of proposed layers. The blue and orange regions
respectively correspond to the lifting scheme and its inverse. C−1 and S−1

denote the inverse operations of C and S, respectively.

Scaling step: d̃1,k =
d1,k

A
, c̃1,k = Ac1,k.

After the lifting scheme, the DWT layer concatenates c̃1,k

and d̃1,k for all channels along the channel axis to form a down-

sampled version of the input feature, which has 2K channels

and T/2 time length. We call this step the channel concatenation

step and denote its operation by C. The overall block diagram of

the DWT layer is shown in Fig. 3(a). Since the lifting scheme

and the channel concatenation step are apparently invertible, the

DWT layer has the perfect reconstruction property. Owing to

this property, we can define the corresponding US layer, i.e., the

inverse DWT layer, by the reverse process of the DWT layer,

whose block diagram is shown in Fig. 3(b).

For odd T , we insert a padding layer before the time-split

step, which pads the last time entry of the feature and makes

the padded feature to have an even time length. In this case, we

remove the last time entry of the output of the inverse DWT layer

at the same hierarchy to keep the correct time length. Through

preliminary experiments, we observed no marked difference in

separation performance between zero and reflection paddings,

and decided to use the reflection padding.

Compared with the decimation and linear US layers, the DWT

and inverse DWT layers require additional computations for the

prediction, update, and scaling steps. However, the use of these

layers does not significantly increase the processing time. Since

the prediction and update operators can be implemented as the

usual convolution layers without bias terms, these computations

are easily parallelizable at each step. Furthermore, the proposed

layers consist of differentiable operations, which makes it easier

to implement them with modern deep learning frameworks, e.g.,

PyTorch and TensorFlow, owing to their automatic differentia-

tion mechanisms.

2) Relationship With Conventional DS Layers: We here de-

scribe the relationship of the DWT layer with the average pooling

layer and the squeezing operation [27], with which we will

compare the proposed layers in Section V. Here, let us consider

the DWT layer whose P1 is an all-stop filter, U1 outputs an input

as is, and A equals 2. In this case, the low-frequency component

c̃1,k of this layer is computed as c1,k = (x
(odd)
1,k + x

(even)
1,k )/2,

which is the same operation as that for the average pooling

layer with a kernel size of 2 and a stride of 2. We can reduce

the DWT layer to the average pooling layer by discarding the

high-frequency component d̃1,k before the concatenation step

and directly outputting the low-frequency component c̃1,k. Thus,

the average pooling layer has an anti-aliasing filter but lacks the

perfect reconstruction property.

If P1 and U1 are all-stop filters and A = 1, the DWT layer

consists of only the time-split and concatenation steps, which

is the same as the squeezing operation. These two steps are

invertible, and the squeezing operation has the perfect recon-

struction property. However, since the outputs of the time-split

step,x
(even)
k andx

(odd)
k , are aliased, the squeezing operation lacks

the anti-aliasing filter.

C. Architecture

By using the proposed DWT and inverse DWT layers, we

build the MRDLA model on the basis of the best architec-

ture of Wave-U-Net reported in [11]. Figs. 1(b) and (c) show

schematic illustrations of the architecture of the MRDLA model,

which features an encoder–decoder architecture with L levels,

a bottleneck block, and an output block. Let the level index be

l = 1, . . . , L, the number of sources be N , and the number of

channels of the input signal be C (in). The encoder first takes

a mixture audio signal and successively down-samples it and

features with L DS blocks. DS block l consists of a convolution

layer with C(e)l filters of size f (e) and the DWT layer. The

bottleneck block processes the output of DS block L with a

convolution layer with C(m) filters of size f (e). The decoder

then up-samples the features with L US blocks, accessing the

inputs of the DWT layers at the same hierarchy through the skip

connections from the encoder. US block l up-samples a feature

with the inverse DWT layer and passes it to a convolution layer

with C(d)l filters of size f (d). Ahead of the convolution layer,

this block concatenates the up-sampled feature and the input of

the DWT layer of DS block l after cropping the latter in time to

match the time lengths of the two inputs. The above convolution

layers are followed by leaky ReLU activations with a leakiness

of 0.2. The decoder is finally followed by a convolution layer

withC (in) filters of size 1, which outputsN source estimates with

C (in) channels. The convolution layers are intentionally without

any paddings since zero padding may cause artifacts at the edges

of the estimated audio signals [11].

The detailed architecture is summarized in Table I, where

LeakyReLU and Tanh denote the leaky ReLU and the tangent

hyperbolic function, respectively. Here, Conv1D(a, b) denotes

a one-dimensional convolution layer with a filters of size b,
and Input and DS feature l respectively represent the input

signal and the feature before the DWT layer of DS block l.
Concat(DS feature l) denotes the concatenation of the output

of the preceding layer and DS feature l.
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Fig. 4. Frequency responses of Haar, CDF, and DD wavelets. The first and second numbers in parentheses following “CDF” represent the multiplicity of zeros
of the analysis and synthesis high-pass filters at z = 1, respectively. The blue and red curves respectively correspond to the low- and high-pass filters.

TABLE I
DETAILED ARCHITECTURES OF MRDLA MODEL AND WAVE-U-NET

In the estimation phase, the MRDLA model works as Wave-

U-Net. Let us denote the input and output signal lengths of

the MRDLA model as T (out) and T (in), respectively, where

T (out) < T (in) since the convolution layers do not use any

padding. We take overlapping audio segments of T (in) lengths

with a hopsize of T (out) from a mixture audio signal, apply the

MRDLA model to these segments independently, and concate-

nate them to obtain the estimated source signals.

D. Modifications of Output Block

If we respectively replace the DWT and inverse DWT layers

with the decimation and linear US layers, the proposed model is

reduced to Wave-U-Net except for the following two modifica-

tions. One modification is to change the output of Wave-U-Net

from N − 1 estimates to N estimates. As shown in Table I,

the original Wave-U-Net outputs the N th source estimate by

subtracting the sum of N − 1 source estimates from the input

signal to ensure that the sum of N source estimates always

equals the input signal. However, since this output method

restricts the range of the possible values of the source estimates

during training, the estimation failure of one of the instruments

heavily affects the estimations of other instruments, which may

result in performance degradation. We experimentally found this

modification to improve the separation performance.

The other modification is to remove the tangent hyperbolic

function followed by the last convolution layer of Wave-U-Net.

As one of the data augmentation techniques, we used data

standardization, which normalizes a time-domain signal of each

track so that its mean and variance are zero and one, respectively.

This technique may increase the values of the training audio sig-

nals outside a range of [−1, 1], although the tangent hyperbolic

function squashes the values into [−1, 1].

IV. EXTENSION TO DWT LAYERS WITH TRAINABLE WAVELET

BASIS FUNCTIONS

A. Motivation and Strategy

The DWT layer can use a wide variety of well-known

wavelets, e.g., Haar, Cohen–Daubechies–Feauveau (CDF) [34],

and Deslauriers–Deubuc (DD) [35] wavelets. The frequency

responses of these wavelets are shown in Fig. 4, where ω de-

notes the normalized angular frequency. However, the existing

wavelets are not designed for audio source separation, which

may limit the performance of the DWT layer. As described in

Section II-C, the design of the wavelet is equivalent to that of the

prediction and update operations. Since the optimal prediction

and update operators may depend on the target sources and the

network architecture, here we aim to train them simultaneously

with the other DNN components.

The prediction and update operators can be implemented with

the convolution layers with 1 filter, whose weights correspond

to the time-reversed impulse responses of these operators. By

making these weights trainable, we can obtain a trainable ex-

tension of the DWT layer, which we call the trainable DWT

(TDWT) layer. Even during training, all the steps constituting

the DWT layer are invertible and the TDWT layer is guaranteed

to have the perfect reconstruction property. However, the fre-

quency responses of the filters depend on the prediction and

update operators and no anti-aliasing filters may exist when

randomly determining the impulse responses of these operators.

For this reason, the TDWT layer is not guaranteed to have the

anti-aliasing filters during training, which may increase the de-

pendence on training particularly when randomly initializing the

weights. To reduce this dependence, in the subsequent section,

we derive constraints of the weights to guarantee that the TDWT

layer has the anti-aliasing filters during training.

B. Weight-Normalized Trainable DWT Layer

1) Constraints of Single Prediction and Update Operators:

According to the definition of the low-pass filter, the condition

of HI(z) to be a low-pass filter is given by

|HI(1)| > 0, HI(−1) = 0. (8)
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Similarly, the condition of G1(z) to be a high-pass filter is given

by

|GI(−1)| > 0, GI(1) = 0. (9)

Substituting Eqs. (5) and (6) into conditions (8) and (9), we can

convert these conditions into those of the even- and odd-order

filters, respectively:

|H(even)
I (1)| > 0, H

(even)
I (1) = H

(odd)
I (1), (10)

|G(even)
I (1)| > 0, G

(even)
I (1) = −G

(odd)
I (1). (11)

In this section, we derive constraints of the prediction and update

operators to satisfy conditions (10) and (11) when using one

prediction operator and one update operator, i.e., I = 1.

Let pI,t and uI,t denote the impulse responses of the Ith

prediction and update operators, respectively, i.e.,

PI(z) =
∑

t

pI,tz
−t, (12)

UI(z) =
∑

t

uI,tz
−t, (13)

where t is the discrete time index. For the impulse responses,

we can derive the following lemma:

Lemma 1: The filters of the lifting scheme with I = 1, H1(z)
andG1(z), are respectively low- and high-pass filters if and only

if

∑

t

p1,t = 1,
∑

t

u1,t =
1

2
. (14)

Proof: When I = 1, Eq. (4) is written as

Q1(z) =

[

A(1− P1(z)U1(z)) AU1(z)

P1(z)/A 1/A

]

. (15)

Since the first matrix of the right-hand side of Eq. (7) equals

QI(z), we obtain

H
(even)
1 (z) = A(1− P1(z)U1(z)), (16)

H
(odd)
1 (z) = AU1(z), (17)

G
(even)
1 (z) =

P1(z)

A
, (18)

G
(odd)
1 (z) =

1

A
. (19)

Comparing Eq. (16) with Eq. (19) with conditions (10) and (11)

yields

P1(1) = 1, U1(1) =
1

2
. (20)

Here, if condition (20) is satisfied, the inequalities in condi-

tions (10) and (11) are also satisfied sinceA > 0. By substituting

Eqs. (12) and (13) at z = 1 into condition (20), we can obtain

condition (14). �

This derivation reveals that to satisfy conditions (10) and

(11), we simply introduce a constraint that the weights of the

convolution layers of the prediction are normalized according

to Eq. (14).

2) Constraints of Multiple Prediction and Update Operators:

Although the above derivation can be generalized in the case

where I > 1, QI(z) is much more complicated than Eq. (15),

and a derivation similar to that in Section IV-B1 is impractical. In

this section, we instead derive a sufficient condition in a simple

form by using the property of the lifting scheme, which can

systematically construct new wavelets from the existing ones by

inserting the prediction and update steps.

We can derive the following lemma of the inserted prediction

and update steps by starting with the lifting scheme whoseHI(z)
and GI(z) satisfy conditions (10) and (11):

Lemma 2: Consider the lifting scheme having the I ≥ 1 pairs

of the prediction and update steps, whose filters are denoted

by HI(z) and GI(z), and extend it by inserting the (I + 1)th
prediction and update steps after the Ith prediction and update

steps. If HI(z) and GI(z) satisfy conditions (10) and (11), the

filters of the extended lifting scheme, HI+1(z) and GI+1(z),
also satisfy conditions (10) and (11) if

∑

t

pI+1,t = 0,
∑

t

uI+1,t = 0. (21)

Proof: Suppose thatHI(z) andGI(z) satisfy conditions (10)

and (11). By inserting the (I + 1)th prediction and update steps

after the Ith prediction and update steps, we can write QI+1(z)
in a recurrent form:

QI+1(z) =

[

A 0

0 1/A

][

1 UI+1(z)

0 1

][

1 0

−PI+1(z) 1

]

×
[

A 0

0 1/A

]−1

QI(z), (22)

=

[

1− PI+1(z)UI+1(z) A2UI+1(z)

−PI+1(z)/A
2 1

]

QI(z).

(23)

Here, the second last matrix of Eq. (22) represents the inverse

of the scaling step since QI(z) includes the operation of the

scaling step. Since the first matrix of the right-hand side of

Eq. (7) equals QI(z), Eq. (23) can be seen as a recurrent form

fromH
(even)
I (z), H

(odd)
I (z), G

(even)
I (z), and G

(odd)
I (z) to the cor-

responding (I + 1)th filters. Straightforward calculus yields

H
(even)
I+1 (z) = H

(even)
I (z)(1− PI+1(z)UI+1(z))

+A2 G
(even)
I (z)UI+1(z), (24)

H
(odd)
I+1 (z) = H

(odd)
I (z)(1− PI+1(z)UI+1(z))

+A2 G
(odd)
I (z)UI+1(z), (25)

G
(even)
I+1 (z) = G

(even)
I (z)− PI+1(z)H

(even)
I (z)

A2
, (26)

G
(odd)
I+1 (z) = G

(odd)
I (z)− PI+1(z)H

(odd)
I (z)

A2
. (27)

Invoking H
(even)
I (1) = H

(odd)
I (1) and G

(even)
I (1) = −G

(odd)
I (1),

Eqs. (25) and (27) at z = 1 are respectively converted into

H
(odd)
I+1 (1) = H

(even)
I (1)(1− PI+1(1)UI+1(1))
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Fig. 5. Architectures of TDWT and WN-TDWT layers used in experiments.
The notations of the components are the same as those in Figs. 1 and 3.

−A2 G
(even)
I (1)UI+1(1), (28)

G
(odd)
I+1 (1) = −G

(even)
I (1)− PI+1(1)H

(even)
I (1)

A2
. (29)

By comparing Eqs. (24) and (26) at z = 1 with Eqs. (28), and

(29), respectively, we can derive the conditions that HI+1(z)
and GI+1(z) satisfy conditions (10) and (11) for any HI(z) and

GI(z) satisfying conditions (10) and (11):

PI+1(1) = 0, UI+1(1) = 0. (30)

Substituting Eqs. (12) and (13) into condition (30) yields con-

dition (21). �

This lemma shows that we should simply normalize the

weights of the convolution layers corresponding to the prediction

and update operators as in Section IV-B1.

Consequently, guaranteeing that the DWT layer has the anti-

aliasing filter and the perfect reconstruction property even during

training can be achieved by normalizing the weights of the con-

volution layers according to Eq. (14) for the first prediction and

update operators and according to Eq. (21) for the subsequent

ones. We call the trainable DWT layer the weight-normalized

trainable DWT (WN-TDWT) layer.

C. Architecture of Proposed Trainable Layers

The two proposed trainable layers do not force all the pre-

diction and update operators to be trainable, and they allow

these operators to be partially frozen. For example, we can use

the architectures of the layers shown in Fig. 5. The simplest

architecture has one pair of trainable prediction and update

operators (see Fig. 5(a)). An example of the architecture with the

frozen and trainable operators is shown in Fig. 5(b). It has the

trainable operators after the prediction and update steps of Haar

wavelets, which are frozen during training. This can be seen as

modifying the Haar wavelets on the basis of the lifting scheme

in a data-driven manner. The last example shown in Fig. 5(c) has

two trainable prediction and update operators. We call the three

architectures Types A, B, and C and will use them in Section V.

As in the DWT layers, we can develop the corresponding US

layers of the TDWT and WN-TDWT layers, which we call the

inverse TDWT and inverse WN-TDWT layers, respectively.

The TDWT and WN-TDWT layers have the same computa-

tional complexity as the DWT layer except for the training cost of

the prediction and update operators. The number of parameters

of each operator equals only the filter length, and the increase

in model size caused by the introduction of the trainable DWT

layers is negligible compared with the number of parameters of

the other DNN components.

V. EXPERIMENTAL EVALUATION

A. Experimental Settings

1) Data Preparation and Training Procedure: To evaluate

the importance of the anti-aliasing filters and the perfect re-

construction property in the feature domain, we conducted ex-

periments using the MUSDB18 dataset [36], which consists of

100 training and 50 test tracks. The genres of the tracks vary

widely, and for each track, four musical instruments (vocals,

bass, drums, and other) were separately recorded. The audio

signals were down-sampled to 22.05 kHz in the stereo format,

i.e., C (in) = 2.

We used the same experimental settings as those in [11] except

for data augmentation techniques. We augmented the training

data by the standardization of the mixture audio signal to have

zero mean and unit variance for each track, the random cropping

of 6.68-s (147 443 samples) training audio segments, the random

amplification within [0.75,1.25], the random channel swapping,

and the random intertrack shuffling of instruments in 20% of

the minibatch [37]. These augmentations except for the data

standardization were performed on the fly during training. The

batch size was 16 and the loss function was the mean squared

error function. We used the Adam optimizer with a learning rate

of 1.0× 10−4 and decay rates of β = 0.9 and β2 = 0.999. We

defined one epoch by 2000 iterations and employed an early

stopping technique to reduce the effect of overfitting similarly

in [11]. We first continued to train each model until the vali-

dation loss was no longer improved for 20 successive epochs.

Subsequently, we changed the batch size and learning rate to 32

and 1.0× 10−5, respectively, and fine-tuned the model with the

same stopping criterion. We finally selected the trained model

with the lowest validation loss. The hyperparameters were set

as A =
√
2, L = 12, C(m) = 312, C(d) = 24, f (e) = 15, and

f (d) = 5 for all models.

2) Evaluation Metric: We evaluated all models with a four-

fold cross-validation scheme. For each data split and each in-

strument, we computed source-to-distortion ratios (SDRs) of

the source estimates every one second for each track, took the



1696 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

TABLE II
AVERAGES AND STANDARD ERRORS OF MEDIAN SDRS OBTAINED WITH

MRDLA MODELS WITH HAAR, CDF, AND DD WAVELETS

median SDRs (trackwise SDRs), and obtained the median track-

wise SDR over all the tracks. Similarly, the median source-to-

interference ratios (SIRs) and source-to-artifacts ratios (SARs)

were computed. Letting sn ∈ R
T ′

and ŝn ∈ R
T ′

respectively

denote the ground truth and estimated signals of source n, the

SDR, SIR, and SAR for source n are given as follows [38]:

SDRn = 10 log10
‖starget,n‖2

‖einterf,n + eartif,n‖2
, (31)

SIRn = 10 log10
‖starget,n‖2
‖einterf,n‖2

, (32)

SARn = 10 log10
‖starget,n + einterf,n‖2

‖eartif,n‖2
. (33)

Here, starget,n, sinterf,n and sartif,n are respectively defined by

starget,n = O(sn)ŝn, (34)

sinterf,n = O(s1, . . . , sN )ŝn −O(sn)ŝn, (35)

sartif,n = sn −O(s1, . . . , sN )ŝn, (36)

where O(s1, . . . , sN ) denotes an orthogonal projector onto the

subspace spanned by s1, . . . , sN . These metrics were computed

after optimally matching the ground truth and estimated signals

by a linear time-invariant filter, which compensates for the linear

mismatches between the ground truth and the estimated signals.

This procedure was used in the signal separation evaluation

campaign 2018 (see [1], [38] for the details). We used the

averages and standard errors of the median SDRs, SIRs, and

SARs over the four data split as evaluation metrics.

B. Effect of Wavelet Basis Functions

We first evaluated the effects of wavelet basis functions of

the DWT layer for MRDLA. We set C(e) = 18 and used the

Haar, CDF(1,5), CDF(2,2), CDF(2,6), and fourth-order DD

(DD4) wavelets as the wavelet basis functions, whose frequency

responses are shown in Fig. 4. Table II shows the separation per-

formance characteristics of the MRDLA models. These models

gave similar separation performance characteristics, showing the

robustness of MRDLA against the wavelet variations. In the

following experiments, we used the Haar wavelet for the DWT

layer with the predetermined weights.

C. Trainable Extensions of DWT Layers

We evaluated the effect of the trainable extensions of the DWT

layer. We call the MRDLA model having the TDWT (WN-

TDWT) layer the TDWT (WN-TDWT) model. We adopted the

Fig. 6. Frequency responses of H1(z) (blue) and G1(z) (red) of Type-A
TDWT and WN-TDWT layers with random and Haar initializations. The
solid and dashed curves represent the initial and trained frequency responses,
respectively.

architectures of the trainable layers named Types A, B, and C, as

shown in Fig. 5, and set the filter size of the convolution layers to

3 for the trainable prediction and update operators. The weights

of these convolution layers were shared between all the trainable

DWT and inverse DWT layers of each network.

We first compared two weight initialization methods for the

Type-A TDWT and WN-TDWT layers: the random initialization

and the initialization by the prediction and update operators

of the Haar wavelets (Haar initialization). Table III shows the

averages and standard errors of the median SDRs for the TDWT

and WN-TDWT models, where we set C(e) = 18. For the

TDWT model, the weight initialization methods heavily affected

the numerical stability and separation performance. With the

random initialization, we often encountered the sudden rise of

training and validation losses, although they did not diverge.

The use of the Haar initialization did not cause such a rise of

the losses, and it greatly increased the separation performance,

which shows that the TDWT layer is sensitive to the initial values

of the prediction and update operators. On the other hand, the

WN-TDWT models provided a consistent performance regard-

less of the initializations, clearly showing that guaranteeing the

existence of the anti-aliasing filters during training reduces the

dependence on the weight initialization. As shown in Fig. 6, with

the random initialization, the frequency responses of the TDWT

layer did not change before and after training, whereas those of

the WN-TDWT layer changed, particularly in their magnitudes.

Interestingly, the frequency responses of the trained Type-A

TDWT and WN-TDWT layers with the Haar initialization were

similar but different from those of the Haar wavelets.

We examined the effect of the architectures of the proposed

trainable layers. For Type B, the weights of the convolution

layers were initialized by zeros. For Type C, the first two

convolution layers were initialized by the Haar wavelet and
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TABLE III
SEPARATION PERFORMANCE CHARACTERISTICS OF MRDLA MODELS WITH PROPOSED TRAINABLE DWT LAYERS

Fig. 7. Frequency responses ofH2(z) andG2(z) of Type-C TDWT and Type-
B WN-TDWT layers with Haar initialization. The lines and colors similarly
represent the responses in Fig. 6.

the other weights were initialized by zeros. These initializations

correspond to the Haar initialization. As summarized in Table III,

the architectures of the TDWT and WN-TDWT layers did not

greatly affect SDRs. Since the TDWT layer is not guaranteed

to have the low- and high-pass filters, the HI(z) (GI(z)) of

the trained TDWT layer, particularly the layer with the Type C

architecture, was not strictly zero at z = −1 (z = 1), as shown

in Fig. 7(a). Nevertheless, the trained TDWT layers showed

nearly low- and high-pass frequency responses, which may be

one of the reasons why the TDWT models showed a similar per-

formance to the WN-TDWT models. The trained WN-TDWT

layers showed the low- and high-pass filters consistently with

the theoretical results given in Section IV-B. The Type-B WN-

TDWT model provided the highest SDRs for vocals, drums,

and other, and the trained WN-TDWT layer showed the slightly

different frequency responses from the Haar wavelet, as shown

in Fig. 7(b).

D. Comparison of MRDLA and Wave-U-Net

To evaluate the advantage of MRDLA, we compared the

proposed MRDLAs having the DWT layers and the WN-TDWT

layers of Type B with Wave-U-Net. We call the former MRDLA

Proposed and the latter one Proposed w/ WN-TDWT. The DWT

and WN-TDWT layers double the channel size of the feature,

whereas the decimation layer leaves it unchanged, which makes

it not easy to exactly match the model sizes of MRDLA and

Wave-U-Net. For a fair comparison, we compared these methods

at various C(e) values, as shown in Table IV, where the Average

Pooling and Squeezing models will be used for the comparison

in Section V-E. Note that we removed the tangent hyperbolic

function located at the end of Wave-U-Net since the data stan-

dardization may increase the values of the training audio signals

outside the range of [−1, 1].

TABLE IV
FEATURES OF PROPOSED AND CONVENTIONAL MODELS. “AAF” AND “PRP”

ARE ABBREVIATIONS OF ANTI-ALIASING FILTERS AND THE PERFECT

RECONSTRUCTION PROPERTY, RESPECTIVELY

Figs. 8, 9, and 10 respectively show the average and standard

errors of the median SDRs, SIRs, and SARs. For all instruments,

the proposed methods gave a comparable performance with a

smaller model size than Wave-U-Net and consistently provided

a higher performance with a similar model size in terms of

SDR and SIR. Compared with Wave-U-Net, the SARs of the

proposed methods were comparable for vocals and bass and

lower for drums and other. However, the improvement of the

SIRs of the proposed methods is sufficiently large to counteract

the SAR degradation and enhance the overall separation quality,

which leads to an SDR improvement of approximately 1.5 dB.

To examine its perceptual effect, we will show a subjective

evaluation in Section V-F. One may think that it is unnatural that

the SAR degradation occurred despite the fact that the proposed

DWT layers have the anti-aliasing filters. However, once the

nonlinear layer is applied to the down-sampled feature, the

feature processed by the nonlinear layer may include artifacts.

The down-sampled feature is processed by the nonlinear layers

at least once, and thus it is not guaranteed that the output of

the MRDLA model does not include artifacts in the waveform

domain even though the DS layer has the anti-aliasing filter

in the feature domain. For this reason, the DWT layers do not

necessarily directly affect the SARs of the source estimates.

Proposed w/ WN-TDWT gave comparable SDRs for vocals

and bass and slightly higher SDRs than Proposed for drums

and other. This observation shows the efficacy of the trainable

extension of the DWT layer and that taking into account the

anti-aliasing filters and the perfect reconstruction property is

more important than the wavelet basis functions.

To examine the statistical significance of SDRs between

Proposed w/ WN-TDWT and Wave-U-Net, we performed the

Wilcoxon signed-rank test of trackwise SDRs for each instru-

ment and each data split. As a result, since the p-values of all in-

struments and data splits were far below 1.0× 10−3, we confirm

that MRDLA significantly improves the separation performance

compared with Wave-U-Net.
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Fig. 8. Averages and standard errors of median SDRs of proposed and conventional models.

Fig. 9. Averages and standard errors of median SIRs of proposed and conventional models.

Fig. 10. Averages and standard errors of median SARs of proposed and conventional models.

E. Effects of Anti-Aliasing Filters and Perfect Reconstruction

Property in Feature Domain

We separately evaluated the effects of the anti-aliasing filters

and the perfect reconstruction property by comparing the follow-

ing two variants of MRDLA, Average Pooling and Squeezing.

Average Pooling uses the average pooling and linear US layers

instead of the DWT and inverse DWT layers in Proposed, and

Squeezing has the same architecture as Proposed while using

the squeezing operation and its inverse as the DS and US layers.

As summarized in Table IV, these models lack either one of the

anti-aliasing filters and the perfect reconstruction property.

Before the performance comparison, we examined whether

the feature-domain aliasing occurs. Fig. 11 shows the spectra of

the input feature of the first DS layer of the trained Squeezing

model. The spectra had high energies in the frequency band

Fig. 11. Spectra [dB] of input feature of first DS layer of trained Squeezing

model.

over ω > π/2, which shows that the down-sampled features

were aliased unless the following DS layer had an anti-aliasing

filter. We observed that the energies of the input features were
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distributed over ω > π/2 in the other trained models. This ob-

servation shows that the feature-domain aliasing can frequently

appear in the DNNs of time-domain audio source separation.

Furthermore, we found that some filters of the trained convolu-

tion layers of the DS blocks had high energies over ω > π/2.

This observation shows that the trained convolution layers did

not play a role of anti-aliasing filters, which is consistent with

the observation in audio recognition tasks [18].

The separation performance characteristics of the two models

are shown in Figs. 8, 9, and 10. The performance characteris-

tics of Average Pooling and Squeezing did not reach those of

Proposed at most of the model sizes, showing the advantage of

simultaneously featuring the anti-aliasing filters and the perfect

reconstruction property. Squeezing achieved the second best

performance at most of the model sizes and for most instruments,

which shows that the perfect reconstruction property is more

important for the separation performance than the anti-aliasing

filters. The performance gap between Proposed and Squeezing

was greater for vocals and bass than for drums, suggesting that

the feature-domain aliasing affects the pitched sounds more

greatly than the percussive sounds.

F. Comparison With State-of-The-Art Methods

1) Separation Performance: To evaluate the effectiveness

of MRDLA, we finally compared the best MRDLA model,

Proposed w/ WN-TDWT, with two conventional time-domain

audio source separation methods in addition to Wave-U-Net: a

noncausal WaveNet [15], which we call WaveNet, and Conv-

TasNet [14]. Since the model sizes of the original Conv-TasNet

and WaveNet were smaller than those of Proposed w/ WN-

TDWT, for a fair comparison, we implemented Conv-TasNet

and WaveNet variants, namely, Conv-TasNet+ and WaveNet+,

respectively, by increasing their model sizes up to those of

Proposed w/ WN-TDWT. All the models were trained with the

same dataset and data augmentation as in Section V-A.

Proposed w/ WN-TDWT: We used the MRDLA model with

the Type-B WN-TDWT layer and C(e) = 36, which achieved

the best separation performance in Section V-D.

Wave-U-Net: We used the Wave-U-Net model with C(e) = 24,

which provided the best performance in the Wave-U-Net models

in Section V-D.

WaveNet: Since WaveNet was originally designed for monaural

inputs, we respectively doubled the input and output channel

sizes of the first and last convolutions so that they can deal with

stereo signals. We used the same settings for the early stopping

technique as in [15].

WaveNet+: To increase the model size of the original WaveNet

to that of Proposed w/ WN-TDWT, we changed the number of

channels of the residual blocks, which is denoted by k in [15],

from 64 to 164.

Conv-TasNet: For the same reason as that for WaveNet, we

respectively doubled the input and output channel sizes of the

first and last convolutions so that it can deal with stereo input

and outputs. To reduce the overfitting, we employed the early

stopping technique with the stopping criterion that the validation

losses did not decrease for 20 successive epochs. The loss func-

tion of Conv-TasNet is scale-invariant and we experimentally

found a large gap in scale between the source estimates and the

ground truths. Since this mismatch greatly decreased SDRs, as

a postprocessing, we scaled the source estimates by instrument-

wise factors to minimize the mean squared error between the

input mixture and the sum of all instrument estimates for each

track.

Conv-TasNet+: To increase the model size of the original

Conv-TasNet to that of Proposed w/ WN-TDWT, we doubled

the number of channels of the bottleneck layers of the mask

estimator, which is denoted as B in [14].

The other experimental settings were the same as those described

in the literature of each method.

Table V shows the separation performance characteristics of

all the methods. For all instruments, Proposed w/ WN-TDWT

achieved the highest SDRs and SIRs, clearly showing the effec-

tiveness of MRDLA. As described in Section V-D, although the

SARs of Proposed w/ WN-TDWT were comparable to but lower

than those of Wave-U-Net, the large improvement of Proposed

w/ WN-TDWT in SIR greatly enhances the overall separation

quality by around 1.5 dB in SDR. We examined the statistical

significance of the difference in separation performance between

MRDLA and Conv-TasNet, which provided the highest average

SDRs over all instruments in the conventional methods, by

performing the Wilcoxon signed-rank test of trackwise SDRs.

We confirmed that the p-values were far below 1.0× 10−3 for

each instrument and each data split, which clearly shows that

MRDLA significantly outperforms the conventional methods

in SDR.

2) Perceptual Quality: Furthermore, to evaluate the percep-

tual quality of the separation results, we conducted a preference

test by comparing MRDLA with Conv-TasNet, which achieved

the highest average SDRs over all instruments in the conven-

tional methods. Ten tracks were randomly chosen from 40 to

50 s of the 50 test tracks of the MUSDB18 dataset. For each

track, we randomly chose one of the data splits and prepared the

separation results of the chosen data split. In addition to the sep-

arated audio signals, we prepared the so-called minus-one audio

signals of each method, which were computed by subtracting the

separated audio signals from the mixtures. We consider that the

minus-one audio signals are helpful for the participants to check

the leakage of the target sources to the residuals. The mixtures

and ground truth signals were also provided as references, and

the participants were blind to the method names. For each track

and each instrument, 12 participants were asked to listen to

the separation results and choose the one with a higher overall

separation quality, taking into account (i) the sound quality of

the target source, (ii) the distortions of the target source, (iii)

the naturalness of the interferences in the separated signals,

and (iv) the leakage of the target sources to the residuals. They

could listen to the audio signals as many times as they wanted.

Similarly to the above, we also conducted a preference test to

compare MRDLA with Wave-U-Net, which gave the highest

SARs for bass and drums. Note that the same tracks and data

splits were used in the two preference tests.
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TABLE V
SEPARATION PERFORMANCE CHARACTERISTICS OF MRDLA AND CONVENTIONAL TIME-DOMAIN AUDIO SOURCE SEPARATION METHODS

TABLE VI
RESULTS OF PREFERENCE TEST OF MRDLA AND CONV-TASNET

TABLE VII
RESULTS OF PREFERENCE TEST OF MRDLA AND WAVE-U-NET

Tables VI and VII show the results of the preference test of

MRDLA and Conv-TasNet, and those of MRDLA and Wave-

U-Net, respectively. Here, the p-values were computed by Pear-

son’s chi-squared test. The results apparently show that MRDLA

significantly outperforms Conv-TasNet and Wave-U-Net in per-

ceptual separation quality for all instruments. When listening

to the separation results, we observed that the separated audio

signals of Conv-TasNet had high-frequency noises, particularly

for bass and drums, and the leakage of the target sources to the

residuals often occurred. Although the separated audio signals

of Wave-U-Net had less noises, they included a large amount

of interference sounds at audible levels for all instruments,

which apparently degrades the separation quality. On the other

hand, we observed that the separated audio signals of MRDLA

include the target sources from low to high frequency bands

and sound more clearly than those of the other methods. Note

that the separated audio signals of WaveNet sound choppy

and had distortions, particularly for bass and drums. Some

audio examples of MRDLA and the conventional methods

are available at http://tomohikonakamura.github.io/Tomohiko-

Nakamura/demo/MRDLA/index.html.

VI. CONCLUSION

We presented a novel time-domain audio source separation

method, MRDLA, based on multiresolution analysis by de-

veloping the DWT and inverse DWT layers. The basis for

developing the proposed layers was from our observation that

the successive DS architecture of Wave-U-Net resembles that of

multiresolution analysis. From the signal processing viewpoint,

we found that the decimation layer causes the feature-domain

aliasing and discards parts of input features, which may degrade

the separation performance. To simultaneously overcome these

two problems, we designed the proposed layers by using a DWT

for DS because a DWT has the anti-aliasing filter and the perfect

reconstruction property.

We further presented the TDWT and WN-TDWT layers by ex-

tending the DWT layer so that its prediction and update operators

can be trained simultaneously with the other DNN components.

We derive the constraints of the weights of the convolution

layers corresponding to the prediction and update operators to

guarantee that the WN-DWT layer has the anti-aliasing filter

in addition to the perfect reconstruction property even during

training. Through systematic experiments on music source sep-

aration, we showed the efficacy of the MRDLA models and the

importance of taking into account the anti-aliasing filters and the

perfect reconstruction property in the feature domain. We further

showed that the use of the trainable DWT layers can slightly

improve the separation performance. The experimental analysis

revealed that maintaining the anti-aliasing filters during the

training can reduce the dependence on the training and the initial

values of the prediction and update operators. Through the ob-

jective and subjective experiments, we confirmed that MRDLA

significantly outperformed the conventional time-domain audio

separation methods in SDR and perceptual quality.
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