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ABSTRACT In the last few years, orthogonal time frequency space (OTFS) modulation has received signif-

icant attention as an alternative to OFDM especially for high mobilty scenarios. In this work, we develop a

delay-Doppler domain embedded pilot based time domain channel estimation for cyclic prefix (CP)-OTFS

in the presence of residual frame timing offset, carrier frequency offset and fractional multiple Doppler. One

of the reasons for time domain processing is that the time domain channel representation is relatively more

sparse as compared to its delay Doppler domain representation in the presence of residual synchronization

errors. We also describe a time domain low complexity linear minimum mean square error (MMSE)

equalization and successive interference cancellation (SIC) receiver for LDPC (low density parity check)

coded CP-OTFS in this work. We further show the impact of residual frame timing offset, carrier frequency

offset and fractionalmultipleDoppler onOTFS symbols. It is seen from the extensiveMonte Carlo simulation

results that the estimation and compensation methods presented here provide necessary resilience properties

to OTFS. We bring out the tolerance of OTFS to such residual synchronization errors. It is further observed

that the SIC is able to improve the performance of the system such that it almost matches that of the ideal

knowledge based MMSE equalization. We also show the performance of RCP (reduced CP)-OTFS when

used with the developed channel estimation and equalization algorithms. A unified signal processing flow

for OTFS and orthogonal frequency division multiplexing (OFDM) is also described in this work to motivate

studies on coexistence between the two as well as to encourage investigations on a seamless transition

between OFDM and OTFS based systems for future adaptive air interface design.

INDEX TERMS Channel estimation, CFO, carrier frequency offset, equalization, ICI, MMSE, OFDM,

orthogonal time frequency space modulation, OTFS, SIC, successive interference cancellation, Doppler.

I. INTRODUCTION

IMT-2020 [1], [2], aka 5G, aims to provide high spectral

efficiency and high reliability in high mobility scenarios,

where the wireless link becomes a highly time varying mul-

tipath channel (TVMC) [3], [4]. The modified avatar of

orthogonal frequency divisionmultiplexing (OFDM), namely

The associate editor coordinating the review of this manuscript and

approving it for publication was Ananya Sen Gupta .

OFDM numerology [5] is the fundamental physical layer sig-

nalling technique used in 5G-New radio (5G-NR) to address

this operating requirement. OFDM numerology is essentially

variable subcarrier bandwidth [6] along with variable guard

interval [7] as described in [8]. Such modifications not only

improve the immunity of OFDM to inter-carrier interference

(ICI), which is caused by high Doppler in high mobility

conditions and phase noise at high carrier frequencies, but

also allow a smooth transition from 4G (IMT-Advanced [9])
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to 5G with minimal changes. In a recent work by the

authors [10], it is shown that orthogonal time frequency

space (OTFS) [11]–[13] outperforms adaptive OFDM used

in 5G-NR in such high ICI conditions.

In OTFS, symbols from complex constellation are placed

in the delay-Doppler grid. The signal in delay Doppler

domain is converted to frequency-time domain signal by

inverse symplectic finite Fourier transform (ISFFT). This

frequency-time domain signal is then converted to time

domain by applying inverse fast Fourier transform (IFFT)

along the fequency axis for each time bin. The last part

can also be identified as OFDM modulation. In situations

when one cyclic prefix (CP) is added before the entire

block of OFDM symbols then a reduced CP-OTFS, namely

RCP-OTFS [14] signal is generated. Whereas, when a CP

is added before each OFDM symbol [13], then CP-OTFS

signal is created. This work is mainly focused on CP-OTFS,

however a result on RCP-OTFS is also included.

Although OTFS is an orthogonal modulation scheme,

yet when the signal passes through a TVMC, the received

delay-Doppler domain signal encounters inter symbol inter-

ference. To demodulate the interference affected signal,

receiver designs have been proposed in the literature which

include linear equalizers [15], [16] and non-linear equalizers

[17]–[20]. The works [18] and [19] describes a belief propa-

gation receiver for OTFS. In [17] Markov chain Monte Carlo

sampling based on the low-complexity OTFS signal detec-

tion scheme is presented. The work [16] describes localized

search based non-linear receiver for rectangular pulse shaped

OTFS. These receivers have a non-linear signal decoding

structure and result in very high complexity. The work [16]

also presents a linear receiver architecture however it is

limited because it considers ideal pulse shape and hence

is not practical. In [15] a low complexity linear receiver

for rectangular orthogonal pulse shaped OTFS system is

described. Most of the articles mentioned above assume the

availability of ideal channel estimates for demodulation of the

delay-Doppler OTFS data symbols.

Channel estimation being an important element of signal

demodulation, a delay-Doppler domain channel estimation

algorithm is described in [14]. Authors of [17] also presents

a delay-Doppler domain channel estimation. Channel estima-

tion in delay-Doppler-angle dimension for OTFS-MIMO is

shown in [21]. Some initial ideas about time domain channel

estimation is presented in [22]. The channel estimation and

equalization for OTFS, described in the above-cited works,

considers ideal synchronization conditions. To the best of the

authors’ knowledge there is hardly any literature available on

the synchronization aspects of OTFS. In this article we con-

sider the above-mentioned aspects in receiver design. To do

so we first develop system model considering residual syn-

chronization errors which is further used to construct channel

estimation and equalization methods. The contribution in this

article are summarized below.

• We describe the complete system model of CP-OTFS

including the effects of residual frame timing

offset (FTO) and residual carrier frequency offset (CFO)

on CP-OTFS, considering that training sequence [23]

based initial synchronization is already achieved, which

is not available in literature to the best of the authors’

knowledge. We establish that the integer FTO and inte-

ger CFO create a cyclic shift in delay and Doppler

dimensions respectively, thus introducing interference

in the received delay-Doppler signal (Section III). The

interference gets further enhanced with fractional CFO.

• The expression of an equivalent channel matrix in time-

domain, which includes the combined effect of the

TVMC, FTO, and CFO is presented in Section IV.

• We show that the structure of time domain equivalent

channel matrix is invariant to Doppler values. We also

demonstrate that the time domain channel matrix is more

sparse than delay-Doppler domain channel matrix in the

presence of fractional Doppler in Section IV-A. This

makes time domain channel estimation and equalization

more attractive than the delay-Doppler domain process-

ing as in earlier reported works on channel estimation

and equalization.

• We present the method for estimating time domain

equivalent channel matrix in Section V, which is nec-

essary for equalization of received signal. Unlike earlier

methods which describe delay-Doppler domain channel

estimation for OTFS, our channel estimation which uses

energy thresholding and spline based interpolation, and

equalization performed in time domain is invariant to

synchronization errors. The results bring out the toler-

ance of OTFS to such synchronization errors.

• The time-domain channel estimation and equalization

described here not only includes compensation for syn-

chronization errors but also provides an opportunity to

develop a unified representation framework for OTFS

and OFDM, which helps in paving the path for a flex-

ible reconfigurable air interface for future air interface

design.

• A low complexity LMMSE based time-domain chan-

nel equalization as well as a successive interference

cancellation (SIC) algorithm, which can cancel the inter-

ference emanating from the channel as well as syn-

chronization errors, is described in Section VI and VII

respectively.

Notations: We use the following notations throughout the

paper. We consider x, X and x to be vectors, matrices and

scalars respectively. Complex conjugate value of x is given

by x̄ whereas j =
√

−1. We denote the set of integers

between a and b Integers by Z[a b]. For brevity, a mod M is

represented by [a]M . Expectation, Ceil, and Kronecker prod-

uct operation is denoted by E{−}, ⌈−⌉, and ⊗ respectively.

Matrices 0N×L , IN and WL are zero matrix of size N × L,

identity matrix with order N and L-order normalized inverse

discrete Fourier transform (IDFT) matrix respectively. The

superscripts (−)Tand (−)† denote transpose and conjugate

transpose operators, respectively. The operator diag{x} gen-
erates a diagonal matrix with the diagonal entries of the
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vector x. Circulant matrix is represented by circ{x} whose

first column is x. The operator vec{X} denotes Column-wise

vectorization of matrix (X).

II. SYSTEM MODEL

We consider a CP-OTFS system with M sub-carriers, each

of 1f Hz bandwidth, N symbols of duration Tu = 1
1f

sec. each with TCP sec. long CP. The system has bandwidth

B = M1f Hz. and total frame duration Tf = NT sec., where

T = Tu + TCP.

A. TRANSMITTER

QAMmodulated data symbols, d(k, l) ∈ C, k ∈ Z[0 N − 1],

l ∈ Z[0 M − 1], are arranged over Doppler-delay lattice

3 = {( k
NTu

, l
M1f

)}. We assume that E[d(k, l)d̄(k ′, l ′)] =
σ 2
d δ(k − k ′, l − l ′), where δ is Dirac delta func-

tion. Doppler-delay domain data d(k, l) is mapped to

time-frequency domain data X (m, n) on lattice 3⊥ =
{(m1f , nT )}, m ∈ Z[0 M − 1] and n ∈ Z[0 N − 1] by

using inverse symplectic finite Fourier transform (ISFFT).

Following [3], [24], X (m, n) is expressed as,

X (m, n) = 1√
NM

N−1
∑

k=0

M−1
∑

l=0

d(k, l)ej2π [
nk
N −ml

M ]. (1)

X (m, n) is converted to a time domain signal s′(t) through a

Heisenberg transform as,

s′(t) = 1√
M

N−1
∑

n=0

M−1
∑

m=0

X (m, n)g(t − nTu)e
j2πm1f (t−nTu), (2)

After appending CP to the baseband signal s′(t) we get,

s(t) = 1√
M

N−1
∑

n=0

M−1
∑

m=0

X (m, n)g(t − nT )ej2πm1f (t−TCP−nT ),

(3)

where, g(t) is transmitter pulse of duration T . In this work,

we use rectangular pulse i.e. g(t) = 1 if 0 ≤ t ≤
T and g(t) = 0, otherwise. The baseband signal s(t) is

up-converted to the RF carrier frequency fc to obtain the RF

signal sRF (t) = s(t)ej2π fct .

We consider a baseband time varying channel with P paths

having hp complex attenuation, τp delay and νp Doppler

values for the pth path where p ∈ Z[1 P]. The delay-Doppler

channel spreading function is written as,

h(τ, ν) =
P

∑

p=1

hpδ(τ − τp)δ(ν − νp). (4)

The delay and Doppler values for pth path is given as

τp = lp
M1f

and νp = kp
NT

where lp and kp are delay and

Doppler bin number on Doppler-delay lattice 3 for pth path.

Let τmax and νmax be the maximum delay and Doppler spread.

Then, channel delay length becomes lτ = ⌈τmaxM1f ⌉
and channel Doppler length becomes kν = ⌈νmaxNT ⌉.

The RF equivalent channel can be given as, hRF (τ, ν) =
h(τ, ν)ej2π fcτ .

The received signal can be written as, rRF (t) =
∫ τmax
τ=0

∫ νmax
ν=−νmax

(

hRF (τ, ν)sRF (t − τ )ej2πν(t−τ )
)

dνdτ+vRF (t),
where vRF (t) is Gaussian noise with variance σ 2

v . Therefore,

rRF (t) =
∑P

p=1

(

hpe
j2π fcτps(t − τp)e

j2π fc(t−τp)ej2πνp(t−τp)
)

+
vRF (t). The received signal after downconversion to base

band is r(t) = rRF (t)e
−j2π f ′

c t , where f ′
c = fc − δfc is the

receiver carrier frequency with offset δfc. The signal r(t) is,

r(t) =
P

∑

p=1

hpe
j2πδfcτps(t − τp)e

j2π (δfc+νp)(t−τp). (5)

The signal r(t) sampled at Fs = B = 1/Ts = (M + L)/T ,

where L = ⌈TCPB⌉ is the length of sampled CP and

T = Tu + TCP = (M + L)Ts, becomes,

r(l ′)= r(l ′Ts)

=
P

∑

p=1

hpe
j2πδfcτp

( 1√
M

N−1
∑

n=0

M−1
∑

m=0

X (m, n)

g([l ′ − τp

Ts
− n(M + L)]Ts)e

j2πm1f ([l′− τp
Ts

−n(M+L)]Ts)
)

ej2π (δfc+νp)(l
′Ts−τp), (6)

where l ′ ∈ Z[0 N (M + L)]. The n′th OTFS symbol with

CP can be collected from the samples of received signal as

r(n′(M + L) + l), ∀ l = 0, 1, · · · , (M + L) − 1 and can be

written as,

r(n′(M + L) + l)

=
P

∑

p=1

hpe
j2πδfcτp

(
1√
M

N−1
∑

n=0

M−1
∑

m=0

X (m, n)g([(n′ − n)(M + L) + l − τp

Ts
]Ts)

ej2πm1f ([(n′−n)(M+L)]Ts)

e
j2πm1f ([l− τp

Ts
]Ts))e

j2π (δfc+νp)Ts(n
′(M+L)+l− τp

Ts
)

(7)

We assume that, after initial coarse synchronization,

a residual synchronization error of lo samples from the start-

ing index of CP removed OTFS symbol as shown in Fig.1

exists. We also assume (l0Ts + τmax) ≤ TCP so that no inter-

ference is experienced from the neighbouring OTFS symbols.

The first step towards decoding the signal is to perform dis-

crete Fourier Transform (DFT) on the CP removed samples

of n′th OTFS symbol to obtain the time-frequency data and

can be given as,

FIGURE 1. FFT Window Matching.
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Y (m′, n′)= 1√
M

M−1
∑

kt=0

r(n′(M + L) + L − l0 + kt )e
−j 2πm

′kt
M .

(8)

Using (7) we can write,

Y (m′, n′)

= 1

M

P
∑

p=1

hpe
j2πδfcτpej2π (νp+δfc)Ts(L+n′(M+L)−lo)

e
−j2π (νp+δfc)Ts(

τp
Ts
)
N−1
∑

n=0

M−1
∑

m=0

X (m, n)

e−j2π
m(lo+ τp

Ts
+(n′−n)(M+L))
M

M−1
∑

kt=0

(

g([(n′ − n)(M + L) + L − lo + kt − τp

Ts
]Ts)

e−j2π
kt (m+(νp+δfc)Ts−m′)

M

)

.

Since, g(t) is a rectangular pulse,

g([(n′ − n)(M + L) + L − l0 + kt − τp

Ts
]Ts)

=







1, if n = n′ & 0 ≤ (L − l0 + kt − τp

Ts
)Ts ≤ T

0, otherwise
(9)

Then, (9) can be written as,

Y (m′, n′)

=
P

∑

p=1

h̃pe
j2πν̃pTs(L+n′(M+L)− τ̃p

Ts
)

M−1
∑

m=0

X (m, n′)e−j2π
mτ̃p
MTs 9((m+ ν̃pTs − m′),M ), (10)

where h̃p = hpe
j2πδfcτp , ν̃p = (νp + δfc), τ̃p = (τp +

l0 Ts), 9(x,M ) , 1
M

∑M−1
kt=0 e

−j 2πkt xM . When x ∈ Z,

9(x,M ) = δ([x]M ). The time-frequency signal is trans-

formed to delay-Doppler domain using symplectic finite

Fourier transform (SFFT) as,

y(k ′, l ′) = 1√
NM

N−1
∑

n′=0

M−1
∑

m′=0

Y (m′, n′)e−j2π [
n′k′
N −m′l′

M ], (11)

which can be simplified to (as shown in appendix C)

y(k ′, l ′)

=
P

∑

p=1

h̃pe
j2πν̃pTsL

N−1
∑

k=0

M−1
∑

l=0

d(k, l)

9(k − k ′ + ν̃p

1ν
,N )9(l − l ′ + τ̃p

1τ
,M )e

j2π
ν̃p(l

′− τ̃p
1τ

)

1ν(M+L)N ,

(12)

where 1ν = 1
(M+L)NTs and 1τ = Ts = 1

B
are Doppler and

delay resolution at the receiver. Let τ̃p = l̃p1τ and ν̃p =
k̃p1ν H⇒ ν̃pTs = k̃p

(M+L)N , where l̃p, k̃p ∈ R, then (12) can

be written as,

y(k ′, l ′)

=
P

∑

p=1

{

h̃pe
j2π

k̃pL

(M+L)N
N−1
∑

k=0

M−1
∑

l=0

d(k, l)

9(k − k ′ + k̃p,N )9(l − l ′ + l̃p,M )e
j2π

k̃p(l
′− ˜lp)

(M+L)N
}

(13)

III. EFFECTS OF RESIDUAL SYNCHRONIZATION ERRORS

In this section, we describe the effects of residual FTO and

CFO errors in the receiver. From (12), it may be noted that

y(k ′, l ′) experiences ISI in both delay andDoppler dimension.

A. INTEGER DELAY AND INTEGER DOPPLER VALUES

When l̃p and k̃p are integers, then (12) simplifies as,

y(k ′, l ′) =
P

∑

p=1

(

hpe
j2πδfcτpej2πν′

pTsL

d(k ′ − kp, l
′ − lp)e

j2π
ν′
p(l

′−
τ ′
i

1τ
)

1ν′(M+L)N
)

(14)

If we consider an AWGN scenario, then integer time and

frequency errors result in a cyclic shift in delay and Doppler

direction respectively thus cyclically shifting the origin of

delay-Doppler grid to (lo,
δfc
1ν

). It can also be observed

that, (14) resembles the received delay-Doppler signal as

described in equation (24) of [3]. Thus the effect of syn-

chronization error can be considered as a part of the channel

itself, with modified channel taps h̃p = hpe
j2πδfcτp , τ̃p =

τp + l0Ts & ν̃p = νp + δfc. Thus, it may be conjectured that

channel equalization with appropriate channel coefficients

may be able to equalize the effects of TVMC and residual

synchronization errors.

B. INTEGER DELAY AND FRACTIONAL DOPPLER VALUES

By observing the the summation terms on the running vari-

ables l and k in (13) we can infer the following. If any

Doppler or delay value of the modified channel is fractional,

i.e, k̃p or l̃p /∈ Z, then every symbol experiences interference

in Doppler or delay dimension accordingly. The interfer-

ence in the Doppler axis is observed frequently because the

Doppler values of channel are not usually resolved to integer

values. The residual synchronization error, δfc, can lead to

a modified fractional Doppler value even though the actual

channel Doppler values (kp) are integers since k̃p = kp + δfc
1ν

.

Fractional delay values are not observed since the sampling

of the received signal in time domain approximates the effect

of fractional channel delay to the nearest integer time bin [3].

Thus l̃p ∈ Z H⇒ (l − l ′ + l̃p) ∈ Z ∀ l ′ ∈ [0 N − 1] H⇒
9(l − l ′ + l̃p,M ) = δ([l − l ′ + l̃p]M ). Therefore (13)
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becomes,

y(k ′, l ′) =
P

∑

p=1

{

h̃pe
j2π

k̃pL

(M+L)N
N−1
∑

k=0

d(k, [l ′ − l̃p]M )

9(k − k ′ + k̃p,N )e
j2π

k̃p(l
′− ˜lp)

(M+L)N
}

(15)

In (15), each received symbol experiences interference from

all other symbols in Doppler dimension. In the sections that

follow, we describe the construction of the equivalent channel

matrix, its estimation and compensation of the effects of

synchronization errors described here.

IV. EQUIVALENT CHANNEL MATRIX FOR OTFS

INCLUDING SYNCHRONIZATION ERRORS

In this section, we derive the expression of equivalent channel

matrix in time domain, which includes the effect of residual

synchronization errors and time varying channel. For this,

we establish the equivalent system model in matrix-vector

form for CP-OTFS. Symbols d(k, l) are arranged in M × N

matrix as,

D=










d(0, 0) d(1, 0) · · · d(N − 1, 0)

d(0, 1) d(1, 1) · · · d(N − 1, 1)
...

...
. . .

...

d(0,M − 1) d(1,M − 1) · · · d(N − 1,M − 1)










.

(16)

Delay-Doppler to frequency-time domain conversion (after

the ISFFT) is done following X = W
†
MDWN , where,

X = {X (m, n) | ∀m ∈ Z[0 M − 1] & n ∈ Z[0 N − 1]}, such
that frequency is alongm and time is along n. Frequency-time

domain to time domain signal is obtained using OFDMmod-

ulation, as S = WMX = DWN , where S = [s0 s1 · · · sN−1]

is concatenation of OTFS symbol vectors si, ∀ i ∈ [0 N − 1].

The pulse shaped samples of the signal is written as,

SPS = GTWMX. GT is the pulse shaping matrix [25]. Since

g(t) is rectangular, we have GT = IM .

The CP appended signal is given as, SCP = BCPSPS =
BCPGTWMX = BCPGTDWN , where BCP =[

0L×M−L IL
IM

]

is operator for appending CP. Thus,

the transmit signal can be given as, sCP = vec{SCP} =
vec{BCPGTDWN }. Using the identity vec{AK×LBL×M } =
(IM ⊗ A)vec{B} = (B ⊗ IM )vec{A}, sCP = (IN ⊗
(BCPGT ))vec{DWN } = (IN ⊗ BCP)(W

T
N ⊗ IM )vec{D} =

(IN ⊗ BCP)(WN ⊗ IM )d. Therefore,

sCP = ACPd, (17)

where d = vec{D} is data vector, ACP = (IN ⊗ BCP)A and

A = WN ⊗ IM . We also introduce the transmit signal vector

s = vec{S} without CP added and can be given as s = Ad

by putting BCP = IM in (17). At the receiver, the noiseless

received signal in discrete form [3] can be written as,

rCP(l) =
P

∑

p=1

hpsCP(l − lp)e
j2π

(l−lp)kp
(M+L)N , (18)

where l ∈ Z[0 ((M + L)N − 1)]. We collect the samples

rCP(q(M+L)+ l) ∀ l ∈ Z[0 M+L−1] to obtain qth OTFS

symbol vector r
q
CP with CP. Then the CP removed vector rq

can be given as,

rq = RCPr
q
CP, where RCP =

[

0M×L IM
]

. (19)

Therefore,

rq(l) = rCP(q(M + L) + L + l), l ∈ [0 M − 1]. (20)

With the introduction of CFO at the receiver, the samples of

qth received OTFS symbol r
f
q(l) is

rfq(l) = rCP(q(M + L) + L + l)e
j2π

k0(q(M+L)+L+l)
N (M+L) , (21)

where k0 = δfc
1ν

. With residual time synchronization error of

lo samples,

r̃q(l) = rfq(l − lo)

From (18), (20) and (21),

r̃q(l)

= e
j2π

k0(q(M+L)+L+l−lo)
N (M+L)

P
∑

p=1

hpe
j2π

kpq

N

e
j2π

(L+l−lo−lp)kp
(M+L)N sCP(q(M + L) + L + l − lo − lp). (22)

We assume lo + lτ < L. Therefore,

r̃q(l) =
P

∑

p=1

hpe
j2π

lpk0
(M+L)N ej2π

(kp+k0)q
N e

j2π
(L+l−lo−lp)(kp+k0)

(M+L)N

sq([l − lp − lo]M ). (23)

Then,

r̃q =








r̃q(0)

r̃q(1)
...

r̃q(M − 1)








=
P

∑

p=1

hpe
j2π

lpk0
(M+L)N 5

lp+lo1kp+k0

e
j2π

(kp+k0)(L−lp−lo)
(M+L)N ej2π

kp+k0
N qsq, (24)

where 5 = circ{[0 1 0 · · · 0]TM×1} is a circulant delay matrix

and 1 = diag{[1 ej2π
1

(M+L)N · · · ej2π
M−1

(M+L)N ]T} is a diagonal

Doppler matrix. Let, l̃p = lp + lo, k̃p = kp + k0 and h̃p =
hpe

j2π
lpk0

(M+L)N . When we include noise,

r̃q = H̃qsq + vq, (25)
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where vq is M length Gaussian noise vector with elemental

variance σ 2
v and

H̃q =
P

∑

p=1

h̃p5
l̃p1

k̃pe
j2π

k̃p(L−l̃p)
(M+L)N ej2π

k̃p
N q. (26)

The above can be modified as,

H̃q =
l̃τ∑

l=0

5
l

∑

k∈ ˜kνl

diag{ ˜hl,kej2π
k(L−l)
(M+L)N

ej2π
k
N q[1 e

j2π k
(M+L)N · · · ej2π

(M−1)k
(M+L)N ]T}, (27)

where l̃τ = lτ + l0 is maximum excess delay bin value of

channel. We let kνl be the set of Doppler indices for the lth

channel tap such thatP =
∑lτ

l=0 kνl . Then
˜kνl = {(k+k0)| k ∈

kνl } and

˜hl,k =
{

h̃p, if l̃p = l and k̃p = k

0, otherwise.

Therefore, the concatenation of CP removed vectors can be

given as,

r̃ =








r̃0
r̃1
...

r̃N−1








=








H̃0

H̃1

. . .

H̃N−1








︸ ︷︷ ︸

H








s0
s1
...

sN−1








︸ ︷︷ ︸

s

+v,

(28)

which can be written as, r̃ = Hs + v = HAd + v, v

being MN length concatenated white Gaussian noise vector.

Equation (25) suggests that the effect of synchronization

errors can be considered as part of time domain channel

matrix. Equation (26) shows that the structure of the channel

matrix is invariant to the introduction of synchronization

errors which is an added advantage as the number of elements

in the matrix does not change with residual synchronization

errors and hence the sparsity of the matrix is unaltered.

Next, we propose an estimation algorithm to estimate this

equivalent channel matrix, however we first give a short

justification for chooseing time domain channel estimation

over delay-Doppler domain processing.

A. OTFS CHANNEL MATRICES

Delay-Doppler channel matrixHDD and time domain channel

matrix H are related as [25], HDD = A†HA. Using the

definition of A = WN ⊗ IM , HDD can be simplified as a

block matrix with blocks of size M × M and can be written

as, HDD =






H
0,0
dd · · · H

(N−1),0
dd

...
. . .

...

H
0,(N−1)
dd · · · H(N−1),(N−1)

dd




, whose (l, k)th

block can be given as, H
l,k
dd =

∑N−1
q=0 w̄q,lwq,kH̃q, where,

wl,k = ej2π
lk
N .

Finally, using the definition of H̃q in (29), H
l,k
dd can be

further simplified as,

H
l,k
dd =



















∑P

p=1
h̃p5

l̃p1
k̃pe

j2π
k̃p(L−l̃p)
(M+L)N δ([k − l + k̃p]N ),

for k̃p ∈ Z

∑P

p=1
h̃p5

l̃p1
k̃pe

j2π
k̃p(L−l̃p)
(M+L)N 9(k − l + k̃p,N ),

for k̃p /∈ Z

We can infer the following from the above equation. When

channel Doppler values are resolved in integer Doppler bins,

each row ofHDD contains Pmatrices where l−k = k̃p, ∀p =
1, · · · ,Pwhich results inNPNe number of non-zero elements

in HDD. However, when fractional Doppler is observed,

the delay-Doppler channel matrix HDD contains N 2Ne num-

ber of elements. Thus, structure of channel matrix varies with

the nature of channel Doppler values which is not observed in

time domain channel matrix. Therefore, H is at least P times

and at max N times sparse thanHDD. Therefore, equalization

with H will result in lower complexity than equalization

with HDD.

V. ESTIMATION OF EQUIVALENT CHANNEL MATRIX

In this section, we propose an algorithm to estimate the equiv-

alent channel matrix specified in (27). From (27), we can

write,

H̃q =
l̃τ∑

l=0

5
lHq,l , where, (29)

Hq,l = diag{[h(q(M + L) + L, l) h(q(M + L) + L + 1, l)

· · · h(q(M + L) +M + L − 1, l)]T}, (30)

where,

h(n,m) =
∑

k∈k̃νm

hm,ke
j2π

k0m

N (M+L) e
j2π

k(n−m)
N (M+L) , (31)

∀ n ∈ [0 N (M + L) − 1],m ∈ [0 l̃τ ].

A. PILOT STRUCTURE IN DELAY-DOPPLER DOMAIN

We extend on the pilot structure described for OTFS

in [14]. The pilot is a 2-dimensional (2D) impulse in

delay-Doppler domain i.e. d(k, l) =
√
PPLT δ(k−Kp, l−Lp),

∀k ∈ [0 N − 1], l ∈ [Lp − L Lp + L − 1], where PPLT =
Np = 2NL is the pilot power. At the receiver, the received

delay-Doppler signal corresponding to pilot signal, with syn-

chronization error is,

y(k ′, l ′) =
P

∑

p=1

{

h̃pe
j2π

k̃pL

(M+L)N
N−1
∑

k=0

√

PPLT δ(k − Kp,

[l ′ − Lp − l̃p]M )9(k − k ′ + k̃p,N )e
j2π

k̃p(l
′− ˜lp)

(M+L)N
}

(32)

From the above, one may infer that the transmitted 2D

impulse pilot, after going through the channel, spreads over

the entire Doppler axis while the spread in delay is limited
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to (Lp + l̃τ ) starting from Lp. We collect received signal

y(k ′, l ′), ∀k ∈ [0 N − 1], l ∈ [Lp Lp + L − 1] for

channel estimation. This part of the received signal contains

the response of the channel to the 2D-delay-Doppler impulse

pilot signal, which is not-interfered by data symbols. This is

because we have assumed that L ≥ lτ + lo − 1.

B. CHANNEL ESTIMATION

Here we describe theorems necessary to obtain the time

domain channel estimates from the received time domain sig-

nal. Theorem 1 relates the time domain channel coefficients

and the received delay-Doppler signal y(k ′, l ′). Theorem 2

establishes the relationship between the estimates of time

domain channel coefficients and the received time domain

signal rCP(l).

Theorem 1: The intermittent time-domain channel coeffi-

cients are directly proportional to the N point IDFT values

obtained from pilot section of received delay-Doppler grid,

i.e, h(α(M+L)+L+Lp+l, l) = e−j2π
αKp
N

(
∑N−1

k ′=0 y(k
′,Lp+

l)ej2π
αk′
N

)

, ∀ α ∈ Z[0 N − 1], l ∈ Z[0 l̃τ − 1].

Proof is given in Appendix A.

Theorem 2: The intermittent time-domain channel coeffi-

cients are directly proportional to the samples of received

signal, i.e, ĥ(α(M + L) + Lp + l, l) = e−j2π
αKp
N rCP(α(M +

L) + L + Lp + l), α ∈ [0 N − 1]

Proof is given in Appendix B.

From the above theorem, we see that the estimate of chan-

nel coefficients at time instances (α(M +L)+Lp+ l)Ts, α ∈
[0 N − 1] for lth channel tap can directly be obtained

from R(l, k) = rk (l), as in Algorithm 1, without going

through the FFT-ISFFT path to reach delay-Doppler domain

as described in [14]. This creates the opportunity for esti-

mating time domain channel coefficients from delay-Doppler

domain embedded pilot. Using the estimated channel coef-

ficients we obtain the values at time instances nTs, n ∈
Z[0 N (M+L)−1] for each channel tap through interpolation.

Since the coefficients to estimate (30) resembles a signal

comprising sum of sinusoids, we considered the polynomial

interpolation techniques (spline [26]) in this work. In other

words,

h(n, l) = spline_interpolate
(

[h(Lp + l, l)

h(M + L + Lp + l, l)

· · · h((N − 1)(M + L) + Lp + l, l)]T ,

· · · [0 M + L(N − 1)(M + L)]T ,

[0 1 2 · · · (N )(M + L) − 1]T
)

, (33)

∀ l ∈ [0 lτ − 1], where spline_interpolate (using ‘interpl1’

inbuilt function in Matlab R©), returns the interpolated signal

at points u when y is the part of signal known at points x.

Algorithm 1 describes how channel estimates for the entire

time duration are generated from the received signal as well

as how to estimate qth channel matrices Ĥq,i &
ˆ̃
Hq, which are

described in (30) & (29) respectively.

Algorithm 1 Esitmation of H̃q

1: Given : The received signal r(l)

2: Output :
ˆ̃
Hq

3: R(l, k) = rk (l)

4: for l ′ = 0 : L do

5: γ = 0

6: for k = 0 : N − 1 do

7: γ = γ + ‖R(Lp + l ′, k)‖2
8: end for

9: if γ > 3σ 2
n then

10: l = [l l ′]
11: ĥ(n(M +L)+L+Lp+ l ′, l ′) = 1√

PPLT
R(Lp+ l ′, n)

12: ĥ(n, l ′) = spline_interpolate({ĥ(n(M + L) + L +
Lp + l ′, l ′) | n ∈ [0 N − 1]}, [L+ Lp + l ′ : M + L :
N (M + L)], [0 : N (M + L) − 1])

13: end if

14: end for

15: for q = 0 : N − 1 do

16: Ĥq = 0M×M
17: for i ∈ l do

18: Ĥq,i = diag{{ĥ(q(M+L)+L+l ′, i)|l ′ ∈ [0 M−1]}}

19:
ˆ̃
Hq = ˆ̃

Hq + 5
iĤ

q,i
t,τ

20: end for

21: end for

FIGURE 2. Time domain CP-OTFS frame.

C. TIME DOMAIN INTERPRETATION OF THE CHANNEL

ESTIMATION

The frame structure used in delay-Doppler domain turns out

to be a impulse train in the time domain modulated by sinu-

soid superimposed without interfering with the equivalent

time domain data as shown in Fig.2 and is given as,

s(n) = sp(n) + sd (n). (34)

Symbols sd (n) and sp(n) are the corresponding time domain

equivalent signal of the the delay-Doppler data and pilot.

Since pilot is a 2-D discrete impulse at location (Kp,Lp),

sp(n)=
√

PPLT

N
e
j2π

Kpn

N (M+L)
N−1
∑

α=0

δ(n− (α(M + L) + L + Lp))

(35)

Using (18), (31), (34) and (35), the received signal is,

r(n)

=
lτ −1
∑

l=0

h(n, l)(

√

PPLT

N
e
j2π

Kp(n−l)
N (M+L)

N−1
∑

α=0
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δ(n− l − (α(M + L) + L + Lp))) +
lτ −1
∑

l=0

h(n, l)sd (n− l)

which can be simplified as,

r(n) =
√

PPLT

N

N−1
∑

α=0

h(n, n− (α(M + L) + L + Lp))

× e
j2π

Kp(α(M+L)+L+Lp)
N (M+L) +

lτ −1
∑

l=0

h(n, l)sd (n− l).

With length of CP being greater than τmax ,

r(α(M + L) + L + Lp + l) =
√

PPLT

N

× h(α(M + L) + Lp + l, l)e
j2π

Kp(α(M+L)+L+Lp)
N (M+L) .

which implies that the result as obtained using theorem 2.

From this time domain interpretation one can visualize the

time domain frame as pilots embedded in each symbol.

After such a pilot passes through a channel, one can obtain

the channel impulse response directly. This can be interpo-

lated to obtain the channel coefficients at all time instants

as described earlier. In the next section we propose a low

complexity LMMSE equalization technique, which uses the

estimated equivalent channel matrix, to compensate for the

channel induced distortions and residual synchronization

errors.

VI. LMMSE EQUALIZATION

In this section, we explain a low complexity LMMSE

receiver for CP-OTFS based on [15]. The LMMSE equal-

ization of r in (28) results in estimated data vector d̂

given as,

d̂ = (HA)†[(HA)(HA)† + σ 2
v

σ 2
d

I]−1r. (36)

When g(t) is rectangular, A becomes unitary. Thus (36) can

be written as,

d̂ = A†

Heq
︷ ︸︸ ︷

H†[HH† + σ 2
v

σ 2
d

I]−1 r

︸ ︷︷ ︸

rce=Heqr

. (37)

Thus LMMSE equalization can be performed as a two stage

equalizer. In the first stage, LMMSE channel equalization

is performed to obtain rce = Heqr. Second stage is a

OTFS matched filter receiver to obtain d̂ = A†rce. The

direct implementation of rce = Heqr requires inversion of

9 = HH† + σ 2
v

σ 2
d

I and multiplication of H†, which needs

O(M3N 3) complex multiplications (CMs). Thus, it is desired

to reduce the complexity of rce = Heqr. It is evident

from (28), that H matrix is a block diagonal matrix with

blocks H̃q of size M ×M . This leads to 9 = HH† + σ 2
v

σ 2
d

I =
diag{90, 91, · · · 9N−1}, which is a block diagonal matrix

with blocks9q of sizeM×M . It is well known that the inverse

of a block diagonal matrix is also a block diagonal matrix.

In addition to that, the inverse of a block diagonal matrix can

be computed using the inverse of individual blocks. Similar

to the decomposition of r into rq(s), rce can also be written

as rce = [rTce,0 r
T
ce,1 · · · rTce,N−1]

T, where rce,q = [rce(q(M +
L)+L) rce(q(M+L)+L+1) · · · rce(q(M+L)+(M+L)−1)]T

is the qth, q ∈ [0 N − 1] channel equalized vector. Thus we

can write,

rce,q = H̃†
q[H̃qH̃

†
q + σ 2

v

σ 2
d

I]−1rq, q ∈ Z[0 N − 1], (38)

which can be computed using inversion and multiplication

of M ×M matrices. The required complexity is of O(NM3).

Generally, the value of M is in the order of 100’s. Although

the above simplifications significantly reduce complexity,

yet LMMSE processing remains a computational burden.

We investigate the structure of 9q involved in channel equal-

ization described earlier, in order to reduce the complexity

further.

A. STRUCTURE OF 9Q = [H̃QH̃
†

Q
+

σ
2
v

σ
2
d

I]

Using (26), H̃qH̃
†
q can be expressed as,

H̃qH̃
†
q

=
( P

∑

p=1

h̃pe
j2π

k̃p(L−l̃p)
(M+L)N 1

k̃p5
l̃pej2π

k̃p
N q

)

( P
∑

s=1

¯̃
hse

−j2π k̃s(L−l̃s)
(M+L)N 5

−l̃s1−k̃sej2π
k̃s
N (−q)

)

(39)

Since 5 is a circulant matrix, it can be verified that

5
lp = W1

−lpW†. Therefore, H̃qH̃
†
q =

∑P
p=1
p=s

|h̃p|2I +
∑P

p=1

∑P
s=1

p 6=s
cp,s5

lp−ls1kp−ksej2πq
kp−ks
N , where cp,s =

h̃p
¯̃
hse

j2π
−k̃p l̃p+k̃s l̃s
(M+L)N e

j2π
L(k̃p−k̃s)
(M+L)N . Thus, we can write

9q=
P

∑

p=1
p=s

(|h̃p|2 + σ 2
v

σ 2
d

)I+
P

∑

p=1

P
∑

s=1

p 6=s

cp,s5
l̃p−l̃s1k̃p−k̃sej2πq

k̃p−k̃s
N .

(40)

From this, it can be concluded that the maximum shift of

diagonal elements in 1 can be ±(l̃τ − 1). Additionally, due

to the cyclic nature of the shift, 9q is quasi-banded with

bandwidth of 2l̃τ −1. As l̃τ ≪ M ,9q is also sparse for typical

wireless channel. Structure of 9q is similar to the channel

matrix of RCP OTFS as described in equation (13) specified

in [15]. Thus 9−1
q can be computed using LU factorization

of 9q in a similar way as described in Sec. III B of [15],

i.e. 9q = LqUq.
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B. COMPUTATION OF d̂

After LU decomposition of 9q, rce,q is simplified to,

rce,q = H̃†
q

r
(2)
q

︷ ︸︸ ︷

U−1
q L−1

q rq
︸ ︷︷ ︸

r
(1)
q

.

As Lq is a quasi-banded lower triangular matrix, r
(1)
q =

L−1
q rq can be computed using low complexity forward substi-

tution as explained inAlgorithm 2 in [15]. Algorithm 3 of [15]

can be used to evalaute r
(2)
q = U−1

q r
(1)
q . Using the definition

of Hq, rce,q = H̃
†
qr

(2)
q can be written as,

rce,q =
P

∑

p=1

h̄p1
−kp 5

−lpr(2)q
︸ ︷︷ ︸

circular shift

. To compute rce,q, r
(2)
q is first circularly shifted by ‘−lp’

and then multiplied by h̄pdiag{1−kp} using point-to-point

multiplication for each path p. All vectors obtained above are

summed to obtain rce,q. Then, {rce,q}N−1
q=0 are concatenated to

obtain rce. Finally, d̂ = A†rce can be implemented using M

number of N -point FFTs (Sec. III-C, [15]).

C. COMPUTATION COMPLEXITY

With some effort it can be shown that the number of CMs

required to implement our proposed LMMSE algorithm is
MN
2

log2 N +MN [2 l2τ +2 P2 kν +9lτ −Pkν −3]+N [ 2
3
l3τ +

2 lτ + P]. The order of complexity achieved through our

receiver is MN log(MN ), which is significantly lower than

the direct implementation, which is of the order of M3N 3.

Our proposed receiver requires around 107x lower CMs than

the direct implementation following (36), if we consider a

typical OTFS system with 1f = 15 KHz, fc = 4 GHz,

N = 128, M = 512, speed of 500 kmph and the extended

vehicular A (EVA) 3GPP channel model [27] with P = 9 and

τmax = 2.51 µ sec.

It is worthwhile to note that we can also implement

LMMSE receiver for OFDM [15] using the methods devised

in the last section. The only difference between the receiver

for OFDM and OTFS is the length of FFT used. For OTFS,

we need M numbers of N-point FFTS whereas for OFDM

we require N numbers of M-point FFTs. Thus, OTFS has

complexity of O(MN log2(N))and OFDM has complexity of

O(MN log2 (M)). In a typical OTFS settings, M > N, thus

OFDM receiver has more computational burden than OTFS

receiver.

VII. LDPC CODED LMMSE-SIC RECIEVER

We present the successive interference cancellation receiver

for LDPC coded OTFS which uses the estimated channel

coefficients instead of ideal channel coefficients [28]. In this

description rinti contains the interfering signal for the ith

iteration, where 1 ≤ i ≤ NSIC . The initial value is set as

rint1 = 0. In the ith iteration, interference is cancelled using,

ri = r − rinti . (41)

It is required that ri be equalized as,

d̂(i) = A†H†[HH† + σ 2
v

σ 2
d

I]−1ri. (42)

Soft demapper output of d̂(i) are given to the LDPC [29]

decoder to estimate the message bits b̂i. The indices of

correct blocks after ith iteration are stored indexc(i) with

indexc(1) = 0. Instead using the entire message, only the

incorrectly decoded code blocks of the previous iteration are

considered for decoding. The following is done accordingly

d̂(i)[indexinc] = ˜̃
di, where indexinc contains the indices of

incorrect code words. The log-likelihood ratios(LLRs) of
˜̃
di

are calculated as,

LLR(bjη|
˜̃
di(η)) ≈ (min

sǫS0j

|| ˜̃di − s||2

σ
2(η, η)

) − (min
sǫS1j

|| ˜̃di − s||2

σ
2(η, η)

) (43)

where
˜̃
di(η) is the ηth element of

˜̃
di mapped from the bits

b0η b1η · · · bJ−1
η , J is the number of bits per symbol and

σ
2(η, η) is the element of σ

2 = σ 2
n (HmmseH

†
mmse), where

Hmmse = A†H†[HH† + σ 2
v

σ 2
d

I]−1. S0j and S1j represent the

constellation symbol sets where the bit b
j
η = 0 and b

j
η = 1

respectively for j = 0, 1, · · · , J−1. These LLRs are given as

input to the LDPC decoder, which is based on the Min-Sum

algorithm [30].

To generate the interference pattern rinti+1, only the correctly

decoded d̂i are used following,

rinti+1 = HAd̃i. (44)

It may be noted that since we use correctly decoded code

blocks for generation of interference pattern, error propaga-

tion is minimized unlike other SIC schemes which operates

at uncoded symbol level.

Stopping Criteria: The SIC receiver is considered to iterate

at most NSIC times. Additional stopping criteria are with

respect to improvement over iterations, i.e. iterations will stop

if impfac = N i
e − N i−1

e ≤ η1, where η1 is improvement

tolerance constant and N i
e is the number of blocks in error

after ith iteration. We also stop the SIC iterations if errfac =
N i
e ≤ η2, where η2 is error threshold value, i.e. number of

error blocks are very low already.

VIII. UNIFIED FRAMEWORK FOR ORTHOGONAL

MULTICARRIER SYSTEMS

In this section, we describe a generalized framework for

orthogonal waveforms. Modulation techniques following this

framework will be able to take advantage of the chan-

nel estimation and equalization algorithms proposed earlier.

Let D be the data matrix of size (M ) × N . Then the transmit

signal which can be of the form

Sd = {BDC} = Avec{D}, (45)
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FIGURE 3. Schematic block diagram representing signal flow of our
proposed code word level SIC receiver.

Algorithm 2 SIC Receiver

1: Given : r, H, η1 and η2
2: Output : b̂

3: Initialize : impfac = 10η1 errfac = 10η2, indexc
1 = 0

4: rint1 = 0 and d̃1 = 0

5: Compute 9 = [HH† + σ 2
v

σ 2
d

I]

6: Compute LU = 9

7: while (i ≤ NSIC && impfac ≥ η1 && errfac ≥ η2) do

8: ri = r − rinti
9: d̂(i) = A†H†U−1L−1ri

10: d̂(i)[indexinc(i)] = ˜̃
di

11: [b̂i, indexinc(i)] = LDPCdecoder (
˜̃
d(i))

12: d̃i+1 = QAMmod (b̂i)

13: d̃i+1[indexinc
(i)] = 0

14: rinti+1 = HAd̃i+1

15: impfac = N i
e − N i−1

e

16: errfac = N i
e

17: end while

18: b̂ = b̂NSIC

where B and C are modulation specific matrices. A in (36)

can be computed using A = (C⊗ I)(I⊗B). We define Sp as

the constant pilot matrix of size 2L × N as

Sp =





0L×N
[1 1 · · · 1]1×N

0L−1×N



 . (46)

The combined time domain matrix with N symbols each

containingM samples can be given as, S =
[

Sp
Sd

]

.We append

CP as described before, i.e. SCP = BCPS. Then, the transmit

vector can be given as s = vec{SCP}. This transmit vector will

resemble the time domain frame illustrated in Fig. 2. Hence,

the same time domain channel estimation and low complexity

LMMSE equalization proposed can be used to equalize the

combined effects of channel and residual synchronization

errors.

CP-OTFS presented in this work can be fitted in this

framework when one sets B = IM and C = WN in

above equations. Similarly, when B = WM and C = IN ,

the above system becomes an OFDM system with no differ-

ence in the equalization techniques at the receiver. Hence, this

generalized description of system can pave the way to realize

a flexible communication system which can change its wave-

formwith changing nature of channel, for e.g., the transceiver

pair can use OFDM in lowmobility scenarios while switching

to OTFS under high speed scenario.

IX. RESULTS

In this section, we present the performance of low density par-

ity check (LDPC) coded CP-OTFS system with time domain

channel estimation and equalization in presence of residual

FTO and CFO errors. Since we present a unified model for

constructing OFDM signal as well as OTFS signal, therefore

we also present the performance of an equivalent OFDM

system. We also present the performance of the developed

time domain channel estimation when used with RCP-OFTS,

however without residual synchronization errors. The simu-

lation parameters used are mentioned in Table 1. For each

channel delay tap value, Doppler is generated using Jake’s

formula, νp = νmax cos(θp), where θp is uniformly dis-

tributed over [−π π ]. CP length is chosen longer than τmax of

the TVMC.

TABLE 1. Simulation parameters.

The curves labeled ‘Ideal’ represent the performance of

LMMSE equalization with ideal channel estimate with-

out any residual synchronization error. The legend ‘mmse’

indicates the performance of LMMSE equalizer while using

estimated channel coefficeints, similary ‘sic’ indicates per-

formance of SIC receiver with estimated channel coefficients.

The numeral following these key words indicates the number

of Doppler taps per delay tap (‘Dpt’) used in evaluation. The

legend ‘synch’ indicates situations where l0 = 2 and k0 = 20.

In case of ‘synch’ estimated channel coefficients are used

in LMMSE equalization and ‘sic’. Normalized CFO error

k0 = δfc
1ν

= 20 results in δfc = k01ν = 2.33 KHz.

A. BLOCK ERROR RATE (BLER) PERFORMANCE

We begin with the BLER performance of CP-OTFS system

using Figure 4. Let us first consider the ‘Ideal’ performance.

It is observed that as ‘Dpt’ increases, the performance of
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the system improves. At BLER of 10−1, the difference in

performance is nearly 4 dB. At BLER of 10−2, the SNR gain

is approximately 6 dB. At higher reliability the gain increases

further. This gain in performance with increasing value of Dpt

can be attributed to Doppler diversity. This diversity is due

to increase in the number of independent channel paths with

increasing value of Dpt. It also indicates that the LMMSE

receiver is able to extract this diversity from the received

signal.

FIGURE 4. BLER Vs SNR (dB) for CP-OTFS with 16-QAM, ldpc code word
length 648, code rate = 2

3
at 500 kmph.

Next, we consider the performance of CP-OTFS with the

proposed channel estimation algorithm but without residual

synchronization error. The degradation in performance in

‘mmse’ from ‘Ideal’ is limited to approximately 1 dB for all

considered Dpt. Whereas for ‘sic’ the performance loss from

‘Ideal’ is negligible.

Now we turn our attention to the performance of CP-OTFS

system with synchronization errors (legend marked with

‘synch’) while using the estimation and compensation tech-

niques described above. In case of ‘mmse’, it can be seen that

for 1 Dpt, the degradation in performance when compared

to no synchronizatin error is nearly 0.5 dB, which is about

1.5 dB for 3 Dpt.Whereas, in case of ‘sic’ it may be noted that

the performance is not much deviated from ‘Ideal’ untill error

floor starts to appear at higher SNRs. It may also be noted that

CP-OTFS is fully immune to residual synchronization error.

After having discussed the performance of CP-OTFS with

16-QAM, which captures the impact of phase modulation as

well as amplitude modulation we include the performance of

the proposed algorithms for a higher order QAM, namely 64-

QAM. The BLER vs SNR of 64-QAM is presented in Fig. 5.

It can be seen that at a BLER of 10−1, the additional SNR

required, over 16-QAM, is about 7 dB. Whereas, it is around

10 dB at BLER of 10−3 and below. A very interesting obser-

vation that can be made for higher order QAM is that the SIC

performance improves significantly over single stageMMSE.

Such results are supported in [28], [31].

FIGURE 5. BLER Vs SNR for 64-QAM with ldpc code word length 648,
code rate = 2

3
at 500 kmph.

From the above it can be said that the proposed channel

estimation algorithm along with the SIC receiver can be

highly recommended for CP-OTFS systems.

We present additional results related to larger code block

length, lower mobility and lower code rate in Appendix D for

the sake of completeness.

Considering that RCP-OTFS is more spectrally efficient

than CP-OTFS, we intend to examine the performance of the

proposed time domain channel estimation for RCP-OTFS as

well through Fig. 6. We have extending the above desribed

algorithms for RCP-OTFS by cosidering the CP length to

be zero for all except the first CP, which is drawn from the

entire OTFS block. Due to brevity we do not provide the

details which are all but similar to what has been described

in the above sections however without effects of residual syn-

chronization errors. Since RCP-OTFS with residual synchro-

nization errors require development of dedicated algorithims,

which is beyond the scope of this work, we present results

with only channel estimation without residual synchroniza-

tion errors.

FIGURE 6. BLER Vs SNR (dB) for RCP-OTFS with 16-QAM, ldpc code word
length 648, code rate = 2

3
at 500 kmph.
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Upto BLER of 10−2 we can see there is not much dif-

ference in performance between CP-OTFS and RCP-OTFS.

Although RCP-OTFS is expected to encounter a large amount

of interference owing to lack of CP between the OFDM

symbols, however the pilot structure as explained above helps

to reduce inter-OFDM-symbol interference. At higher SNR

RCP-OTFS is found to perform slightly better than CP-OTFS.

This can be attributed to improved channel estimation owing

to higher rate of pilot sampling due to lesser time interval

between the pilot sample points. It is also noted that with

3 Doppler taps per delay tap the performance of RCP-OTFS

is slightly better than CP-OTFS. The most significant point

to be noted here is that the developed channel estimation

can be translated to RCP-OTFS, however without ‘synch’

errors.

Now we present the performance of OFDM system, which

is described in Section VIII, in Fig. 7. The very first obser-

vation one can make is that SIC does not provide any

notable improvement in performance. The reason being that

in OFDM systems, the QAM symbols are carried on each

sub-carrier whereas in OTFS they are spread over the entire

time-frequency space. Another quick observation reveals that

with Dpt of 3, the performance is better by nearly 5 dB over

the scenario of 1 Dpt. Now let us compare OFDM against

CP-OTFS. We first consider that ‘Ideal, ‘mmse’ and ‘sic’

cases without residual synchronization errors. When Dpt 1

scenario is taken, we find that OFDM is poorer by nearly 3 dB

at BLER of 10−1. The gap increases to nearly 5 dB at BLER

of 10−2 and it continutes to increase further as SNR increases.

This clearly indicates the superiority of OTFS over OFDM

by virtue of its diversity gain. If we consider the case of

3 Dpt, we again find that at low SNR, CP-OTFS is better than

OFDM by nearly 3 dB. The difference is about 7 dB at BLER

of 10−2, again indicating higher diversity gain obtained by

OTFS over OFDM.When we turn our attention to the ‘synch’

cases, we find that OFDM is severly limited, which is not

a new finding. In comparison we find the CP-OTFS has

significant resilience to such large residual synchronization

error although not completely immune to it.

From the above discussions, it can be said that the

proposed algorithms can provide sufficient resilience to

OTFS against synchronization errors while compensating

for TVMC and thus makes OTFS a potential transmission

technology candidate for use especially in high mobility

scenarios.

Having exposed the most important performance metrics

of OTFS under TVMC and residual synchronization errors,

we now take a look at the mean square error (MSE) of the

channel estimates for the strongest tap against varying SNR

for different Dpt as shown in Fig. 8. It can be observed that

the MSE increases with Dpt. Thus, one can infer that the

channel coefficients obtained from the interpolation based

channel estimation deviate from actual channel coefficients

as Dpt increases. Although MSE for Dpt of 3 is worse than

that for Dpt of 1, the BLER performance of Dpt 3 is better.

This can be attributed to the improved diversity experienced

FIGURE 7. BLER Vs SNR for CP-OFDM with 16-QAM, ldpc code word
length 648, code rate = 2

3
at 500 kmph.

due larger number of independent paths available. Further,

the MSE values are small enough so as not to affect the

performance significantly. One of the reasons is that the pilot

being an impulse in delay-Doppler as well as in time domain

enjoys significantly higher SNR than the data part of the

signal.

FIGURE 8. MSE of channel estimates for CP-OTFS.

It can also be observed that MSE saturates even when SNR

increases. This indicates that the proposed estimation and

compensation methods are effective only in the mid-SNR

region. One may wonder that the saturation in MSE should

be observed in the BLER curves as well. This is indeed true,

however, the saturation in BLER starts to appear below the

level of 10−3.

B. LIMIT OF CFO TOLERANCE

Since we are concerned about the effect of residual synchro-

nization errors, of which the CFO has more significant effect

on the received signal, we present the BLER performance of

CP-OTFS against normalized CFO (
δfc
1ν

) in Fig.9. For Dpt
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FIGURE 9. BLER Vs Normalized CFO for CP-OTFS with 16-QAM, ldpc code
word length 648, code rate = 2

3
at 500 kmph.

FIGURE 10. MSE of channel estimates with varying CFO.

FIGURE 11. BLER Vs SNR for 16-QAM with ldpc code word length 648,
code rate = 1

2
at 500 kmph.

of 1, we consider SNR of 20 dB, whereas for Dpt of 3, we use

SNR of 14 dB.

It can be observed that BLER does not increase notably

untill normalized CFO reaches a value of 20, beyond which it

grows exponentially. This increase in BLER can be attributed

to increase in MSE with CFO observed in Fig.10, which

shows the MSE of channel estimates for the strongest tap.

FIGURE 12. BLER Vs SNR for 16-QAM with ldpc code word length 1944,
code rate = 2

3
at 500 kmph.

FIGURE 13. BLER Vs SNR for 16-QAM with ldpc code word length 648,
code rate = 2

3
at 100 kmph.

The increase in MSE is due to an increasing mismatch

between the estimates of channel coefficients obtained using

the proposed method and the actual value of channel coef-

ficients. An increase in CFO, which has a similar effect as

increase in Doppler, results in a higher rate of channel fluctua-

tions. An increase in the frequency of time-domain pilots may

help in improving the situation but it has its associated penalty

in terms of spectral efficiency loss, the detailed analysis of

which is beyond the scope of this work.

Therefore it may be said that, with a limited allowable

SNR degradation from the ideal performance, our proposed

channel estimation method can compensate normalized CFO

value up to 20. However, it may also be stated that beyond

such values the performance of CP-OTFS degrades at sig-

nificantly. A normalized CFO value of 20 leads to an offset

value of δfc = 201ν = 2.33 kHz which is 15% of the

sub-carrier bandwidth and is 0.4 ppm of carrier frequency.

This value can be considered as a significantly high limit

of residual frequency error, which can be addressed by the

methods described in this work. It is important tomention that

the performance is evaluated considering channel conditions
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where the maximum Doppler frequency is 2.76kHz, which is

additive in nature with CFO as discussed in Section III. This

results in a significantly high value of equivalent maximum

Doppler of 5.09 kHz.

X. CONCLUSION

We have started by describing the system model of a rect-

angular pulse shaped CP-OTFS system with residual frame

timing offset and residual carrier frequency offset errors.

We exposed that integer time and frequency errors result

in a cyclic shift in delay and Doppler dimensions. We also

show that fractional Doppler or delay causes interference in

Doppler or delay dimension respectively. Since we found that

the effect of synchronization errors can be considered as a

part of the channel itself, however with modified channel

taps, we developed a time domain channel estimation method

for delay Doppler domain embedded pilot based CP-OTFS

system to estimate the effective channel matrix. It is brought

out that the time domain processing offers lower complex-

ity owing to higher sparsity compared the delay Doppler

domain channel under the presence of residual synchroniza-

tion errors.

Using the estimates of the effective channel matrix, we pre-

sented a low complexity LMMSE receiver as well as a SIC

based receiver for LDPC coded CP-OTFS system. It is seen

that CP-OTFS has significantly large tolerance to residual

CFO, however it is not completely immune to it. It is found

that the maximum SNR loss at BLER 10−2 is around 1 dB in

the absence of residual synchronization errors when LMMSE

is used, however the loss is negligible when SIC is used.

It is also shown that the described compensation methods

show promise to compensate for residual CFO of up to 15%

of subcarrier bandwidth or 0.4 ppm of carrier frequency

with a loss in SNR up to 1.5 dB at BLER 10−2 in case

of LMMSE. However it is found that SIC can bring the

performance close to LMMSE with ideal channel estimates.

It is also seen that iterative SIC gives massive gains especially

for higher order QAM modulations. We have verified that

the presented channel estimation and compensation methods

can be translated to RCP-OTFS as well. We have shown

that OTFS with practical channel estimation in presence

of residual synchronization errors significantly outperforms

OFDM (by 3 - 7 dB) especially when such errors are high as

encountered in high ICI conditions. With the above, it can be

stated that the proposed time domain channel estimation and

LMMSE based SIC receiver for LDPC coded CP-OTFS can

enable OTFS for use as potential air interface in high mobility

conditions.

Considering that OFDM with frequency-domain adaptive

modulation and coding is known for providing high spec-

tral efficiency especially in low mobility conditions and that

OTFS provides much superior reliability in high mobility

conditions, the unified framework for representing both mod-

ulations depicted in this work can help pave the path for a

flexible and reconfigurable future air interface.

APPENDIX A

PROOF OF THEOREM 1

Proof: y(k ′,Lp+l ′) =
∑l̃τ

l=0 δ(l ′−l)
∑

k∈kνi

{

h̃l,k9(Kp−

k ′ + kp,N )e
j2π

kp(L+l′+Lp−l)
(M+L)N

}

. At lth tap, i.e when l = l ′,

y(k ′,Lp + l) =
∑

k∈kνl

{

h̃l,ke
j2π

k(Lp+L)
(M+L)N 9(Kp − k ′ + k,N )

}

.

When IFFT of (M+L)N point is applied and it can be

shown that,

N−1
∑

k ′=0

y(k ′,Lp + l)e
j2π nk′

N (M+L)

=
∑

k∈kνl

{

h̃l,ke
j2π

k(Lp+L)
(M+L)N (

1

N

N−1
∑

kt=0

ej2π
kt (Kp+k)

N

N−1
∑

k ′=0

e
j2π

k′(n−kt (M+L))
N (M+L) )

}

=

















∑

k∈kνl

{

h̃l,ke
j2π

k(Lp+L)
(M+L)N (e

j2π
n(Kp+k)
N (M+L) )

}

, n = α(M + L)

∑N−1

kt=0
ej2π

kt (Kp)

N 9((
n

(M + L)
− kt ),N )

∑

k∈kνl{

h̃l,ke
j2π

k(Lp+L)
(M+L)N

}

ej2π
kt (k)
N , otherwise.

From (31), h(n,m) =














h(n+ Lp + L + l, l)e
j2π

n(Kp)

N (M+L) , n = α(M + L)

∑N−1

kt=0
ej2π

kt (Kp)

N 9((
n

(M + L)
− kt ),N )

h(kt (M + L) + Lp + L + l, l), otherwise.

Hence, h(α(M + L) + L + Lp + l, l) =

e−j2π
αKp
N

( N−1
∑

k ′=0

y(k ′,Lp + l)ej2π
αk′
N

)

APPENDIX B

PROOF OF THEOREM 2

Proof: We know, ĥ(α(M + L) + Lp + l, l) =
e−j2π

αKp
N

(
∑N−1

k ′=0 y(k
′,Lp + l)ej2π

αk′
N

)

. Also, as explained

in the [10], the time domain signal can be viewed as the

interleaved OFDM, in which an N-point FFT is taken along

the Doppler axis and then interleaved to get the time domain

signal. If this is applied to the received delay-Doppler sig-

nal y(k ′, l ′), then the signal without CP can be given as,

r(α(M ) + l ′) =
(

∑N−1
k ′=0 y(k

′, l ′)ej2π
αk′
N

)

. Due to addition

of CP, r(α(M + L) + L + l ′) =
(

∑N−1
k ′=0 y(k

′, l ′)ej2π
αk′
N

)

.

Therefore, ĥ(α(M +L)+Lp+ l, l) = e−j2π
αKp
N r(α(M +L)+

L + Lp + l).
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APPENDIX C

PROOF:DELAY-DOPPLER INPUT-OUTPUT RELATION

y(k ′, l ′) = 1√
NM

N−1
∑

n′=0

M−1
∑

m′=0

Y (n′,m′)e−j2π [
n′k′
N −m′l′

M ]

Using (1) and (10), with some effort it can be simplified as,

y(k ′, l ′) = 1

NM

P
∑

p=1

h̃pe
j2πν̃pTs(L− τ̃p

Ts
)

N−1
∑

k=0

M−1
∑

l=0

d(k, l)

M−1
∑

m=0

M−1
∑

m′=0

e
−j2π mτ̃p

MTs e
j2π m′l′

MTs (47)

9(m+ ν̃pTs − m′,M )

N−1
∑

n′=0

ej2π
n′(ν̃pTsN (M+L)+k−k′)

N . By substituting,

9(m+ ν̃pTs − m′,M ) = 1
M

∑M−1
kt=0 e

−j2π kt (m+ν̃pTs−m′)
M , we can

write,

y(k ′, l ′)

= 1

NM2

P
∑

p=1

h̃pe
j2πν̃pTs(L− τ̃p

Ts
)

N−1
∑

k=0

M−1
∑

l=0

d(k, l)
( N−1

∑

n′=0

ej2π
n′(ν̃pTsN (M+L)+k−k′)

N

)

(48)

M−1
∑

kt=0

e−j2πkt (ν̃pTs)
M−1
∑

m=0

e
−j2π m

M (kt−l−
τ̃p
Ts
)
M−1
∑

m′=0

ej2π
m′(l′−kt )

M

Since (l ′ − kt ) ∈ Z, we substitute ej2π
m′(l′−kt )

M = Mδ[(l ′ −
kt )M ], 1

N

∑N−1
n′=0 e

j2π
n′(ν̃pTsN (M+L)+k−k′)

N = 9(ν̃pTsN (M + L) +
k − k ′,N ) and 1

M

∑M−1
m=0 e

−j2π m
M (kt−l−

τ̃p
Ts
)

= 9(kt − l − τ̃p
Ts

,M ), therefore we get,

y(k ′, l ′) = 1

M

P
∑

p=1

h̃pe
j2πν̃pTs(L− τ̃p

Ts
)
N−1
∑

k=0

M−1
∑

l=0

d(k, l)

9(ν̃pTsN (M + L) + k − k ′,N )

M−1
∑

kt=0

e−j2πkt (ν̃pTs)

9(kt − l − τ̃p

Ts
,M )

(

Mδ[(l ′ − kt )M ]
)

. (49)

Using 1τ = 1
B

= Ts 1ν = 1
N (M+L)Ts and l

′ = kt ,

y(k ′, l ′)

=
P

∑

p=1

h̃pe
j2πν̃pTs(L)

N−1
∑

k=0

M−1
∑

l=0

d(k, l)9(
ν̃p

1ν

+ k − k ′,N )9(l + τ̃p

1τ
− l ′,M )e

−j2π (l′− τ̃p
1τ

)(
ν̃p

1νN (M+L) )

APPENDIX D

ADDITIONAL RESULTS

In this section we present additional results pertaining to the

effect of lower code rate, larger code word length, and lower

mobility conditions on 16-QAM based CP-OTFS system.

We begin with the performance of rate code 1
2
in Fig. 11.

We compare it against the result shown in Fig. 4, which is for

code rate 2
3
. At a BLER of 10−1, it can be observed that

code rate 1
2

provides approximately 3 dB improvement

over code rate 2
3
. A gain of around 4 dB is found at lower

BLER values.

The effect of larger code block length is shown in Fig. 12.

By comparing against Fig. 4 it can be seen that at BLER

of 10−1 there is only little gain, however the gain is around

1 dB near BLER of 10−3 and it increases further at lower

BLER values. Thus the gain with higher code block length

is observed with more intensity at lower BLER / higher SNR

regions.

The performance at lower mobility, i.e., at 100 kmph is

shown in Fig. 13. Again we take Fig. 4 as reference for

comparison. It can be observed that there is no note worthy

difference. Such observation is also reported in [3].
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