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by means of the stationary-frame method of characteristics. 
Part I. Theory 

V H GUPTA and M L MUNJAL* 

Department of Mechanical Engineering, Indian Institute of Science, 
Bangalore 560 012, India 

MS received 19 August 1992; revised 19 January 1993 

Abstract. Time-domain-finite-wave analysis of the engine exhaust system 
is usually done using the method of characteristics. This makes use of 
either the moving frame method, or the stationary frame method. The 
stationary frame method is more convenient than its counterpart inasmuch 
as it avoids the tedium of graphical computations. In this paper (part I), 
the stationary-frame computational scheme along with the boundary 
conditions has been implemented. The analysis of a uniform tube, cavity- 
pipe junction including the engine and the radiation ends, and also the 
simple area discontinuities has been presented. The analysis has been done 
accountin8 for wall friction and heat-transfer for a one-dimensional 
unsteady flow. In the process, a few inconsistencies in the formulations 
reported in the literature have been pointed out and corrected. In the 
accompanying paper (part II) results obtained from the simulation are 
shown to be in good agreement with the experimental observations. 

Keywords. Noise control; engine simulation; method of characteristics. 

1. Introduction 

The investigation of finite amplitude waves in engine intake and exhaust systems is 
well established; see for example Benson (1982), and Annand & Roe (1974). The 
analysis is done using the method of characteristics. Generally, the method of 
characteristics is implemented in two ways. One is the method of wave diagrams 
(also called 'graphical method') and the other is the mesh-method of Benson (1982). 
These have been referred to here as the 'moving frame' and the 'stationary frame' 
methods respectively. Jones & Brown (1982) computed all the three variables (two 
modified Riemann variables, and the entropy variable) using the moving frame 
method. Benson computed the modified Riemann variables 0-~ and '~II) by the 
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stationary frame method, and the entropy variable by a graphical method (see for 
example Benson 1982). A similar approach was followed by Deshpande & Chandra 
(1989) to compute the noise radiated from the exhaust pipe tail end. 

In this paper a modification in Benson's method has been presented wherein all 
the three variables have been evaluated using the stationary frame method. Low & 
Baruah (1981), and Ferrari & Castelli (1985) have reported similar results for pipes. 
However this paper also presents the extension to sudden area discontinuities. In the 
accompanying paper (part II), typical computed results and experimental verification 
of these predictions have been provided. 

2. Basic formulation 

The basic formulation is well known and documented in literature, and here it has 
been adopted from Munjal (1987). The three nondimensionaI variables are 

P -= A + [(), - 1)/2] U, moving along the path d X / d Z  = U + A, (1) 

Q _= A - [(7 - 1)/2] U, moving along the path d X / d Z  = U - A, (2) 

Ao =- ao/ar,f, moving along the path dX/dZ  = U. (3) 

where A 0 is the nondimensional acoustic speed for gas originally at a particular 
entropy and pressure, when the gas is isentropically brought to a reference pressure 
Pref and where 

A = a/aret, U = U/a re f ,  X = x/L, Z = a tt/L, 

ara, is the (arbitrary) reference sound speed, and L is (arbitrary) reference length. 
Here, P and Q may be recognized as strengths (to some scale) of the forward 

pressure wave and reflected pressure wave, respectively, and Ao as the strength (to 
some scale) of the entropy wave (see for example Munjal 1987). Variations of P, Q 
and A0 with respect to the nondimensional time variable Z in terms of friction and 
heat transfer are also given in the same reference. All the other variables like Mach 
number M, pressure p, density p, temperature T, mass flux rh etc. can be written in 
terms of the wave variables P, Q, the entropy variable Ao, reference values po, ar~f, 
and L by certain relations, as given in Munjal (1987). 

The interaction of these three variables with one another at the Z - X (time-space) 
mesh intersections, and the interpolation thereof is given in the following section for 
completeness, see for example Munjal (1987), Low & Baruah (1981), and Ferrari & 
Castelli (1985). 

3. Interpolation in uniform pipe 

The stationary-frame method consists in dividing the tube into a number of equal 
segments and the values of P, Q and A o at the next instant are determined at these 
fixed points by an interpolation scheme described hereunder. 

Let P, Q and A o be known at all junctions (i = I, 2 . . . . .  n) at nondimensional time 
Z (see figure 1). In order to evaluate these variables at the junction i at time Z + AZ 
(next instant, or the point O'), the following interpolation technique is made use of, 
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Interpolation by the stationary-frame method. 

The characteristics for P, Q and Ao reaching point O' start respectively from points 
Xp, X e and XAo, the locations of which are not known a priori. If the particle velocity 
at point 0 (junction i) is negative, then the Ao characteristic will be the dotted line 
starting from X~o. For convenience, the formulae for dP, dQ and dA o are written as 
follows: 

where 

dP = (A/Ao)dA o + dP/, ,  along dX/dZ = U + A, 

dQ = (A/Ao)dAo + dQ/h, along dX/dZ = U - A, 

dA o = dAofh, along dX/dZ = U, 

(4) 

(5) 

(6) 

" , , - 1 2 f L u 2 U f l _ ( y _ l )  U )  (~-1)  2 qL 
dP.rh = 2 o IuI ~ + - - T -  A.L' 

dQsh 7 - 1 2 f L u 2  U { I + O , _ I ) U } + ( Y - 1 )  2 qL 
-2 -D I U I -2 A ar a 

(7) 

(8) 

and 

dAof h " / - 1 A ~  { qL 2 fL  u3 U } - ~ ~ - 5 - +  , (9) 
~ r e f  D (-U[ 

where the subscript f h  indicates that the term involves friction and heat transfer and 
will be zero in the absence thereof. In other words, dP and dQ would not be zero 
even in the absence of friction and heat transfer. The terms dPyh, dQIh and dAosh 
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are evaluated using the values of the constituent variables at the starting point of 
the characteristics (P, Q, or A o, indicated by subscripts P, Q or A o as the case may 
be), as an initial approximation. 

The slope of P characteristic at the starting point, Xp, can be expressed in terms 
of the nondimensional variables at that point. The same variables can be written in 
terms of AXp; also, AXp is equal to the product of the slope and the nondimensional 
time-step, AZ. These three simultaneous linear algebraic equations can be solved to 
obtain AXp. 

Similarly, three equations each can be written for positions X o, and Xao (if Us I> 0), 
and X',to (if U s < 0), which on solution yield AXQ and AXAo (where subscripts Q and 
Ao indicate evaluation at XQ and X,to respectively). 

This stationary frame interpolation for all the three variables is easier to program 
without much loss ofaccuracy (see Low & Baruah 198 I, and Ferrari & Castelli 1985). 

Using the values of AXe, AX e and AX,~o, it is possible to evaluate Aoe, AoQ and 
A0a ~, by means of linear interpolations. 

From the knowledge of the values of the variables at their corresponding starting 
points, their values at the .next time instant Z + AZ can be evaluated as follows. 

Using the values of P, Q and A o at Xao (or X~o), dAof h can readily be evaluated. 
Then, as per (6), the value of A0 at O' (denoted by Ao(O')), is given by 

Ao(O' ) = AOA ~ + dAof h (10) 

Similarly Pa,, Qp, and Aoe are used to evaluate dPsh required in (4). The value of 
dA o required in (4) is given by 

dA o = Ao(O' ) -- Aoe. (11) 

It is clear now, as also mentioned elsewhere (see for example Benson 1982), why 
it is necessary to interpolate for Ao before P and Q. Following (4), P at O' (denoted 
by P(O')) can be written as 

P(O') = Pl. + (Ae/Aoe)(Ao(O') - Ao,) + dP.fh. (12) 

In an identical fashion, the interpolation for Q can be accomplished. First, making 
use ofP~, QQ and Aoq , dQfh is evaluated, and then dA o required in (5) is obtained by 

dAo = Ao(O' ) -- AoQ. (13) 

Then Q at O'(Q(O')) is evaluated using 

Q(o') = QQ + (AQ/AoQ)(Ao(O') -- AoQ ) + dQf h. (14) 

In the preceding interpolation procedure, it is implied that the slope of a characteristic 
is the same as that at the starting point. For instance, the slope of the P characteristic 
Xp ~ O' has been taken to be equal to the slope at Xp. Obviously, t.here is need for 
a refinement by means of some iteration. To accomplish this, after the values at point 
O' are computed, the slope for P is recalculated as the mean of the slopes at Xj, and 
O', and this slope is used to relocate the point X~,; i.e., a new value of AXe is computed. 
Finally, new values of variables at Xp and hence at O' are computed. The characteristic 
variables Ao and Q also are refined in the same fashion; However, as pointed out 
earlier, the refinement for .4 0 Should be done before P and Q. This refinement is then 
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repeated. Up to two or three such iterations have been found to be necessary for 
evaluating P, Q, and Ao at the next instant with an accuracy of 0-01% (see Gupta 1991). 

At this juncture, it should be pointed out that the aforementioned details have not 
been given by Low & Baruah (1981), and Ferrari & Castelli (1985). A small conceptual 
error at this stage results in rather large errors in the overall performance. Munjal 
(1987, chap. 4), for instance, made use of (9) to evaluate dAo which is correct, but 
used the same value of dA 0 in (4), instead of using (11). Equation (9) is valid only 
along the path defined by (6) and hence such a procedure produced erroneous results. 
Besides, he also modified P and Q in proportion to A0 and this modification violated 
the mass continuity equation when applied in the stationary-frame method. 

Accuracy and stability are two important performance criteria for any numerical 
scheme. These considerations lead to certain relations which can be used to obtain 
the various step sizes in terms of other known engine and exhaust system parameters. 
These are given in detail in many references (see for example Munjal 1987). 

4. Boundary conditions 

It is quite evident from the foregoing procedure and figure 1 that the interpolation 
procedure will not be applicable at the left end (i = 1), and at the right end (i = n). 
Therefore, .suitable end conditions (or boundary conditions) with the cylinder, the 
atmosphere or the neighbouring element, as the case may be, have to be worked out. 
In fact, this is how various parts of the system are dynamically coupled. These are 
discussed in the following subsection. 

4.1 The cavity pipe junction 

Let there be a junction as shown in figure 2. There are two possible flow processes, 
one being the flow from the cavity to the pipe which henceforth is referred to as the 
forward flow, and the other being the flow from the pipe to the cavity referred to 
hereafter as the reverse flow. At the interface of the two lies the trivial no-flow case. 
In the case of the forward flow, A o is not known, whereas in the case of the reverse 
flow Ao can be obtained by interpolation. Also, in the case of the forward flow, P 
and Ao are unknown and even Q is unknown inasmuch as although the starting 
value of Q (corresponding to Q,) is known yet Q will depend upon Ao as required 
by the scheme of computation. Thus, three equations are required. In the case of 
reverse flow, however, only one equation is required. 

cylinder, 
(cavity) 

C~ - 
pipe,  

I 

valve / port 
throat, t 

P 

Figure 2. A schematic sketch of flow 
through the exhaust valve/port. 



916 V H Gupta and M L Munjal 

4.1a Forward flow: The first equation is the adiabaticity condition between the 
cylinder and the pipe. This can be symbolically written in terms of the non-dimensional 
variables as 

,4 2 = ,4 = + [ ( ~  - l ) / 2 ]  u ~ r (15) 

where subscript c indicates cavity and the unsubscripted variables correspond to the 
pipe. 

The mass conservation equation, isentropicity condition from the cavity to the 
throat, and the experimentally known fact that the pressure at the throat equals that 
in the pipe for ~ubsonic flow, yield (see Munjal 1987) 

21 =0, 
(16) 

for sonic choked flow, and 

A, E2(Y-1)31"2\p,a j \ 2Ao ) - \ - ~  / \ 2-2~o / ._1 

for the subsonic flow case, where ~, is the effective area ratio defined by 

qJ - c ~ s , / s ,  (18) 

and Cd is the coefficient of discharge. 
Here it must be known as to which flow case is valid at a particular instant of 

time. The decision of the case depends upon the ratio p/p~ but p is not known a 
priori. This difficulty is overcome" by deducing a critical value of Q as follows. 

In the limiting case both conditions will be simultaneously valid and hence the 
pressure in the pipe would be equal to the pressure required for sonic flow; that  is 

~ = k .  2A o J p f  \~ - -1 , /  
(19) 

Making use of this in (16) one gets 

~, (2(y 2 P - Q 

Equation (20) can be solved with (15) to obtain a critical value of Q,,.,,, the subscript 
ss denoting the interface between sonic and subsonic flow. The expression for Q,,.s~ 
is given by 

~ - 1  r 2 - , 2  
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where A,s s  is computed by 

(22) 

If Q <~ Qcr,~, it is a case of choked sonic flow and if Q > Qc,.s: it is a case of subsonic 
flow. 

The third equation for the forward flow is the compatibility equation, similar to 
the interpolation (14) 

Q = QQ + (AQ/AoQ)(Ao -- AoQ ) + (dQyh)Q, (23) 

where (dQ:h)a indicates dQ:h evaluated from the value of Pc, QQ etc. 
Thus, in the event of forward flow, (15), (16) and (23) are solved simultaneously for 

the case of Q ~< Q , , , :  and (15), (17) and (23) are solved for the case Q > Qc'.~ to obtain 
the next-instant values of the unknowns P, Q and Ao. The simultaneous solution of 
these three equations can be done by several numerical methods. The one used by 
the author is the Newton-Raphson method. The previous instant values of the three 
variables are used as the starting values for the iteration which often converges in 2 
to 4 steps. 

4.2a Reverse flow: If Q, the strength of the incoming wave is so large that p, the 
pressure in the pipe exceeds the cylinder pressure, the flow will be reversed, that is, 
it would move from the pipe into the cavity. This is the third case and the critical 
value at which this reversal happens is denoted by Q,,.y, (subscript fr indicating the 
interface between forward and reverse flow). This critical value is computed from the 
interface conditions 

P=Pc and u = 0 ,  (24) 

which~ the desired critical value of Q (see for example Munjal 1987) 

Qc,,f, = Ao(Pc/Pref) ('/- I)/2~. (25) 

One could also work out the critical value of Q at the interface of the choked inward 
flow and the subsonic inward flow. That, however, would be unnecessary as the flow 
from pipe to cavity is, invariably, subsonic in typical exhaust systems. 

P~ A o ( forward 
f low ) 

P ( reverse 
flow) 

Figure 3. 

next instant 

%% %%~ current 
o 

Ao (reverse 
flow) 

Cavity-pi~ boundarycomputationillustrated. 
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The flow from pipe to throat is adiabatic and reversible and the pressure at the 
throat is equal to the pressure in the cavity. These, when combined with mass 
continuity between the pipe and the throat, yield (see Munjal 1987) 

E2( , - 1)3 0 2 

The transcendental (26) can be solved by the Newton-Raphson method for the only 
unknown, P; Q in the case of reverse flow is already known through interpolation. 

However, if the throat area happens to be equal to that of the pipe, (26) cannot 
be applied. This can also happen if the reverse flow is from a simple pipe into a cavity 
without a throat. For such a case, the desired relation for P can be found from the 
fact that at the pipe cavity junction, pressure in the pipe must be equal to that in 
the cavity, that is, since 

we get 
v = p , ,  (27) 

e = 2Ao(pc/p,ofY,- Q. (28) 

Thus, one gets an explicit expression for P for the case of inward flow from a throatless 
pipe to cavity. 

4.2 Some remarks 

Equations (15), (16), (17), (23), (21), (26), (28) and (25) describe all cases of flow across 
the junction of a cavity (that includes cylinder and atmosphere) and a pipe with or 
without a throat. Of course, refinement similar to that described earlier in the scheme 
of interpolation.for a uniform pipe, is needed in both the cases of the cavity-pipe 
junction as well. This presents a unified approach for all the three variables P, Q and 
A0. Benson (1982) computed Ao by a graphical method. However, the basic physical 
concepts involved are the same. Munjal (1987) makes use of his upgradation technique 
to modify P aiad Q in proportion to A 0 and solves an equation which is a combination 
of adiabaticity and mass continuity equation. In effect, his method makes use of just  
two equations, one being the combination of adiabaticity, and the mass continuity 
equation, and the other being the upgradation equation. This is basically incorrect 
inasmuch as the two most important physical relations, those of adiabaticity and 
mass conservation, are not explicitly and independently satisfied. In fact, a ~olution 
thus obtained has hardly any real physical significance. Low & Baruah (1981), and 
Ferrari & Casteili (1985) have not touched upon these intricacies at all. 

Also the junction has been modelled with the assumption that there is no pressure 
recovery between the throat and the pipe. In the actual flow case, however, the 
possibility of pressure recovery cannot be precluded. This is due to the fact that the 
exhaust port (and the inlet port as well) is designed with smooth profiles causing a 
gradual increase in area. This makes the port act more as a divergent nozzle between 
the throat and the pipe and therefore a certain amount of pressure recovery should 
be anticipated. 
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4.3 Simple area discontinuities 

As the flow is from the element number one to the element number two, in the 
corresponding mesh diagram (see figure 4a) it is clear that the known variables are 
P1, Ao, and Q2,; and the unknown variables are Pz, QI, Ao~ and Q2. This requires 
four equations for the four unknown variables. The first three equations are similar 
to those for the cavity pipe junction, namely, adiabaticity, mass continuity, and 
compatibility equations. These can be symbolically written as 

(a) 
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Figure 4. Computation at a simple 
area discontinuity illustrated. Sudden 
expansion (a) and contraction (b), 
known (r and unknown (d) variables. 
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Adiabaticfty: 
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2 " t -1  P x - Q I  

+-  2 -  "i" = 7 + ~.' 

Mass continuity: 

�9 \ 2Ao, 

- P z + Q 2  1 ; \  2 A ~  , ]  

(29) 

(30) 

Ao~/Ao, = exp((s2 - sl)/2C~,), 
/ 1 2 s2 -- sl = (R/ p1)K(IpoU 1 ). 

Equations (32) and (33) when applied to this discontinuity yield 

Ao,/Ao, = exp{ [(y-- 1)/4] KM'~ }. 

On substitution for Mt in terms of the nondimensional variables, (34) yields 

AoJAo,  =exp  { [K/(y - 1)] [(P1 - QI)/(P, + Q,)]2 }, (35) 

where K is the stagnation pressure loss factor given by (see for example Munjal  1987) 

and 
K = 0.5(Su/Sd) [ ( S j S , ) -  1], for simple contraction, 

K = [1 - (S./Sd)] 2, for simple expansion, 

(36) 

(37) 

where subscripts u and d indicate upstream and downstream, respectively. Equation 
(35) is the fourth equation�9 These four transcendental equations, namely, (29), (30), 
(31), and (35) can be solved simultaneously for the four unknowns P2, Qx, Ao2 and Q2, 

It is clear that the same analysis can be used to solve for other simple area dis- 
continuities like an orific plate or an air-filter element, for which the loss coefficient 
K is known by measurement of stagnation pressure drop in steady flows. 

Munjal (1987) makes use of the same adiabaticity and mass continuity relations. 
However, instead of the compatibility equations, he uses the upgradation scheme 
(that is, modifying P and Q in proportion to Ao). This again is inherently incorrect. 
Also, he approximates the entropy change equation by expanding the exponential 
term in power series, retaining only its first term. However, this does not lead to any 
significant errors as the approximation is valid in case of typical mufflers where M 2 << 1. 

(32) 

(33) 

(34) 

(22 = Q2, + (dQ.rh),~ + ( A 2 s / A o 2 . ) ( A %  - A%.), (31) 

where subscript s indicates values computed at the starting point S shown in figure 4b. 
The fourth equation is obtained by means of the application of entropy change 

relations given by 

where $1 and S 2 are the respective duct cross section areas, and the compatibility 
equation 
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Benson (1982) makes use of the momentum-balance equation instead of the entropy- 
change equation. In case of sudden expansion, the two equations are equivalent 
inasmuch as the loss factor K can be computed analytically making use of the 
momentum equation. However, in general, it is not so. In fact, the analytical value for 
K, derived using the momentum equation, turns out to be double the experimentally 
obtained value for sudden contraction. Similar disparities are observed in other cases 
as well. Therefore, it seems better to make use of the loss factor K and entropy-change 
equation because these have experimental validation. Use of the momentum equation, 
though conceptually appealing, yields results which are in disagreement with those 
computed using experimentally obtained loss factors. This is because of the fact that, 
though it is certain that momentum is conserved, the equation that is written to 
describe such a conservation requires a guess of the pressure on the annular 
end plate. This is illustrated in appendix A. 

5. Thermodynamics of the cavity 

A cylinder is a variable-volume cavity from which there is efflux of gases and to 
which there is influx of gases. The rates of change of T~, Pc, and Pc can be computed 
making use of the rate of volume change and influx of gases to, and exhaust of gases 
from, the cavity, as given in Munjai (1987). In fact, the same approach can also be 
applied to any lumped cavity in the exhaust and/or intake systems. 

6. Considerations of friction and heat transfer 

In the literature, there are a number of empirical relations for Froude's friction factor, 
F ( f  =-F/4)for different ranges of Reynold's number. For the typical flow velocities 
in the exhaust mufflers, F is given by the well-known Lee's formula (see for example 
Munjal 1987) 

F=0"0072+(0.612/Re~ R e < 4  x 105, (38) 
where 
Re is the Reynold's number uDp/g, 
u is the flow velocity, 
D is the diameter (or hydraulic diameter) of the duct, and 
/~ is the coefficient of dynamic viscosity. 

The evaluation of friction as well as heat transfer coefficients is basically difficult 
and uncertain inasmuch as these coefficients are valid for steady flow whereas the 
typical exhaust muffler flow is largely unsteady (Wallace 1954). In this paper, Benson's 
(1982) approach has been followed. Nevertheless, other empirical relations mentioned 
in Munjal (1987) were also tried and they were found to be less appropriate. As 
pointed out earlier, there is an inherent error or contradiction in applying steady 
flow coefficients to unsteady flow computations. Therefore, the guiding principle for 
a suitable choice is for simplicity accompanied by reasonable accuracy. 

Application of Reynold's analogy yields the heat transfer coefficient h as 

h = -}pC, uy, (39) 

where p, u and Cp are density, particle velocity and constant pressure heat capacity, 
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respectively. The instantaneous heat addition per unit mass q, can then be written as 

q = -- h ( A T ) P ~ ( A x ) / [ p S ( A x ) ]  (4o) 

where Pe is the perimeter of the wall, S is the area of the duct, and AT is the appropriate 
temperature difference. There have been different claims regarding appropriate 
temperature difference in the above references. Benson (1982) claimed that AT must 
be taken as T -  Tw (T being the instantaneous gas temperature, and T w being the 
average wall temperature) instead of T - T ,  (T~ being the ambient temperature). 
This claim rests on the fact that the thermal conductivity of the muffler material 
(generally metal) is much higher (at least a few orders of magnitude) than that of the 
gas. Besides, the thermal inertia of the muffler material is much higher than that of 
the gas. Both these indicate that muffler wall rapidly attains a constant and almost 
uniform temperature under steady state engine operation. This thesis was verified in 
the experiments during the present investigation and therefore AT = T -  Tw was u~d 
in preference to A T =  T -  T,. Of course, the value of h used in (40) is the one due to 
forced convection within the pipe. 

Another factor that supports Reynold's analogy approach is as follows. In a single- 
cylinder four-stroke cycle en~ne exhaust system, the valve is open for only about 
one-fourth of the total cycle duration. For the remaining part of the cycle (about 
three fourths), when the valve remains closed, the flow velocities in the muffler are 
considerably smaller. If a constant heat transfer coefficient as mentioned in Munjal 
(1987, chap. 4) is used, it results in a sort of contraction of gases in the muffler. This, 
in turn, creates an artificial suction from the taft,pipe end of the muffler. This is 
basically incorrect as, when the gases slow down to rest, the heat transfer changes 
from forced convection to natural convection and hence the heat transfer coefficient 
undergoes drastic reduction (by a few orders of magnitude). This ensures that the 
numerically observed contraction actually does not take place in the real muffler, 
The other correlation involving Nusselt number and Prandtl number given in Munj~.l 
(1987), and Goyal  et al (1967) is, on the one hand, valid only for forced convection 
and, on the other hand, tends to be much more cumbersome and tedious as compared 
to Reynold's analogy, and at the same time does not offer any substantial gain in 
accuracy. 

7. Scheme of computation 

In order to evaluate the performance of an engine with the given exhaust and intake 
systems by means of the method of characteristics discussed in the foregoing sections, 
general subroutines were written for 

(1) evaluation of P, Q, and A o at all discrete points of a uniform pipe from their values 
at the previous instant, making use of the interpolation technique of w 3. 
(2) evaluation of the variables at a cavity-pipe junction for all cases of flow, making 
use of the analysis ofw 4.1 (this took care of the exhaust valve and the tail-pipe end); 
(3) evaluation of the thermodynamic variables of a cavity, making use of the previous 
values thereof, and the incoming and the outgoing flow, as enunciated in w 5 (this 
will, however, generally not be appropriate for a cylinder, where one has to keep 
track of residual gases and flesh air retained for the estimation of scavenging efficiency 
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etc., nevertheless it sufficed in the present case because the simulation involved only 
the exhaust process when these complications are not present); 
(4) evaluation of the variables at simple area discontinu?;ies as explained in w 

The main program was built around the cylinder. It also contained all the geometric 
details of the intake system and the exhaust system (intake system details are required 
to carry out the simulation during the valve overlap phase of the exhaust process). 
Also, functional subroutines to compute the other variables from the characterisic 
variables were written. The value of are r was computed assuming iscntropic expansion 
from the blow-down conditions (denoted here by subscript bd) to the pressure of the 
atmosphere, thus 

= (po , , , ) , , -  t,/2, (41) 
glref at'ha \Pc.ha 

The time interval was computed by dividing the complete cycle process into 
1024 = 21~ equal parts, hence A0 can be written as 

A0 = 720/1024. (42) 

The reference length was assigned an arbitrary value of I m, and the values for Ax 
were determined using the stability and accuracy criteria given in Munjat (1987). The 
three variables P, Q and A 0 at all points of all the elements were initialized to unity. 

With these assumed values, the numerical computations were started from the 
blow-down (when the exhaust valve or the port just opens) and continued in degree 
steps up to the start of the next blow-down. The conditions in the cylinder were 
reinitialized to the blow-down conditions and the condition in the pipe at the end 
of the preceeding cycle were .taken as the initial values for the succeeding cycle. 

The blow-down conditions, necessary as input to the computational scheme, were 
obtained from the experiments, the details of which are given in the accompanying 

paper. 

8. Noise radiation 

At all instants of time, the mass flux ~h(t) from the tail-pipe end was computed using 
the values of the nondimensional characteristic variables P, Q, Ao, and the dimensional 
reference values. This mass-flux history can readily be used to predict the noise 
radiated. The procedure for this is well described in literature (see, for example, Munjal 
1987). 

9. Concluding remarks 

In the following paper (part II), the theory described above has been used to develop 
a FORTRAN program, which in turn has been made use of to compute typical results. 
These have been compared with the experimental results, and the two are shown to 
be in good agreement (Gupta & Munjal I993). 
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Appendix A. Loss factor 

For an area discontinuity as shown in figure 4a, writing the mass-balance and 
momentum-balance equations for an incompressible flow one obtains 

utSl =uzS 2, (A1) 
and 

2 = p2Si + poS2u22. (A2) P~Si + PoStul 

Also defining the stagnation pressure Ps and the stagnation pressure loss coefficient 
K by the equations: 

+ i _  u 2 P~=P0 ~po , (A3) 
and 

P,1 = P,,2 + K(�89 (A4) 

one can obtain the necessary correlations as follows. 
Substituting for u2 from (AI) in (A2) and writing the loss coefficient K as in (A4) 

one obtains for K 

K = [I - (S,,/S,)] 2 (AS) 

which is the same as in (37). 
However, the same exercise for an area discontinuity as shown in figure 4b, yields 

and 
uiS1 = u282, 

2 
PiSl + PoSi  U i =p2S2 + PoS2u2 +(pi + _~PoUll 2)Sa, 

(A6) 

(A7) 

where S, is the annular area on which the pressure is taken to be same as the upstream 
stagnation pressure. This yields the loss coefficient K as 

K = (SdS )[(SdS,) - 1] (A8) 

which is twice as much as given by (36). 
Hence, solution of the momentum equation gives the correlation, corroborated 

experimentally, for a sudden expansion; therefore the formulations making use of the 
momentum equation are the same as that with the Ioss coefficient. However, for a 
sudden contraction the momentum equation formulation gives, for the loss factor, 
double the experimentally corroborated value; hence the two formulations, viz., the 
loss factor formulation and the momentum equation formulation, are not equivalent. 

Here it may be noted that there is nothing wrong with the applicability of the 
momentum equation. The catch lies in one's having to assume a certain pressure on 
the annular end plate. 
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