AD-A115 566 AIR FORCE INST OF TECN WRIBHT-PATTERSON AFE OH SCHOO-DETC F/G $11 / 4$ TIME-DOMAIN FIRST BORN APPROXIMATIONS TO ELASTOOYNAMIC BACKSCAT-EETCIU OEC BL 6 T MARHOLA AFIT/GE/MA/BID-2
UNCLASSIFIED

TIME-DOMAIN FIRST BORN APPROXIMATIONS
 TO ELASTODYNAMIC BACKSCATTER WITH APPLICATIONS TO NON-DESTRUCTIVE EVALUATION OF COMPOSITES

THESIS

$$
\begin{array}{rlrl}
A F I T / G E / M A / B 1 D-2 & \text { Gregory T. Warhola } \\
& \text { 2Lt } & \text { USAF }
\end{array}
$$

TIME-DOMAIN FIRST BORN APPROXIMATIONS
 TO ELASTODYNAMIC BACKSCATTER
 WITH APPLICATIONS TO NON-DESTRUCTIVE
 EVALUATION OE COMPOSITES

THESIS

```
Presented to the Faculty of the School of Engineering
    Of the Air Force Institute of Technology
    Air University
        in Partial Fulfillment of the
        Requirements for the Degree of
            Master of Science
```

by
Gregory T. Warhola, B.S.
2Lt USAF
Graduate Electrical Engineering
December 1981

Aceession For	
NTIS GRABI	\square
DTIC TAB	\square
Unainaouncod	\square
Justification	

December 1981

```
I wish to express a great deal of gratitude to Dr. David A. Lee, my principal advisor, for inspiring me to undertake this proj-ct. More important than the specifics learned from this study, however, was the educational experience of interacting with the keen intellect of \(D r\). Lee. I thank him for the guidance he provided, his willing= ness to help when it was needed, and the freedom he afforded me for independent study.
```

Many thanks are due Dr. Robert L. Crane of the Air Force Materials Laboratory, Non-destructive Evaluation Branch (AFIAL/MLLP) for sponsoring this project and for many useful conversations regarding the non-destructive evaluation problem. I am also grateful for the computer time he made available to me.

Finally, I'd like to thank Dr. Thomas J. Moran (also at AFWAL/MLLP) for the carefully obtainedexperinental curves appearing in this thesis, for which I am indebted.

Contents

Page
Acknowledgments ii
List of figures iv
List of Tables v
Abstract vi
I. Introduction 1
II. Plane pulse Scattering 4
The first Born approximation 4
A homogeneous anisotropic scatterer 12
III. Scattering from Spheres and Cylinders 20
Cross-sectional scattering areas 20
Incident pulse model 25
Solution for the sphere 27
Solution for the cylinder 33
Smoothness of the solutions 45
Long wavelength limit 49
IV. Numerical Results 52
Numerical techniques 52
Time-domain backscatter waveforms 53
Comparison to experimental result 56
Transparency considerations 61
V. Conclusions and Recommendations 64
Conclusions 64
Recommendations 65
Bibliography 67

List of Figures

Figure Page
1 Scattering Configuration 5
2 Plane wave interaction with a shere 21
3 Plane wave interaction with a cylinder 23
4 Incident Pulse Waveforms 54
5 Backscatter for $k a=\pi$ 55
6 Backscatter for $k a=\pi / 2$ 57
7 Scattering Experiment 58
8 Comparison of an experimental result with a theoretical prediction 60

List of Tables

Table
Page
I Fiber Constants and Scattering Amplitudes 62

Background

Abstract

Fiber-reinforced composite materials are being introduced into primary structures of modern jet fighter aircraft (e.g. vertical and horizontal stabilizers on the $F=15$ and F-16 fighters). These materials are made up of many layers; each layer consists of many rows of parallel fibers bound together by a matrix material of different composition than the fibers. Failure often occurs in these composites via delamination which initiates at gas bubbles (porosity) remaining in the matrix after the manufacturing process. For this and other reasons, non-destructive inspection techniques capable of determining the presence of the porosity are being sought. Current efforts include inspection with elastic waves. Items of interest include comparison of the response from the fibers to that from porosity and the degree to which the fibers may appear transparent to the waves.

For this study, the fibers are modeled as cylinders and the porosity as isolated spheres. Many studies have been done on the sattering from cylinders and isolated spheres [1-3]. Iinear arrays of parallel cylinders [4], and twodimensional arrays of parallel cylinders [5-6]. These stu= dies. however, all provide frequency-domain solutions. Current inspection techniques utilize broadband time-domain

Abstract

pulse techniques: thus, a time-domain solution for the scattering might be more readily applied to the inspection problem.

Problem and Scope

The problem investigated in this study is the solution for the dilatation wave backscatter from cylindrical and spherical inclusions resulting from incident dilatation pulses which are representative of the pulses produced by piezoelectric transducers. obtaining and exploring the differences between backscatter from spheres and cylinders and comparison with an experimental result are the major objectives of this thesis. A secondary objective is a study of the transparency of common composite-reinforcing fibers to elastic waves in order to assess the feasability of nondestructive inspection with backscattered dilatation waves.

The analysis is limited to backscatter from single cylindrical or spherical inclusions of arbitrary homogeneous anisotropic elastic composition embedded in a homogeneous isotropic host. The solution for the cylinder is obtained for normal incidence of the dilatation wave with respect to the cylinder's axis of symetry. All media are considered to obey the laws of linear elasticity and are assumd to be non-attenuative.

```
    A review of Lee's development [7] of a time-domain
integral equation for the scattered field is given in
Chapter II, followed by a statement of the time-domain first
Born approximation and the form of the solution for the
scattered pulse resulting from this approximation. A "tran-
sparency condition" is then obtained for a general anisotro-
pic homogeneous inclusion in a homogeneous isotropic host.
In Chapter III, the solution for backscatter from cylinders
and spheres is worked out in detail. Power series, Laplace
transform methods, and recursion relations are used to
obtain the solutions. Some specific results in the form of
graphs of backscattered responses are presented and dis-
cussed in Chapter IV, where comparison to an experimental
result is also presented. The transparency of typical
fibers is also addressed in chapter IV. Conclusions and
recommendations are presented in Chapter v.
```


II. Plane Pulse Scattering

The first section is intended to be a brief exposé of Lee's [7] theoretical analysis of dilatation wave backscatter from an object insonified by a plane dilatation pulse. The time-domain first Born approximation is presented therein to linearize the resulting expression for the scattered displacement field. A product of this thesis is presented in the following section where a result obtained in \{7] for scattering from a void is generalized for any homogeneous anisotropic scatterer. It will be shown that, in the first Born approximation, certain combinations of density and stiffness of the host and scattering materials render the scatterer "transparent" to the incoming waves.

The first Born approximation

Figure 1. Scattering Configuration
not initially restricted to backscatter, ie. the observecion vector x may point in any direction. (this would, of course, require another transducer to receive the scattered waves.) The condition for backscatter is imposed later in the chapter.

The material densities and stiffness tensors are given by

$$
\rho(x)= \begin{cases}\rho^{0} & \underline{x} \in R-B \tag{1}\\ \rho^{0}+\Delta \rho & , x \in B\end{cases}
$$

and
$c_{i j k l}(\underline{x})= \begin{cases}c_{i j k l}^{0} \equiv \lambda^{0} \delta_{i j} \delta_{k l}+\mu^{0}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right), & \underline{x} \varepsilon R-B \\ c_{i j k l}^{0}+\Delta c_{i j k l} & , \underline{x} \in B\end{cases}$
where λ^{0} and μ^{0} are the Lame constants in $R-B$ and $\mathcal{X}_{i j}$ is the Kronecker delta defined by

$$
S_{i j}= \begin{cases}0, & i \neq j \tag{3}\\ 1, & i=j\end{cases}
$$

The incident pulse is of the form

$$
\begin{equation*}
\underline{u}^{i n c}(\underline{x}, t)=\nabla \phi\left[t-\frac{e \cdot \underline{x}+\beta}{a_{0}}\right] \tag{4}
\end{equation*}
$$

where a_{0} is the dilatation wave speed in the region $R-B$ and e is a unit vector characterizing the direction of propagacion of the pulse. The constant β allows the time origin to be adjusted so that $t=0$ corresponds to the instant that the pulse first encounters B. Thus,

$$
\begin{equation*}
\beta=-\min (\underline{e} \cdot \underline{x}) \tag{5}
\end{equation*}
$$

In (4), the scalar potential $\phi(s)$ satisfies

$$
\begin{equation*}
\phi(s) \in C^{(3)}(-\infty, \infty) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(s) \equiv 0, \quad s \leq 0 \tag{7}
\end{equation*}
$$

A minor modification of equation (5.4.2) of reference
[7] defines the pulse length togas that time after which a
specified fraction \in of the total energy in the pulse
remains according to

$$
\begin{equation*}
\int_{T_{p}}^{\infty}|\phi(s)|^{2} d s=\epsilon \leq 1 \tag{8}
\end{equation*}
$$

The displacement field then satisfies

$$
\underline{u}(\underline{x}, t)=\left\{\begin{array}{l}
\underline{u}^{i n c}(\underline{x}, t), \quad-\infty<t \leq 0 \tag{9}\\
\underline{u}^{i n c}(\underline{x}, t)+\underline{u}^{s c}(\underline{x}, t), \quad t>0
\end{array}\right.
$$

An application of Love's integral identity [8] gives
the scattered field as

$$
u_{i}^{s c}(x, t)=\iiint_{B} u_{i k}\left[\underline{r}, t \mid\left(\Delta c_{k \mid m n} u_{m, n}^{s c}\right), 1-\Delta \rho \ddot{u}_{k}^{s c}+b_{k}\right] d u_{y}
$$

Abstract

where $b_{i}(x, t)$ is a body force field which is dependent upon the incident displacement field along with the density and stiffness perturbations

$$
\begin{equation*}
b_{i}(x, t)=\left(\Delta c_{i j k i} u_{k, i}^{\operatorname{ink}}\right)_{i j}-\Delta \rho \ddot{u}_{i}^{i n k} \tag{11}
\end{equation*}
$$

In (10) the dots indicate differentiation with respect to time, and the functional $u_{i k}$ is given by

$$
\begin{align*}
& +\frac{n m_{r}^{3}}{r^{3}}\left[\frac{1}{[} \omega\left(t-\frac{r}{a_{0}}\right)-\frac{1}{b_{0}^{2}} \omega\left(t-\frac{r}{b_{0}}\right)\right] \\
& +\frac{\delta_{i k}}{r_{0}} \omega\left(t-\frac{r}{b_{0}}\right) \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
r=|\underline{r}|=|\underline{x}-\underline{y}| \tag{13}
\end{equation*}
$$

and $b_{0} i s$ the shear wave speed in $R-B$. Equation (10) shows that the scattered field arises in an obviously nonlinear manner. It may be possible to solve for $\underline{u}^{\text {sc }}\langle\underline{x}, \mathrm{t}\rangle$ by an iterative solution of (10), however, a simpler, linear problem results by assuming that the interaction of the scatcered field adits derivatives with the scatterer is much smaller than that of the incident field. This requires that $\Delta c_{i j k i}, \Delta \rho, \underline{u}^{s c}(\underline{x}, t)$, and $\underline{\underline{u}}^{s c}(\underline{x}, t)$ be sailing some sense so that

$$
\begin{equation*}
\ll \iiint U_{i k}\left[t, t \mid b_{k}(\underline{y}, \cdot)\right] d v_{y} \tag{14}
\end{equation*}
$$

Equation (14) is a statement of the "time-domain first Born approximation" for elastodynamic scattering which then gives the scattered field as

$$
u_{i}^{s c}=\iiint_{B} U_{i k}\left[r, t \mid b_{k}(\underline{y}, \cdot)\right] d v_{y}
$$

$$
\begin{align*}
\hat{u}_{i}^{s c}= & \frac{-1}{4 \pi \rho^{0} a_{0}^{2} x} \iint_{B}\left[\frac{\hat{x}_{i} \hat{x}_{s} \hat{x}_{1}}{a_{0}} \Delta c_{k \mid m n}(\underline{y}) \dot{u}_{m, n}^{\text {inc }}\left(\underline{y}, t-\frac{r}{a_{0}}\right)\right. \\
& \left.+\hat{x}_{i} \hat{x}_{k} \Delta \rho(\underline{y}) \ddot{u}_{k}^{\text {inc }}\left(\underline{y}, t-\frac{r}{a_{0}}\right)\right] d v_{y} \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
x=|\underline{x}| \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\hat{x}}=\frac{\underline{x}}{|\underline{x}|} \tag{18}
\end{equation*}
$$

Taylor's expansion of x and order of magnitude arguments allow further simplification of (16). The resulting expresssion for the catered dilatation field for an incident plane dilatation pulse is

$$
\left.\begin{array}{l}
4 \pi \rho^{0} a_{0}^{2} \hat{u}_{i}^{3}(\underline{x}, t)= \\
-\frac{\hat{x}_{j}}{x} \iiint_{B}\left[\hat{x}_{k} \hat{x}_{1}\right. \tag{19}\\
a_{0}^{3}
\end{array} c_{x \ln n}(\underline{y}) c_{m} e_{n}+\frac{\hat{x}_{k} e_{x}}{a_{0}} \Delta \rho(\underline{y})\right] \ddot{\gamma}\left(t^{\prime}-\frac{e \cdot y+\beta}{a_{0}}+\frac{\hat{x}_{0} y}{a_{0}}\right) d v_{y} .
$$

where

$$
\begin{equation*}
Y(t) \equiv i(t) \tag{20}
\end{equation*}
$$

is the amplitude of the incident displacement field, and

$$
\begin{equation*}
t^{\prime}=t-\frac{x}{a_{0}} \tag{21}
\end{equation*}
$$

A homogeneous anisotropic scatterer

The result obtained in equation (19) is a statement of the first Born approximation for the most general anisotropic inhomogeneous scatterer embedded within an isotropic homogeneous host. Reference [7] goes on to consider further details for the special case of scattering from a void. In this thesis, equation (19) is evaluated for a homogeneous anisotropic inclusion. The solution has the same form as that for the void, with the addition of a multiplicative amplitude factor which depends upon the materials' elastic constants.

The perturbations attributable to the scatterer are taken as

$$
\begin{equation*}
\Delta \rho=\rho^{B}-\rho^{0} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta c_{i j k l}=c_{i j k 1}^{B}-c_{i j k l}^{0} \tag{23}
\end{equation*}
$$

where ρ^{B} and the $c_{i j k I}^{B}$ are constants within B, and $c_{i j k l}^{0}$ is as defined in equation (2). Substituting these into (19), evaluating with the Kronecker deltas, and setting $\hat{\underline{\hat{x}}}=-\mathrm{e}$ for backscatter, yields
$4 \pi \rho^{0} a_{0}^{3} \hat{u}_{i}^{s c}(\underline{x}, t)=$

$$
\begin{gather*}
\frac{e_{i}}{x} \iint_{B}\left\{\left[\rho^{B}-\dot{\rho}^{0}-\frac{\lambda^{0}+2 \mu^{0}}{a_{0}^{2}}+\frac{e_{k} e_{1} e_{m} e_{n} c_{k i m n}^{B}}{a_{0}^{2}}\right]\right. \\
\left.x \quad \ddot{\gamma}\left(t^{\prime}-\frac{2 \underline{e} \cdot \underline{y}+\beta}{a_{0}}\right)\right\} d v_{y} \tag{24}
\end{gather*}
$$

Consider the product $e_{i} e_{j}{ }^{e}{ }^{e}{ }_{1} c_{i j k l}$ in (24). If the Cijkl are contracted according to the method described by Ny [9:131-149], the product can be written out in its full glory (for future reference) as

$$
\begin{align*}
e_{i} e_{j} e_{k} e_{1} c_{i j k}= & e_{1}^{4} c_{11}+e_{2}^{4} c_{22}+e_{3}^{4} c_{33} \\
& +4 e_{2}^{2} e_{3}^{2} c_{44}+4 e_{1}^{2} e_{3}^{2} c_{55}+4 e_{1}^{2} e_{2}^{2} c_{66} \\
& +2 e_{1}^{2} e_{2}^{2} c_{12}+2 e_{1}^{2} e_{3}^{2} c_{13}+2 e_{2}^{2} e_{3}^{2} c_{23} \\
& +4 e_{1}^{3} e_{3} c_{15}+4 e_{1}^{3} e_{2} c_{16}+4 e_{1} e_{2}^{3} c_{26} \\
& +4 e_{2}^{3} e_{3} c_{24}+4 e_{2} e_{3}^{3} c_{34}+4 e_{1} e_{3}^{3} c_{35} \\
& +4 e_{1}^{2} e_{2} e_{3} c_{14}+4 e_{1} e_{2}^{2} e_{3} c_{25}+4 e_{1} e_{2} e_{3}^{2} c_{36} \\
& +8 e_{1} e_{2} e_{3}^{2} c_{45}+8 e_{1} e_{2}^{2} e_{3} c_{46}+8 e_{1}^{2} e_{2} e_{3} c_{56} \tag{25}
\end{align*}
$$

Now, since

$$
\begin{equation*}
\rho^{0}=\frac{\lambda^{0}+2 \mu^{0}}{a_{0}^{2}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{11}^{0}=\rho^{0} a_{0}^{2} \tag{27}
\end{equation*}
$$

equation (24) can be rewritten as

$$
\begin{equation*}
\left.\hat{u}_{i}^{s c}(\underline{x}, t)=\frac{e_{i}}{4 \pi a_{0}^{3} x}\left[\frac{\rho}{\rho}_{\rho^{0}}^{B}+\frac{e_{x} e_{1} e_{m} e_{n} c_{k i n n}^{B}}{c_{11}^{0}}-2\right]\right) \int_{B}\left(\ddot{\gamma}\left(t^{\prime}-\frac{2 e^{e} \underline{y}+\beta}{a_{0}}\right) d v_{y}\right. \tag{28}
\end{equation*}
$$

Equations (25) and (28) together give the backscattered dilatation wave amplitude from any homogeneous anisotropic scatterer in the first Born approximation. This result has the same form as that obtained for a void [7], i.e.e the backscattered dilatation wave amplitude is proportional to

$$
\begin{equation*}
\phi^{s c}\left(t^{\prime}\right) \equiv \iint_{B} \ddot{Y}\left(t^{\prime}-\frac{2 e \cdot y+\beta}{a_{0}}\right) d v_{y} \tag{29}
\end{equation*}
$$

It is shown in [7] that performing the integration results in

$$
\phi^{s c}\left(t^{\prime}\right)=\frac{a_{0}}{2} \int_{0}^{t^{\prime}} \ddot{y}\left(t^{\prime}-\tau\right) A(\tau) d \tau
$$

Or

$$
\begin{equation*}
\phi^{s c}\left(t^{\prime}\right)=\frac{a_{0}}{2} \int_{0}^{t^{\prime}} \gamma\left(t^{\prime}-\tau\right) \ddot{A}(\tau) d \tau \tag{30b}
\end{equation*}
$$

for both $\gamma(t) \in c^{(2)}(-\infty, \infty)$ and $A(t) \& c^{(2)}(-\infty, \infty)$, where equation (30a) is obtained for $\dot{\gamma}(0)=0$ and (30b) for $A(0)=0$. To obtain these results, a coordinate system has been introduced with the 2 axis parallel to and the time τ is defined by

$$
\begin{equation*}
\tau=\frac{\beta+2 z}{a_{0}} \tag{31}
\end{equation*}
$$

Note that $\tau\left(z_{m i n}\right)=0$ so that

$$
\begin{equation*}
\beta=-2 z_{\min } \tag{32}
\end{equation*}
$$

The function $A(T)$ is a function which describes the scatterer's cross-sectional area as a function of twice the one-way transit time of the plane wave passing through the scatterer. The dependence of $A(\tau)$ upon twice the travel time makes sense physically, since the backscattered portion of a pulse which travels some distance into the scatterer must also traverse the same distance back through the scatterer.

By combining equations (28) and (29), the scattered displacement field can be expressed as

$$
\begin{equation*}
\hat{u}_{i}^{s c}(\underline{x}, t)=\frac{e_{i}}{4 \pi a_{0}^{3} x} M \phi^{s c}(t) \tag{33}
\end{equation*}
$$

where the material-dependent amplitude M is defined as

$$
\begin{align*}
& M \equiv \frac{\rho^{B}}{\rho^{0}}+\frac{e_{k} e_{1} e_{m} e_{n} C_{k i m y}^{B}}{c_{I I}^{0}}-2 \tag{34}\\
& \text { It is instructive to consider a homogeneous isotropic }
\end{align*}
$$

inclusion B in order to obtain Misotropic in terms of familiar engineering quantities. It is convenient to define

$$
\begin{align*}
& \lambda^{B} \equiv \lambda^{0}+\Delta \lambda \tag{35}\\
& \mu^{B} \equiv \mu^{0}+\Delta \mu \tag{36}
\end{align*}
$$

$$
\begin{equation*}
E^{B} \equiv E^{0}+\Delta E \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\nu^{B} \equiv V^{0}+\Delta \nu \tag{38}
\end{equation*}
$$

where E and ν are Young's modulus and poisson's ratio, respectively. Substitution in (34) of an equation for $c_{i j k i}$, analagous to equation (2) for isotropic media, leads to

$$
\begin{equation*}
M_{i s o t r o p i c}=\frac{\rho^{B}}{\rho^{0}}+\frac{C_{11}^{B}}{C_{11}^{0}}-2 \tag{39}
\end{equation*}
$$

Note that this expression reduces to the result obtainei in [7] for scatering from a void, namely

$$
\begin{equation*}
M_{\text {void }}=-2 \tag{40}
\end{equation*}
$$

Equation (39) is alternately expressedinterms of end V as

$$
\begin{equation*}
M_{\text {isotropic }}=\frac{\rho^{B}}{\rho^{0}}+\frac{E^{B}\left(1-\nu^{B}\right)\left(1+\nu^{0}\right)\left(1-2 \nu^{0}\right)}{E^{0}\left(1-\nu^{0}\right)\left(1+\nu^{3}\right)\left(1-2 \nu^{B}\right)}-2 \tag{41}
\end{equation*}
$$

which is linear in ΔE and $\Delta \nu$.

```
Consider the ratio in (41)
```

$$
\begin{equation*}
R_{\nu} \equiv \frac{\left(1-\nu^{8}\right)\left(1+\nu^{0}\right)\left(1-2 \nu^{0}\right)}{\left(1-\nu^{0}\right)\left(1+\nu^{8}\right)\left(1-2 \nu^{3}\right)} \tag{42}
\end{equation*}
$$

Substituting for ν^{B} from (38) and expanding yields

$$
\begin{equation*}
R_{\nu}=\left(\frac{1-\nu^{0}-\Delta \nu}{1-\nu^{0}}\right)\left(\frac{1}{1+\frac{\Delta \nu}{1+\nu^{0}}}\right)\left(\frac{1}{1-\frac{2 \Delta \nu}{1-2 \nu^{0}}}\right) \tag{43}
\end{equation*}
$$

If $\Delta \nu$ satisfies

$$
|\Delta \nu| \ll \begin{cases}\left|1+\nu^{\circ}\right|, & -1<\nu^{\circ}<-1 / 4 \tag{44}\\ \left|\frac{1}{2}-\nu^{\circ}\right|, & -1 / 4<\nu^{\circ}<1 / 2\end{cases}
$$

then R_{ν} can be approximated by keeping the first two terms in the geometric series for the last two factors in (43)

$$
\begin{equation*}
R_{\nu} \approx 1+\frac{2 \nu^{0}\left(2-\nu^{0}\right)}{\left(1-\nu^{2}\right)\left(1-2 \nu^{0}\right)} \Delta \nu \tag{45}
\end{equation*}
$$

Thus, M is also linear in $\Delta \nu$ for small $\Delta \nu$.

The possibility of a scatterer appearing "transparent" to a plane dilatation pulse in the first Born approximation is suggested by equations (34) and (39). By setting M=0, one form of the "transparency condition" for an isotropic scatterer is obtained from (41) as

$$
\frac{\rho^{B} E^{B}}{\rho^{0} E^{0}}=\frac{\left(1-\nu^{0}\right)\left(1+\nu^{B}\right)\left(1-2 \nu^{B}\right)}{\left(1-\nu^{B}\right)\left(1+\nu^{0}\right)\left(1-2 \nu^{0}\right)} \frac{\rho^{B}}{\rho^{0}}\left[2-\frac{\rho^{3}}{\rho^{0}}\right]
$$

III. Scattering from Spheres and Cylinders

The results of the previous chapter for a scaterer of arbitrary shape are applied to spheres and cylinders. First, the cross-sectional areas of the scatterers as a function of time are determined. A model for the amplitude of an incident displacement pulse as a function of time is then introduced. The form chosen for the pulse is not only mathematically attractive, it also closely models the pulse which is produced by physical transducers. With the area and pulse functions determined, $\phi^{s c}(t)$ is evaluated according to equation (30a) for spherical and cylindricalinclusions of arbitrary isotropic linear elastic constants. The analytic character of these solutions is investigated, followed by a look at scattering in the long wavelength limit.

Cross-sectional scattering areas

Consider a plane dilatation wave pulse traveling in the positive z direction and incident upon apherical scatterer B, of radius s, as shown in figure 2 a. The crossesectional area $\hat{A}_{g}(z)$ "seen" by the wave is the area of the family of circles subtended by the plane on the sphere

$$
\hat{A}_{s}(z)= \begin{cases}\pi\left(s^{2}-z^{2}\right), & -s \leq z \leq s \tag{47}\\ 0 & , \text { otherwise }\end{cases}
$$

Recalifing equations (5) and $\langle 31\rangle$ for β and τ, the area $A_{s}(\tau)$

Figure 2. Plane wave interaction with a sphere

$$
A_{s}(\tau)= \begin{cases}\frac{\pi}{4} a_{0}^{2}\left(\frac{4 s}{a_{0}} \tau-\tau^{2}\right), & 0 \leq \tau \leq \frac{45}{a_{0}} \tag{48}\\ 0 & , \text { otherwise }\end{cases}
$$

$A_{s}(\tau)$ is parabolic as illustrated in Figure $2 b$.

Now, consider a dilatation wave pulse incident äに̄̆ a cylinder, where the vector e^{i} is perpendicular to the axis of symmetry of the cylinder, as shown in figure 3a. If the radius of the cylinder is c, and the length of the cylinder over which the wave can be approximated by a plane wave is L, then the cross-sectional area is the family of rectangles described by

$$
\hat{A}_{c}(z)= \begin{cases}2 L \sqrt{c^{2}-z^{2}} & ,-c \leq z \leq c \tag{49}\\ 0 & , \text { otherwise }\end{cases}
$$

OX

$$
A_{c}(\tau)= \begin{cases}L a_{0} \sqrt{\frac{4 C}{a_{0}} \tau-\tau^{2}} & , 0 \leq \tau \leq \frac{4 c}{a_{0}} \tag{50}\\ 0 & , \text { otherwise }\end{cases}
$$

which describes half of an ellipse, as illustrated in figure 3 b .

Since $\phi^{8 c}(t)$ is given in equation (30a) as a convolution of a pulse amplitude function with $A(T)$, Figures $2 b$ and

a.

Figure 3. Plane wave interaction with a cylinder
$3 b$ suggest (by conaidering graphical convolution) that, perhaps, spheres and cylinders will give similar scattered time waveforms. Thistopicis congideredin the section on long wavelength scatering. However, the finite slope of the sphere's area function at $\tau=0$ and $\tau=\frac{4 s}{a_{0}}$ compared to the infinite slope of the cylinder area fuction at the corresponding points will be shown to give characteristically different scatered responses when the long wavelength limit is not valid. Note that it is precisely the infinite slope $\dot{A}_{c}(0)$ which requires the use of equation (30a) instead of (30b) to obtain $\phi^{s C}(t)$ for the cylinder.

```
It will prove convenient, in what follows, to introduce
```

a normalized time

$$
\begin{equation*}
t^{\prime}=\frac{t}{2 b} \tag{51}
\end{equation*}
$$

where

$$
b= \begin{cases}\frac{2 s}{a_{0}} & , \text { sphere } \tag{52}\\ \frac{2 c}{a_{0}} & , \text { cylinder }\end{cases}
$$

This allows the incident pulse to be characterized in terms of the width of the scatterers' cross-sectional area time functions. Note that $2 b i s$ the time it takes the wave to
completely traverse the scatterer in the incident direction and again in the backscattered direction.

Using (51) and (52) in (48) and (50), the normalized
area functions are

$$
\tilde{A}_{s}\left(\tau^{\prime}\right)= \begin{cases}\pi a_{0}^{2} b^{2}\left(\tau^{\prime}-\tau^{\prime 2}\right), & 0 \leq \tau^{\prime} \leq 1 \tag{53}\\ 0 & , \text { otherwise }\end{cases}
$$

and

$$
\tilde{A}_{c}\left(\tau^{\prime}\right)= \begin{cases}2 b L a_{0} \sqrt{\tau^{\prime}-\tau^{\prime 2}} & , 0 \leq \tau^{\prime} \leq 1 \tag{54}\\ 0 & , \text { otherwise }\end{cases}
$$

Incident pulse model

A mathematically tractable and physically representfive model of the incident plane dilatation pulse is given 28

$$
Y(t)= \begin{cases}t e^{-8^{t}} \sin \omega t & t>0 \tag{55}\\ 0 & , t \leq 0\end{cases}
$$

where w is the center frequency of the pulse. The factor of t is used to obtain $\gamma(0)=0$ for use of equation (30a). Differentiating twice with respect to time

$$
\ddot{\gamma}(t)= \begin{cases}\left(q^{2}-\omega^{2}\right) t e^{-8 t} \sin \omega t-2 q \omega t e^{-g t} \cos \omega t \tag{56}\\ -2 g e^{-\gamma t} \sin \omega t+2 \omega e^{--\delta t} \cos \omega t & , t>0 \\ 0 & , t \leqslant 0\end{cases}
$$

Using (51) and (52) in (55) and (56), the normalized incident pulse amplitude functions are

$$
\tilde{\gamma}\left(t^{\prime}\right)= \begin{cases}2 b t^{\prime} e^{-2 b g t^{\prime}} \sin \omega^{\prime} t^{\prime} & , t^{\prime}>0 \tag{57}\\ 0 & , t^{\prime} \leq 0\end{cases}
$$

and

$$
\ddot{\tilde{\gamma}}\left(t^{\prime}\right)= \begin{cases}2 b\left(q^{2}-\omega^{2}\right) t^{\prime} e^{-2 b} t^{\prime} & \sin \omega^{\prime} t^{\prime}-4 b q \omega t^{\prime} e^{-2 b} g^{t^{\prime}} \cos \omega^{\prime} t^{\prime} \\ -2 q e^{-2 b} t^{\prime} \sin \omega^{\prime} t^{\prime}+2 \omega e^{-2 b g t^{\prime}} \cos \omega^{\prime} t^{\prime} & t^{\prime}>0 \\ 0 & , t^{\prime} \leq 0\end{cases}
$$

(58)

$$
\begin{equation*}
\omega^{\prime}=2 b \omega \tag{59}
\end{equation*}
$$

is the normalized radian frequency. In terms of the period $T=\frac{2}{\omega} \pi$.
gives the period of the pulse relative to the time width of the scatterers' area functions.

It is revealing to put this time domain pulse normalization in the ferspective of the frequency domain wavenumber normalization ka employed throughout the literature, where a is the characteristic dimension of the scatterer, and $k=\frac{\omega}{a_{0}}$ is the wavenumber. If a corresponds to either radius, s or c. and recalling (52) and (60) for b and $\mathrm{T}^{\prime \prime}$,

$$
\begin{equation*}
k a=\frac{\pi}{2 T^{\circ}} \tag{61}
\end{equation*}
$$

Solution for the sphere

With all the pieces now available, the normalized solution for the backscattered amplitude function $\tilde{\phi}_{8}^{c}\left(t^{\prime}\right)$ for scattering from aphere may be obtained. Either form of

For the form given by (30 b$)$, the required second derivative of the area function is

$$
\ddot{\ddot{A}}_{s}\left(\tau^{\prime}\right)= \begin{cases}\pi a_{0}^{2} b^{2}\left[\delta\left(\tau^{\prime}\right)-2-\delta\left(\tau^{\prime}-1\right)\right] & 0 \leq \tau^{\prime} \leq 1 \tag{62}\\ 0 & , \text { otherwise }\end{cases}
$$

The delta functions greatly simplify the convolution with the incident field in (30b) and only the convolution with the constant ($\mathbf{- 2)}$ must be worked out in detail. The situlaLion is not so pleasant for the cylinder and equation (zoa) is required due to the singular behaviour of $\dot{\mathbf{A}}_{c}\left(\tau^{\prime}\right)$ at $\tau^{\prime}=0$ and at $\tau^{\prime}=1$. In order to provide a unified treatment of scattering from both objects, the form of (30a) is chosen, obtaining the solution in terms of the area function convalved with second derivative of the incident pulse.

Substituting equations (53) and (58) into (30a) produces

$$
\begin{gather*}
\tilde{\phi}_{s}^{s c}\left(t^{\prime}\right)=2 \pi a_{0}^{3} b^{3} \int_{0}^{\alpha}\left\{b\left(q^{2}-\omega^{2}\right)\left(t^{\prime}-\tau^{\prime}\right) e^{-2 b g\left(t^{\prime}-\tau^{\prime}\right)} \sin \omega^{\prime}\left(t^{\prime}-\tau^{\prime}\right)\right. \\
-2 b \rho \omega\left(t^{\prime}-\tau^{\prime}\right) e^{-2 b g\left(t^{\prime}-\tau^{\prime}\right)} \cos \omega^{\prime}\left(t^{\prime}-\tau^{\prime}\right) \\
- \\
\left.-q e^{-2 b g\left(t^{\prime}-\tau^{\prime}\right)} \sin \omega^{\prime}\left(t^{\prime}-\tau^{\prime}\right)+\omega e^{-2 b}\left(t^{\prime}-\tau^{\prime}\right) \cos \omega^{\prime}\left(t^{\prime}-\tau^{\prime}\right)\right\} \tag{63}\\
\left.x\left\{\tau^{\prime}-\tau^{\prime 2}\right\} d \tau^{\prime}\right\}
\end{gather*}
$$

where dr = $2 b d t^{\prime}$ is employed, and

$$
\alpha= \begin{cases}t^{\prime} & , \quad 0 \leq t^{\prime} \leq 1 \tag{64}\\ 1 & , \quad t^{\prime}>1\end{cases}
$$

which limits the integration to that portion of the pulse which is encountered by the wave at time t'. Introducing the complex exponent

$$
\begin{equation*}
k^{ \pm}=2 b g \pm i \omega^{\prime} \tag{65}
\end{equation*}
$$

and using Euler's formulae for the sine and cosine fundtions, equation (62) is expanded and rearranged to obtain

$$
\begin{align*}
\frac{\hat{\phi}^{s c}\left(t^{\prime}\right)}{2 \pi a_{0}^{3} b^{2}}= & -i\left\{A^{*}\left(t^{\prime}\right)-B^{*}\left(t^{\prime}\right)\right\} \int_{0}^{\alpha} \tau^{\prime} e^{k^{-} \tau^{\prime}} d \tau^{\prime} \\
& +i\left\{A\left(t^{\prime}\right)-B\left(t^{\prime}\right)\right\} \int_{0}^{\alpha} \tau^{\prime} e^{k^{+} \tau^{\prime}} d \tau^{\prime} \\
& +i\left\{A^{*}\left(t^{\prime}\right)\left[t^{\prime}+1\right]-B^{*}\left(t^{\prime}\right)\right\} \int_{0}^{\alpha} \tau^{\prime 2} e^{k^{\prime} \tau^{\prime}} d \tau^{\prime} \\
& -i\left\{A\left(t^{\prime}\right)\left[t^{\prime}+1\right]-B\left(t^{\prime}\right)\right\} \int_{0}^{\alpha} \tau^{\prime 2} e^{k^{*} \tau^{\prime}} d \tau^{\prime} \\
& -i A^{*}\left(t^{\prime}\right) \int_{0}^{\alpha} \tau^{\prime 3} e^{k^{-} \tau^{\prime}} d \tau^{\prime} \\
& +i A\left(t^{\prime}\right) \int_{0}^{\alpha} \tau^{\prime^{3}} e^{k^{+} \tau^{\prime}} d \tau^{\prime} \quad \tag{66}
\end{align*}
$$

where

$$
\begin{equation*}
A\left(t^{\prime}\right) \equiv\left[\frac{b^{2}\left(q^{2}-\omega^{2}\right)}{2}+i b^{2} q \omega\right] e^{-k^{+} t^{\prime}} \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(t^{\prime}\right) \equiv\left[\frac{b g}{2}+i \frac{b \omega}{2}\right] e^{-k^{+} t^{\prime}} \tag{68}
\end{equation*}
$$

The asterisk denotes complex conjugation and $i=\sqrt{-1}$. The
integrals in (66) are easily handled by defining

$$
C_{j}(\alpha) \equiv \int_{0}^{\alpha} \tau^{\prime j} e^{k^{+} \tau^{\prime}} d \tau^{\prime}
$$

Integration of (69) by parts leads to the recursion relation

$$
C_{j}(\alpha)=\frac{\alpha^{j} e^{k^{+} \alpha}}{k^{+}}-\frac{j}{k^{+}} C_{j-1}(\alpha)
$$

which is particularly useful, since $C_{f}(d)$ is readily evaluated. Note also that

$$
\begin{equation*}
C_{j}^{*}(\alpha)=\int_{0}^{\alpha} i^{j} e^{k^{-} \tau^{\prime}} d \tau^{\prime} \tag{71}
\end{equation*}
$$

$$
\begin{aligned}
\frac{\tilde{\phi}_{s}^{s c}\left(t^{\prime}\right)}{2 \pi a_{0}^{3} b^{2}}= & i\left[A\left(t^{\prime}\right) C_{1}(\alpha)-A^{*}\left(t^{\prime}\right) C_{1}^{*}(\alpha)\right] t^{\prime} \\
& -i\left[B\left(t^{\prime}\right) C_{1}(\alpha)-B^{*}\left(t^{\prime}\right) C_{1}^{*}(\alpha)\right] \\
& -i\left[A\left(t^{\prime}\right) C_{2}(\alpha)-A^{*}\left(t^{\prime}\right) C_{2}^{*}(\alpha)\right]\left[t^{\prime}+1\right] \\
& +i\left[B\left(t^{\prime}\right) C_{2}(\alpha)-B^{*}\left(t^{\prime}\right) C_{2}^{*}(\alpha)\right] \\
& +i\left[A\left(t^{\prime}\right) C_{3}(\alpha)-A^{*}\left(t^{\prime}\right) C_{3}^{*}(\alpha)\right], t^{\prime}>0
\end{aligned}
$$

If $\operatorname{Im}(\cdot)$ denotes the imaginary part of a quantity, the backscattered wave amplitude from sphere is finally obtained as

$$
\begin{align*}
\frac{\tilde{\phi}_{s}^{s c}\left(t^{\prime}\right)}{2 \pi a_{0}^{3} b^{2}}-2 & \left\{I_{m}\left[A\left(t^{\prime}\right) C_{1}(\alpha)\right] t^{\prime}\right. \\
& -\operatorname{Im}\left[B\left(t^{\prime}\right) C_{1}(\alpha)\right] \\
& -\operatorname{Im}\left[A\left(t^{\prime}\right) C_{2}(\alpha)\right]\left[t^{\prime}+1\right] \\
& +\operatorname{Im}\left[B\left(t^{\prime}\right) C_{2}(\alpha)\right] \\
& \left.+I_{m}\left[A\left(t^{\prime}\right) C_{3}(\alpha)\right]\right\} \quad, \quad t^{\prime}>0 \tag{73}
\end{align*}
$$

where, recall, α equals t^{\prime} or 1 according to equation (64).

While equation (73) is not particularly revealing, it is a beautifully simple result that is, together with (69) and (70), quite amenable to numerical evaluation. It is easy enough to observe from (67) through (70) and (73) that $\tilde{\phi}_{s}^{c}\left(t^{\prime}\right)$ has the same center frequency as $\tilde{\chi}\left(t^{\prime}\right)$ and falls off as t'e ${ }^{-2 b q t^{\prime}}$ for large t^{\prime}.

By a similar development as that for the sphere, $\tilde{\phi}_{c}^{s c}\left(t^{\prime}\right)$ is obtained for the cylinder by substituting equalLions (54) and (58) into (30a) producing, upon rearrangement

$$
\begin{align*}
& \frac{\tilde{\phi}_{c}^{s c}\left(t^{\prime}\right)}{4 L a_{0}^{2} b}=\left\{\left[b^{2}\left(q^{2}-\omega^{2}\right) t^{\prime}-b q\right] \sin \omega^{\prime} t^{\prime}-\left[2 b^{2} q t^{\prime}-b\right] \omega \cos \omega^{\prime} t^{\prime}\right\} e^{-2 b g t^{\prime}} \\
& x \int_{0}^{\alpha} e^{+2 b} q^{\tau^{\prime}} \sqrt{\tau^{\prime}-\tau^{\prime 2}} \cos \omega^{\prime} \tau^{\prime} d \tau^{\prime} \\
& -\left\{\left[b^{2}\left(q^{2}-\omega^{2}\right) t^{\prime}-b q\right] \cos \omega^{\prime} t^{\prime}+\left[2 b^{2} q t^{\prime}-b\right] \omega \sin \omega^{\prime} t^{\prime}\right\} e^{-2 b} q t^{\prime} \\
& x \int_{0}^{\alpha} e^{+2 b} \tau^{\prime} \sqrt{\tau^{\prime}-\tau^{\prime 2}} \sin \omega^{\prime} \tau^{\prime} d \tau^{\prime} \\
& -\left\{b^{2}\left(q^{2}-\omega^{2}\right) \sin \omega^{\prime} t^{\prime}-2 b^{2} q \omega \cos \omega^{\prime} t^{\prime}\right\} e^{-2 b_{q} t^{\prime}} \\
& x \int_{0}^{\alpha} e^{+2 b} \sigma^{\tau^{\prime}} \tau^{\prime} \sqrt{\tau^{\prime}-\tau^{\prime 2}} \cos \omega^{\prime} \tau^{\prime} d \tau^{\prime} \\
& f\left\{b^{2}\left(q^{2}-\omega^{2}\right) \cos \omega^{\prime} t^{\prime}+2 b^{2} q \omega \sin \omega^{\prime} t^{\prime}\right\} e^{-2 b} t^{\prime} \\
& x \int_{0}^{\alpha} e^{+2 b q \tau^{\prime}} \tau^{\prime} \sqrt{\tau^{\prime}-\tau^{\prime 2}} \sin \omega^{\prime} \tau^{\prime} d \tau^{\prime}, t^{\prime}>0 \tag{74}
\end{align*}
$$

where, again $\alpha=t$ or 1 according to equation (64). The integrals in (74) lead to a solution for $\boldsymbol{\phi}_{\mathrm{c}}^{\mathrm{s}}(\mathrm{t} \boldsymbol{\prime}$) which is not as straightforward as $\hat{\phi}_{s}^{s}\left(t^{\prime}\right)$ obtained for the sphere.

Consider the integral

$$
\begin{equation*}
\tilde{I}_{1}\left(t^{\prime}\right) \equiv \int_{0}^{t^{\prime}} e^{2 b g \tau^{\prime}} \sqrt{\tau^{\prime}}\left(1-\tau^{\prime}\right)^{1 / 2} \cos \omega^{\prime} \tau^{\prime} d \tau^{\prime} \tag{75}
\end{equation*}
$$

Expansion of the radical in a binomial series gives

$$
\begin{equation*}
\tilde{I}_{1}\left(t^{\prime}\right)=\int_{0}^{t^{\prime}}\left[e^{2 b q \tau^{\prime}} \sqrt{\tau^{\prime}} \cos \omega^{\prime} \tau^{\prime} \sum_{j=0}^{\infty}(-1)^{j}\binom{1 / 2}{j} \tau^{j}\right] d \tau^{\prime} \tag{76}
\end{equation*}
$$

provided $0 \leq t^{\prime}<1$, Now, since the series is uniformly convergent within the interval, the summation and integration may be interchanged to obtain

$$
\begin{equation*}
\tilde{I}_{1}\left(t^{\prime}\right)=\sum_{j=0}^{\infty}(-1)^{j}\binom{1 / 2}{j} \Lambda_{j}^{c}\left(t^{\prime}\right) \tag{77}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{j}^{c}\left(t^{\prime}\right) \equiv \int_{0}^{t^{\prime}} \tau^{\prime \prime 2} 2+j e^{2 b_{g} \tau^{\prime}} \cos \omega^{\prime} \tau^{\prime} d \tau^{\prime} \tag{78}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\tilde{I}_{2}\left(t^{\prime}\right) \equiv \int_{0}^{t^{\prime}} e^{2 b} z^{\prime} \sqrt{\tau^{\prime}}\left(1-\tau^{\prime}\right)^{1 / 2} \sin \omega^{\prime} \tau^{\prime} d \tau^{\prime} \tag{79}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\tilde{I}_{2}\left(t^{\prime}\right)=\sum_{j=0}^{\infty}(-1)^{j}\binom{1 / 2}{j} \Lambda_{j}^{s}\left(t^{\prime}\right) \tag{80}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{j}^{s}\left(t^{\prime}\right) \equiv \int_{0}^{t^{\prime}} \tau^{\prime \prime / 2+j} e^{2 b g \tau^{\prime}} \sin \omega^{\prime} \tau^{\prime} d \tau^{\prime} \tag{81}
\end{equation*}
$$

The functions $\Lambda_{j}^{c}\left(t^{\prime}\right)$ and $\Lambda_{j}^{s}\left(t^{\prime}\right)$ lend themselves to recursion relations which make them computationally attractive. Integrating (78) and (81) by parts yields

$$
\begin{align*}
\Lambda_{j}^{c}\left(t^{\prime}\right)= & \frac{t^{1^{\prime} / 2+j} e^{2 b g t^{\prime}}}{(2 b q)^{2}+\omega^{\prime 2}}\left[2 b g \cos \omega^{\prime} t^{\prime}+\omega^{\prime} \sin \omega^{\prime} t^{\prime}\right] \\
& -\frac{\left(\frac{1}{2}+j\right) 2 b g}{(2 b g)^{2}+\omega^{\prime 2}} \Lambda_{j-1}^{c}\left(t^{\prime}\right)-\frac{\frac{1}{2}+j}{(2 b q)^{2}+\omega^{\prime 2}} \Lambda_{j-1}^{s}\left(t^{\prime}\right) \tag{82a}
\end{align*}
$$

and

$$
\begin{aligned}
\Lambda_{-j}^{s}\left(t^{\prime}\right) & =\frac{t^{1 / 2+j} e^{2 b g} t^{\prime}}{(2 b g)^{2}+\omega^{\prime 2}}\left[2 b g \sin \omega^{\prime} t^{\prime}-\omega^{\prime} \cos \omega^{\prime} t^{\prime}\right] \\
& -\frac{\left(\frac{1}{2}+j\right) 2 b \delta}{(2 b g)^{2}+\omega^{\prime 2}} \Lambda_{j-1}^{s}\left(t^{\prime}\right)-\frac{\frac{1}{2}+j}{(2 b g)^{2}+w^{\prime 2}} \Lambda_{i-1}^{c}\left(t^{\prime}\right)
\end{aligned}
$$

(82b)

The appearance of the recursion index j in the numerators of the forward recursion relations (82) is not desirable since truncation errors introduced in the numerical evaluation of the functions will be amplified as j gets large. A numerically stable evaluation scheme results from manipulation of (82) which leads to the reverse recursion relations

$$
\begin{align*}
& \Lambda_{j}^{c}\left(t^{\prime}\right)=\frac{1}{\frac{3}{2}+j}\left[t^{\prime 3 / 2+j} e^{2 b} t^{\prime} \cos ^{\prime} t^{\prime}+\omega^{\prime} \Lambda_{j+1}^{s}\left(t^{\prime}\right)-2 b \mu_{j+1}^{c}\left(t^{\prime}\right)\right](83 a) \\
& \Lambda_{j}^{3}\left(t^{\prime}\right)=\frac{1}{\frac{3}{2}+j}\left[t^{\prime 3 / 2 t j} e^{2 b g t^{\prime}} \sin \omega^{\prime} t^{\prime}+\omega^{\prime} \Lambda_{j+1}^{c}\left(t^{\prime}\right)-2 b g \Lambda_{j+1}^{s}\left(t^{\prime}\right)\right](83 b) \tag{83b}
\end{align*}
$$

Note that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \Lambda_{j}^{c}\left(t^{\prime}\right)=\lim _{j \rightarrow \infty} \Lambda_{j}^{s}\left(t^{\prime}\right)=0 \tag{84}
\end{equation*}
$$

which is easily seen by considering (78) and (81) remembering that $0 \leq t^{*}<1$.

Because of (84), the reverse recursion relations are also convenient in that an exact expression is not needed for one of the recurring functions in order to start the recursion. For large j.

$$
\begin{equation*}
\Lambda_{\mathrm{j}} \approx \Lambda_{\mathrm{j}-1}, \quad, \quad \rightarrow \infty \tag{85}
\end{equation*}
$$

So, by substituting $\Lambda_{j-1}\left(t^{\prime}\right)$ for $\Lambda_{j}\left(t^{\prime}\right)$ in (82), the recursion relations are started for $j \rightarrow \infty$ by

(86a)
and
$\Lambda_{j}^{c} \sim \frac{t^{3 / 2+j} e^{2 b g t^{\prime}} \cos 0^{\prime} t^{\prime}+\omega^{\prime} \Lambda^{3} j^{\prime}\left(t^{\prime}\right)}{3 / 2+j+2 b q} \quad, \quad j \rightarrow \infty \quad$ ($86 b$)

It would be nice to, somehow, insure that the functions are being generated correctly as j is decreased from its starting value to zero. A great deal of confidence could be placed in the scheme if the final recursions to $\Lambda_{0}^{s}\left(t^{\prime}\right)$ and $\Lambda_{0}^{c}(t \cdot)$ matched a known correct" answer to within some desired degree of accuracy. Surprisingly enough, the zeroth integrals can be evaluated in closed form. This requires a momentary diversion to consider the integral

$$
\begin{equation*}
I \equiv \int_{0}^{t} e^{k s} s^{1 / 2} d s \tag{87}
\end{equation*}
$$

Making the substitution $s=u^{2}$

$$
\begin{equation*}
I=2 \int_{0}^{\sqrt{t}} u^{2} e^{k w^{2}} d u \tag{88}
\end{equation*}
$$

$$
\begin{equation*}
I=\frac{d}{d k}\left[2 \int_{0}^{\sqrt{t}} e^{k u^{2}} d u\right] \tag{89}
\end{equation*}
$$

Now, let $v^{2}=k u^{2}$. This gives

$$
\begin{equation*}
I=\frac{d}{d k}\left[\frac{2}{\sqrt{k}} \int_{0}^{\sqrt{k t}} e^{v^{2}} d v\right] \tag{90}
\end{equation*}
$$

Furthermore, the substitution $v=i n$, where $i=\sqrt{-1}$, renders

$$
\begin{equation*}
I=\frac{d}{d k}\left[\frac{2 i}{\sqrt{k t}} \int_{0}^{-i \sqrt{k t}} e^{-\eta^{2}} d \eta\right] \tag{91}
\end{equation*}
$$

which is recognized to contain a form [10:297] of the complea error function

$$
\begin{equation*}
I=\frac{d}{d k}\left[-i \sqrt{\frac{\pi}{k}} \operatorname{erf}(i \sqrt{k t})\right] \tag{92}
\end{equation*}
$$

Performing the indicated differentiation [10:298]

$$
\begin{equation*}
I=\frac{\sqrt{t}}{k} e^{k t}+i \sqrt{\frac{\pi}{4 k^{3}}} \operatorname{erf}(i \sqrt{k t}) \tag{93}
\end{equation*}
$$

Back to evaluating $\Lambda_{0}^{B}\left(t^{\prime}\right)$ and $\Lambda_{0}^{C}\left(t^{\prime}\right)$. Euler's formulae
for the sine and cosine functions in (78) and (81), and an application of (93) to both yield

$$
\begin{aligned}
& \Lambda_{0}^{c}(t)=\frac{\sqrt{t} e^{a b} t^{2}}{\left(2 b_{0} b^{2}+\omega^{2}\right.}\left[2 b_{8} \cos s t^{t}+\omega \sin \omega^{t} t\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda_{0}^{s}\left(t^{\prime}\right)= & \frac{\sqrt{t^{2}} e^{2 b g t^{\prime}}}{(2 g)^{2}+\omega^{\prime 2}}\left[2 b g \sin \omega^{\prime} t^{\prime}-\omega \cos \omega^{\prime} t^{\prime}\right] \\
& +\frac{\sqrt{\pi}}{4}\left[\frac{\operatorname{cr} f\left(\sqrt{k^{+}+t}\right)}{\left(k^{3}\right)^{3 / 2}}+\frac{\operatorname{erf} f(\sqrt{k-t})}{\left(k^{-}\right)^{3 / 2}}\right]
\end{aligned}
$$

where, as before $x^{ \pm}=2 b q \pm i \omega$. Equations (74), (78), and (81) can now be combined to give the solution valid for $0 \leq t<1,1 . e$ when the front edge of the pulse is within the scatterer. The result is

$$
\begin{aligned}
& \frac{\tilde{\phi}_{c}^{s c}\left(t^{\prime}\right)}{4 L a_{0}^{2} b}=e^{2 b g t^{\prime}} \sum_{j=0}^{\infty}(-1)^{j}\binom{1 / 2}{j}\left[A_{1}\left(t^{\prime}\right) \Lambda_{j}^{c}\left(t^{\prime}\right)\right. \\
& \left.-A_{2}\left(t^{\prime}\right) \Lambda_{j}^{s}\left(t^{\prime}\right)-A_{3}\left(t^{\prime}\right) \Lambda_{j+1}^{c}\left(t^{\prime}\right)+A_{4}\left(t^{\prime}\right) \Lambda_{j+1}^{s}\left(t^{\prime}\right)\right] \quad \text { (95) } \\
& \text { Where } \\
& A_{1}\left(t^{\prime}\right)=\left[b^{2}\left(q^{2}-\omega^{2}\right) t^{\prime}-b g\right] \sin \omega^{\prime} t^{\prime}-\left[2 b^{2} q \omega t^{\prime}-b \omega\right] \cos \omega^{\prime} t^{\prime} \quad \text { (96a) } \\
& A_{2}\left(t^{\prime}\right)=\left[b^{2}\left(q^{2}-\omega^{2}\right) t^{\prime}-b g\right] \cos \omega^{\prime} t^{\prime}+\left[2 b^{2} g \omega t^{\prime}-b \omega\right] \sin \omega^{\prime} t^{\prime} \quad \text { (96b) } \\
& A_{3}\left(t^{\prime}\right)=b^{2}\left(q^{2}-\omega^{2}\right) \sin \omega^{\prime} t^{\prime}-2 b^{2} q \omega \cos \omega^{\prime} t^{\prime} \\
& A_{4}\left(t^{\prime}\right)=b^{2}\left(q^{2}-\omega^{2}\right) \cos \omega^{\prime} t^{\prime}+2 b^{2} q \omega \sin \omega^{\prime} t^{\prime} \\
& \text { The functions } \Lambda_{j}^{\prime}\left(t^{\prime}\right) \text { and } \Lambda_{j}^{c}\left(t^{\prime}\right) \text { are started by equation } \\
& 40
\end{aligned}
$$

(86), evaluated by equation (83), and compared to (94) to insure a desired degree of accuracy.

The solution for $t^{\prime} \geq 1$ must still be obtained. Equation (74) for $\tilde{\boldsymbol{q}}_{c}^{s c}\left(t^{\prime}\right)$ is equivalent to form more indicative of the convolution operation (indicated by an asterisk), and thus, amenable to Laplace transform methods. The desired form of $\tilde{\phi}_{c}^{s c}\left(t^{\prime}\right)$ is

$$
\begin{equation*}
\frac{\tilde{\phi}_{c}^{s c}\left(t^{\prime}\right)}{4 L a_{3}^{2} b}=b^{2}\left(q^{2}-\omega^{2}\right) f_{1}\left(t^{\prime}\right)-2 b^{2} q \omega f_{2}\left(t^{\prime}\right)-b q f_{3}\left(t^{\prime}\right)+b \omega f_{4}\left(t^{\prime}\right) \tag{97}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{1}\left(t^{\prime}\right)=\left(t^{\prime} e^{-2 b g t^{\prime}} \sin \omega^{\prime} t^{\prime}\right) * \theta\left(t^{\prime}\right) \\
& f_{2}\left(t^{\prime}\right)=\left(t^{\prime} e^{-2 b g t^{\prime}} \cos \omega^{\prime} t^{\prime}\right) * \theta\left(t^{\prime}\right) \\
& f_{3}\left(t^{\prime}\right)=\left(e^{-2 b} g^{\prime} \sin \omega^{\prime} t^{\prime}\right) * \theta\left(t^{\prime}\right) \\
& f_{4}\left(t^{\prime}\right)=\left(e^{-2 b g t^{\prime}} \cos \omega^{\prime} t^{\prime}\right) * \theta\left(t^{\prime}\right)
\end{align*}
$$

and where

$$
\theta\left(t^{\prime}\right)= \begin{cases}\sqrt{t^{\prime}-t^{\prime 2}} & , 0 \leq t^{\prime} \leq 1 \tag{99}\\ 0 & , \text { otherwise }\end{cases}
$$

If $L[\cdot]$ denotes the one-sided Laplace transform of a guancity, the required transforms are evaluated in terms of the transform variables as

$$
\begin{align*}
& {\left[t e^{-g t} \sin \omega t\right]=\frac{2 \omega(s+q)}{\left[(s+q)^{2}+\omega^{2}\right]^{2}}} \\
& {\left[\left[t e^{-g^{t}} \cos \omega t\right]=\frac{(s+q)^{2}-\omega^{2}}{\left[(s+q)^{2}+\omega^{2}\right]^{2}}\right.} \tag{100b}
\end{align*}
$$

$$
\begin{equation*}
L\left[e^{-g t} \sin \omega t\right]=\frac{\omega}{(s+q)^{2}+\omega^{2}} \tag{100c}
\end{equation*}
$$

$$
\begin{equation*}
\left[e^{-q^{t}} \cos \omega t\right]=\frac{s+g}{(s+q)^{2}+\omega^{2}} \tag{100d}
\end{equation*}
$$

and from \{11:138〕,

$$
\begin{equation*}
\left[\sqrt{t-t^{2}}\right]=\frac{\frac{\pi}{2} e^{-5 / 2} I_{1}(s / 2)}{s} \tag{101}
\end{equation*}
$$

where $I_{\nu}(\cdot)$ is the modified Bessel function of the first kind of order ν. Denoting L[fin $\left.\left(t^{\prime}\right)\right]$ by $F_{i}(s)$, for $i=$ 1,2,3,4, the $F_{i}(s)$ are obtained by the multiplication of the appropriate transforms in (100) by the transform in (101). The $f_{i}\left(t^{\prime}\right)$ are conveniently obtained by summing the residues at the poles of $e^{s t^{\prime}} F_{i}(s)$, which poles are, in all cases,

$$
\begin{equation*}
S_{p}^{ \pm}=-k^{ \pm}=-\left[2 b_{q} \pm i \omega^{\prime}\right] \tag{102}
\end{equation*}
$$

Note that $\frac{I_{1}\left(\frac{s}{2}\right)}{s}$ is an entire function of s and, therefore, $s=0$ is not a pole of the $F_{i}(s)$. Saving the details, the result, valid for $t^{\prime} \geq 1$, is obtained as:

$$
\begin{align*}
\frac{\tilde{\phi}_{c}^{s c}\left(t^{\prime}\right)}{4 L a_{0}^{2} b}= & \frac{\pi}{2}\left\{\left[b q-b^{2}\left(q^{2}-\omega^{2}\right) t^{\prime}\right] I_{m}\left[E\left(t^{\prime}\right)\right]\right. \\
& +b \omega\left(1-2 b g t^{\prime}\right) \operatorname{Re}\left[E\left(t^{\prime}\right)\right] \\
& -b^{2}\left(q^{2}-\omega^{2}\right) I_{m}\left[D\left(t^{\prime}\right)\right] \\
& \left.-2 b^{2} q \omega \operatorname{Re}\left[D\left(t^{\prime}\right)\right]\right\} \quad, t^{\prime} \geqslant 1 \tag{103}
\end{align*}
$$

where

$$
\begin{equation*}
D\left(t^{\prime}\right) \equiv e^{-k^{+}\left(t^{\prime}-\frac{1}{2}\right)}\left\{\frac{2 I_{1}\left(\frac{k^{+}}{2}\right)}{\left(k^{+}\right)^{2}}-\frac{1}{2 k^{+}}\left[I_{1}\left(\frac{k^{+}}{2}\right)+I_{0}\left(\frac{k^{+}}{2}\right)\right]\right\} \tag{104}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(t^{\prime}\right) \equiv e^{-k^{*}\left(t^{-}-\frac{1}{2}\right)} \frac{I_{1}\left(\frac{k^{*}}{2}\right)}{k^{*}} \tag{105}
\end{equation*}
$$

and where Re() denotes the real part of the quantity.

Equations (95) and (103) together give the solution for scattering from a cylinder for allt, including thecritical point where the solutions are pieced together at $t^{\prime}=1$. Again, the form of the solutions is not particularly revealing, however, the same observations as those made for the scattering from the sphere can be made with respect to the scattered center frequency and the form of the solution for larget.

$$
\begin{equation*}
I_{1}\left(\frac{s}{2}\right) \underset{|s| \longrightarrow \infty}{ } \frac{-e^{-s / 2}}{\sqrt{-\pi s}}, \frac{\pi}{2}<\arg (s)<3 \frac{\pi}{2} \tag{107}
\end{equation*}
$$

Thus.

$$
\begin{equation*}
e^{s t^{\prime}} F_{3}(s) \underset{\mid s l \rightarrow \infty}{\approx} \frac{\omega \pi}{2 \sqrt{-\pi s}} \frac{e^{\left(t^{\prime}-1\right) s}}{s\left(s-s p^{+}\right)\left(s-s_{p}^{-}\right)}, \frac{\pi}{2}<\arg (s)<3 \frac{\pi}{2} \tag{108}
\end{equation*}
$$

Since the poles of $e^{s t^{\prime}} F_{3}(s)$ afe in the left half of the complex plane, $e^{s t^{\prime}} F_{3}(s)$ is required to vanish as $|s|->\infty$ in order to sum residues to obtain $f_{3}\left(t^{\prime}\right)$. However, for s in the left half plane (with a negative real part), $\underset{|s| \rightarrow \infty}{\lim } e^{s t^{\prime}} \mathrm{F}_{3}(\mathrm{~s})=\infty$, unless $t^{\prime} \geq 1$, which therefore limits $|s|->\infty$
the Laplace transform solution to the region t' I^{\prime}.

Smoothness of the solutions

The interaction of the incident pulse with scatterers having abrupt onset and terminating boundaries raises questions about the smoothness of the scatered waveforms. Recall, the scattered field's second time derivative must be sufficiently integrable so that equation (14) is satisfied for the first Born approximation to be valid. The solution for the cylinder is particularly suspect due to the infinite slope of the area function $\tilde{A}_{c}\left(\mathbf{T}^{\circ}\right)$ presented to the wave at $\tau^{\prime}=0$ and $\tau^{\prime}=1 . \quad T h u s, \mathcal{\phi}_{c} c_{\left(t^{\prime}\right)}$ is treated herefirst, in the form presented by equations (97) and (98).

By writing out the convolutions as integrals, keeping
the first terms in the expansions for all factors in the integrands, and then performing the integrations, the result obtained is

$$
\begin{equation*}
\frac{\psi_{c}^{s e}\left(t^{\prime}\right)}{4 a_{0}^{2} b} \approx \frac{2 b w}{3}+13 / 2, t^{\prime} \ll 1 \tag{109}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{\dot{\hat{\phi}}_{c}^{s c}\left(t^{\prime}\right)}{4 L a_{0}^{2} b} \approx b \omega t^{\prime / 2} \quad, \quad t^{\prime}<c 1 \tag{array}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\ddot{\phi}_{c}^{3 c}\left(t^{\prime}\right)}{4 L a_{0}^{2} b} \approx \frac{b \omega}{2} t^{1^{-1 / 2}}, t^{\prime} \ll 1 \tag{111}
\end{equation*}
$$

Note that $\dot{\phi}_{c}^{s c}\left(t^{\prime}\right), \dot{\bar{\phi}}_{c} c_{c}\left(t^{\prime}\right)$, and $\ddot{\tilde{\phi}}_{c} c_{c}\left(t^{\prime}\right)$ are all zero if t'<0. Thus, only $\dot{\tilde{\phi}}_{c}^{\mathrm{sc}}\left(\mathrm{t}^{\prime}\right)$ is discontinuous at the onset of scattering, with an infinite discontinuity from a $t^{-1 / 2}$ singularity.

Recall, in the convolutions of (97), the upper limit of integration is t^{\prime} E Or $0 \leq t^{\prime}<1$. Differentiating with respect
to t^{\prime} according to Leibnitz' rule [12] yields

$$
\begin{aligned}
\frac{\dot{\tilde{\phi}}_{c}^{s c}\left(t^{\prime}\right)}{4 L a_{0}^{2} b}= & -2 b q\left[b^{2}\left(q^{2}-\omega^{2}\right)-b \omega \omega^{\prime}\right] f_{1}\left(t^{\prime}\right) \\
& +\left[\omega^{\prime} b^{2}\left(q^{2}-\omega^{2}\right)+4 b^{3} q^{2} \omega\right] f_{2}\left(t^{\prime}\right) \\
& +\left[b^{2}\left(q^{2}-\omega^{2}\right)+2 b^{2} q^{2}-b \omega \omega^{\prime}\right] f_{3}\left(t^{\prime}\right) \\
& -\left[4 b^{2} q \omega+b q \omega^{\prime}\right] f_{y}\left(t^{\prime}\right) \\
& +b \omega \sqrt{t^{\prime}-t^{\prime 2}} \quad, 0 \leq t^{\prime} \leqslant 1
\end{aligned}
$$

where the $\dot{E}_{i}\left(t^{\prime}\right)$ obviously give back combinations of the $f_{i}\left(t^{\prime}\right)$ and the last term results from differentiating $f_{4}\left(t^{\prime}\right)$ ala Leibnitz. For $t^{\prime} \geq 1$,

$$
\begin{align*}
& \frac{\dot{\tilde{\phi}}_{c}^{s e}\left(t^{\prime}\right)}{4 L a_{0}^{2} b}=-2 b g^{2}\left[b^{2}\left(q^{2}-\omega^{2}\right)-b \omega \omega^{\prime}\right] g_{1}\left(t^{\prime}\right)+\left[\omega^{\prime} b^{2}\left(q^{2}-\omega^{2}\right)+4 b^{3} g^{2} \omega\right] g_{2}\left(t^{\prime}\right) \\
& +\left[b^{2}\left(q^{2}-\omega^{2}\right)+2 b^{2} q^{2}-b \omega \omega^{\prime}\right] g_{3}\left(t^{\prime}\right)-\left[4 b^{2} q \omega+\log \omega^{\prime}\right] g_{y}\left(t^{\prime}\right) \tag{113}
\end{align*}
$$

where the $g_{i}\left(t^{\prime}\right)$ are the same convolution integrals as the $f_{i}\left(t^{\prime}\right)$, except that the upper limit of integration is 1 , instead of t^{\prime}. Since $g_{i}(1)=E_{i}(1)$ for $i=1,2,3,4, \quad$ comparison of (112) and (113) implies that facts is
continuous at $t^{\prime}=1$ Moreover, since the
$f_{i}\left(t^{\prime}\right) \varepsilon c^{(1)}(-\infty, 00)$, the important, physically expected.
result that, $\tilde{\phi}_{c}^{c}\left(t^{\prime}\right) \varepsilon c^{(1)}(-\infty, \infty)$ is obtained. Now dif-
ferentiating $\check{\ddot{\phi}_{c}^{s c}\left(t^{\prime}\right)}$ introduces a factor of $\left(t^{\prime}-t^{2}\right)-1 / 2$ for
$0 \leq t$ '<1 which obviously means that $\ddot{\tilde{\phi}} \mathbf{s c}_{c}\left(t^{\prime}\right)$ is not continuous
at $t^{\prime}=1$. Infact.
$\operatorname{tim}_{t^{\prime} \rightarrow 1^{-}} \frac{\ddot{\phi}_{c}^{s c}\left(t^{\prime}\right)}{4 b L a_{0}^{2}}=-\infty$
Similarly, for $t^{\prime}>1$
$\left|\lim _{t^{\prime} \rightarrow 1^{+}} \frac{\ddot{¢}_{c}^{\infty}\left(t^{\prime}\right)}{4 b L_{0}^{2}}\right|<\infty$
Thus, $\ddot{\boldsymbol{\phi}}_{c}^{\mathrm{sc}}\left(\mathrm{t}^{\prime}\right)$ has an infinite discontinuity at $t^{\prime}=1$ just
as it does at $t^{\prime}=0$.
It is reasonable to question the validity of the first
Born approximation in the light of these results for
$\tilde{\phi}_{\mathrm{\phi}}^{\mathrm{i}} \mathrm{c}\left(\mathrm{t}^{\prime}\right)$, since this relates directly back, through equation
(33), to equation (14). The approximation is not
threatened, however, since the $t^{\prime-1 / 2}$ singularity is suffi-
ciently integrable in (12) and volume-integrable to insure
that (14) holds.

$$
\left.\begin{array}{ll}
\tilde{\phi}_{s}^{s c}\left(t^{\prime}\right) \approx \frac{b \omega}{2} t^{\prime 2} & t^{\prime} \ll 1 \tag{116}\\
\tilde{\tilde{\phi}}_{s}^{s c}\left(t^{\prime}\right) \approx b \omega t^{\prime} & , t^{\prime} \ll 1 \\
\ddot{\dddot{\phi}}_{s}^{s c}\left(t^{\prime}\right) \approx b w
\end{array}\right\}
$$

Again, the second derivative is discontinuous at the onset of scattering although finite for the sphere. The discostinuity bu is alternately expressed as

$$
\begin{equation*}
b w=2 k a \tag{117}
\end{equation*}
$$

where k is as mentioned in the section on the incident pulse characteristics. The second derivative is found to be discontinuous at $t^{\prime}=1$ by $-b \omega$, and more importantly, $\tilde{\phi}_{s}^{s c}\left(t^{\prime}\right) \in c^{(1)}(-\infty, \infty)$.

Long wavelength limit

The time-domain first Born approximation can already be thought of as long wavelength approximation in its own right. This seems reasonable since it's an approximation based upon weak interaction of the incident field with the scatterer; weak interaction is intuitively appealing for
wavelengths long compared to the size of the scatterer. However, it appears that the approximation as stated in (14) could be satisfied by sufficiently smallperturbations $\Delta \rho$ and $\Delta c_{i j k l}$ even in shorter (or at least resonant) wavelength regimes. This certainly is an item begging for further attention.

The long wavelength limit is stated according to $T^{\prime} \gg 1$, or equivalently, ka<< $\frac{\pi}{2}$. In this case, equation (30a) is particularly revealing since both $A_{s}(\tau)$ and $A_{c}(\tau)$ now sample the second derivative of the incident pulse over sufficientiy small intervals so as to produce results similar to convolutions with a delta function. Thus, in the long wavelength regime, spheres and cylinders produce essentially identical backscattered fields which have pulse amplitudes given, very nearly, by the second derivative of the input pulse amplitude. This result is obtained independent of the shape of any small scattering object. The most significant difference between the backscattered fields, in the long wavelength limit, will be the amplitudes of the scattered fields due to the "strength" of the delta function. This strength depends upon the size of the object and is manifested, in the case of cylinders and spheres, in the volumes LTc c^{2} and $4 f^{3} / 3$. Of course, the material dependent amplitude factor M introduced earlier plays a role in the scattered amplitude.

As an example of how the delta function gtrength and M

IV. Numerical Results

Abstract

Some of the numerical techniques used for computer evaluation of the scattered responses from cylindrical and spherical inclusions are presented. Responses obtained for incident pulses having various normalized center frequencies ka are then presented to illustrate the differences and similarities between scattering from cylinders and spheres. An experimental result for scattering from a cyinder is presented and a comparison made to the response predicted by the theory. Finally, the transparency of the fibers in a fiber-reinforced composite material is addressed.

Numerical techniques

Recall, the incident pulse amplitude is modeled as an exponentially damped sinusoid according to equation (55). For the following results, the length of the pulse $T p$ defined by equation (8) was chosen to be the time after which ten percent of the energy in the pulse remains. With a desired pulse length and center frequency specified, substitution of (55) into (8) leads to a transcendental equation for the damping q which was solved, most conveniently, by the simple method of bisection, as described in $\{13: 65\}$.

The error function and modified bessel functions of complex argumenta were evaluated by routines based upon the forms of the functions given in [10]. power series and

Abstract

continued fractions were utilized to provide at least eight significant figures. Asymptotic expansions were employed in the appropriate regions. The reverse recursion relations (83) were considered to provide accurate results if they matched the closed form expressions (94) to seven figures. finally, 251 points were calculated for each theoretical plot displayed from here on.

Time-domain backscatter waveforms

A typical incident pulse and its second derivative are shown in figure 4, illustrating the particular case when the pulse length is equal to the period. This may, of course, be specified for a pulse of any period. The specific case of scattering when $T^{\prime}=0.5(k a=\pi)$ is shown in Figure 5. The most interesting difference between the responses from the cylinder and sphere occur around the point $t=1$. It is at this time that the portion of the wave which makes the round trip through the entire satterer is felt at the observation point where the wave firstenters the scaterer. The more interestingly "structured" response from the cylinder is due to the more abrupt nature of the change in density and stiffness which the wave sees as a result of the infinite slopes of the cylinder's area function. While the first Born approximation is not guaranteed (or expected) to be valid when $k a \operatorname{is}$ this large, these results are interesting in that they predict maxked differences in the backscater Erom cylinders and sheres at shorter wavelengths. figure 6

Figure 4. Incident pulse waveforms

Figure 5. Backscatter for ka $=\pi$
illustrates the scattering when $k a=\frac{\pi}{2}$, for the same pulse shape ($\mathbf{T}_{\mathbf{p}}=\mathrm{T}^{\prime}$) as that in Figure 4 . These resuits illustrate less structure around $t^{\prime}=1$ than for $k a=\pi$. \quad (his is to be expected since increasing T_{p} and T have the effect of narrowing the bandwidth of the frequency spectrum of the incident pulse and centering it around a lower center frequency. This effect then carries through to the spectrum of the scattered pulse and is evidenced in a time-aomain pulse of less structure.

Comparison to experimental result

While the first Born approximation may be suspect for values of ka as large as in the examples above, excellent agreement between an experimental result and theoretical predictions for smaler ka will be presented.

The experiment conducted at the Air Force Materials Laboratory is illustrated in Figure 7. A voltage waveform f(t), input to the transducer, produces a plane dilatation pulse which interacts with a cylindrical void (radius 50.8 μm) located inside a piece of linear, homogeneous, and isotropic elastic material. The scattered wave gives rise to an output voltage $g_{\mathrm{sc}}(\mathrm{t})$. The incident wave also reflects from the planar "back wali" producing the response gbw (t). This response can be considered to be unperturbed by the incident and reflected waves traveling through the scatterer, since the magnitude of the scattered field is

a.

b.

Figure 6. Backscatter for ka $=\pi / 2$

Figure 7. Scattering Experiment

```
much smaller than the incident and reflected fields. It is
shown in [14] that treating
```

$$
\begin{equation*}
g_{s c}(t)=g_{b w}(t) * \ddot{A}(t) \tag{118}
\end{equation*}
$$

is completely equivalent to treating the convolution (30a) for the scattered field.

Figure 8 shows agreement between theory and experiment for scattering from the cylindrical void when ka $=0.32$ ($T^{\prime}=4.85$). The solid curve in Figure 8a is the back wall reflection, modeled numerically by the broken curve given by

$$
\begin{equation*}
\gamma(t)=t\left(e^{-g t}-e^{-p t}\right) \sin \omega t \tag{119}
\end{equation*}
$$

The scatered response and the numerical prediction are similarly illustrated in figure $8 b$. Such agreement between theory and experiment lends credence to this approach to elastic wave scattering. The lower center frequency of the reflected pulse can be attributed to high frequency attenuation present in the host material and not accounted for in the model. The scatered pulse is not affected as much, since it travels through only about one-fourth the distance that the reflected pulse travels through. Figure 8 c shows the second time derivative of equation (119). Figures b and c illustrate the result predicted earlier that the scattered field, in the long wavelength regime, is very nearly given by the second time derivative of the incident fieldes pulse

Figure 8. Comparison of an experimental result (solid line) with the theoretical prediction (broken line) for backecatter from a cylinder for ka $=0.32$. The length of the abscisale is l $\mu s e c$ for all graphs.
amplitude.

Transparency considerations

The transparency of a single carbon or graphite fiber in an epoxy matrix is considered based upon the fiber elastic constants reported by smith [15]. Adopting the notation in [15], the coordinate axes are defined with the 3 axis parallel to the fiber. For alane dilatation pulse normally incident upon the fiber, $e_{3}=0$. Characteristics of the fiber (modeled as having hexagonal crystal symmetry) imply that $\quad c_{16}=c_{26}=0, c_{11}=c_{22}$, and $c_{66}=\left(c_{11}-c_{12}\right)$. Using these to evaluate (25) for the product $e_{i}{ }_{j} e_{k} e_{1} c_{i j k l}$, the amplitude $M_{\text {fiber }}$ is obtained according to (34) as

$$
\begin{equation*}
M_{\text {fiber }}=\frac{\rho^{B}}{\rho^{0}}+\frac{c_{11}^{B}}{c_{11}^{0}}-2 \tag{120}
\end{equation*}
$$

Note that this is the same result obtained for isotropic media in (39). This is a consequence of the hexagonal model of the fiber and the normal incidence of the dilatation pulse. It is well known [16:116] that a hexagonal structure will appear the same to a normally incident wave, independent of where e lies in the 1-2 plane, i.e., the fiber is "transversely isotropic."

Table 1 illustrates the scattering amplitudes for the fibers considered in [15].

Table I

Fiber Constants and Scattering Amplitudes

Fiber	$\rho_{\left(g / c m^{3}\right)}$	$\begin{gathered} \mathrm{C}_{11} \\ \left(10^{10} \mathrm{~Pa}\right) \end{gathered}$	$M_{\text {fiber }}$	$\left(\frac{M_{\text {fiber }}}{M_{\text {void }}}\right)^{2}$
WY B	1.32	3.13	5.10	6.50
T-25	1.38	1.94	2.89	2.09
T-40	1.57	1.42	2.06	1.05
T-50	1.67	1.25	1.82	0.83
T-50S	1.69	1.22	1.78	0.79
T-75s	1.88	0.97	1.47	0.54
vYB	1.53	4.92	8.69	18.88
PAN	1.72	2.31	3.88	3.76
HTS	1.69	1.60	2.51	1.58
T-400	1.77	2.33	3.97	3.94

The epoxy density was taken as $\rho^{0}=1.16 \mathrm{~g} / \mathrm{cm}^{3}$ and c_{11}^{0} was calculated from $E^{0}=3.27 \times 10^{9}$ pa and $\nu^{0}=0.35$ according to

$$
\begin{equation*}
c_{11}=\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)} \tag{121}
\end{equation*}
$$

The last column in the table compares the backsatered energy from the fibrous material to that from a void of the same shape. For only three materials is the backscattered energy less than for a void.

Practical consideration of detecting porosity in an array of fibers must also include the geometry of the scatterer, i.e., the "strength" of the scatterer mentioned in the section on long wavelength scattering. The factors $4 \pi s^{3} / 3$ and πc^{2} are what is to be considered, not the factors $4 b L a_{0}^{2}$ and $2 \pi a_{0}^{3} b^{2}$ appearing in equations (73), (95), and (103). which are due to the time normalization employed. Consider, for example, fibers 8 microns in diameter, illuminated by a normally incident wave which is approximately planar over a length of $1 / 4$ inch (the size of a typical transducer facel. Without considering the material parameters, the amplitude response from a single sphere will exceed that of a single fiber for porosity diameter greater than about 3.3 mils (1 mil $=25.4$ microns) By including the material-dependent amplitudes from $T a b l e$ and requiring that (4Ts $\left.{ }^{3} / 3\right) M$ void be greater than fric mfiber' one finds that the lower limit of porosity size that produces a larger backscattered response than an 8 micron diameter fiber varies little compared to the range of energy ratios in the table. For energy ratios varying from 0.54 to 18.88 , the lower limit of "detectable" porosity varies from 3 to 5.5 mil in diameter.

V. Conclusions and Recommendations

Conclusions

Abstract

The first Born approximations to solutions of a timedomain integral equation were used to obtain the backscattered dilatation wave response from spherical and cylindrical inclusions of arbitrary homogeneous anisotropic elastic media embedded within a homogeneous isotropic host. For relatively large values of normalized center frequency ka, the time waveform responses from cylinders and spheres are markedly different due to the difference in slopes of the scatterers' cross-sectional areas which the wave sees as it first meets the scaterer and then as it exits the scatterer. For $k a \rightarrow 0$ the responses from the cylinder and sphere have identical time form and are given by the second derivative of the input pulse time profile; they differ in amplitude and the difference depends upon the volume of the scatterer. Excellent agreement with an experimental result for scattering from a cyindrical void was obtained at a value of ka $=0.32$.

A meransprency condition* was obteined, which states that for certain combinations of both density and gtiffness of the scatterer and host, the scatterer appearg transparent to the incoming wave in the first Born approximation. For inclusion-host combinations which do not satisfy the condition exactly, a useful quantity is the energy scattered from

an inclusion normalized to that scattered from a void. This is of practical significance for non-destructive inspection of fiber-reinforced composite materials with long wavelengths. A limitation exists on the size of spherical voids which give a larger amplitude response than a cylindrical inclusion of a given size based upon both the relative transparency of the inclusion and the volume of both scatterers illuminated by the wave. For an 8p diameter fiber illuminated over $1 / 4$ inch, this lower limit on the spherical void size ranges from 3 to 5.5 mil in diameter for a wide variety of fiber compositions. since these values are within the range (1-20 mil) of practical interest, it appears from this simple analysis, that an inspection technique based solely upon backscatteredfaves should not be dismissed without further analysis.

Recommendations

Extensions of this study, immediately aplicable to the non-destructive inspection problem, should include considerations of backscatter from spheres in the proximity of an infinite linear array of parallel cylinders. All angles of incidence with reapect to the plane normal and the direction parallel to the fibers should be considered, since normal incidence alone is not usually used in current inspection techniques. Investigation of the tefectof periodic, almost periodic, and random spacing of the aray could prove useful. Since the number of cylinders needed to inulate

Abstract

the problem numerically would be very large in the long wavelength regime of interest, the computer program developed for use in this thesis would not be useful, providing as it does, complete solutions for the scatering from each fiber in the array. Further analytical work, summing the responses from the cylinders, should be carried out first, and the scatering from spheres obtained against a "background" response from the cylinders. The extension to many randomly distributed spheres near the array would then provide a model which closely approximates the physical system in the non-destructive inspection problem.

Basic questions regarding the validity of the timedomain first Born approximation need to be answered. The statement of the approximation, equation (14), suggests that perhaps, larger ka problems might be solved by this technique provided the perturbations in density and stiffness presented to the wave are sufficiently small. certainly, as $\Delta \rho \rightarrow 0$ and $\Delta c_{i j k i} \rightarrow 0$, the backscatter goes to zero, and a regime of first Born validity should exist for small material perturbations. Another nagging point is the artificial unboundedness of the material-dependent amplitude factor M in the ratios of density and stiffiess. An upper bound needs to be obtained for the magnitude of m beyond which the first Born approximation ceases to be usable.

Bibliography

1. Faran, J. J. "Sound Scattering by Solid Cylinders and Spheres, " Journal of the Acoustical Society of America, 23: 405-418 (July 1951).
2. Schuetz, L. S. and W. G. Neubauer. "Acoustic Reflection from Cylinders, Absorbing and Non-absorbing," Journal of the Acoustical Society of America, 62: 513517 (September 1977).
3. Dragonnette, L. R. and L. Flax. "Resonance Scattering Predictions and Measurements," in Acoustic, Electromagnetic and Elastic wave Scattering - Focus on the T Matrix Approach, edited by V. K. Varadan and V. V. Varadan. New York: Pergamon Press, 1980 .
4. Golovchan, V. T. and A. N. Guź. "Diffraction of Elastic Waves by an Infinite Row of Circular Cyinders," Soviet Physics -- Doklady, 14-5: 503-505 (November, 1969).
5. Cheng, S. L, "Multiple Scattering of Elastic Waves by Parallel Cylinders," Journal of Applied Mechanics, 36: 523-527 (September, 1969).
6. Varadan, V. K. Multiple Scattering of Acoustic, Electromagnetic and Elastic Waves" in Acoustic, Electromagnetic and Elastic wave scattering - Focus on the T Matxix Approach, edited by V. K. Varadan and V. V. Varadan, New York: Pergamon Press, 1980 .
7. Lee, D. A. "Mathematical Principles of Data Inversion" in Non-Destructive Evaluation, edited by M. Buckley and D. Thompson. New York-Heidelberg: Springer-Verlag in press).
B. Wheeler, L. T. and E. Sternberg. "Some Theorems in Classical Elastodynamics," Archive for Rational Mechanics and Analysis, 31: 51-90 (1968).
8. Nye, J. F. physical properties of Crystals. London: Oxford University Press, 1967.
9. AMS 55, Handbook of Mathematical Functiong, edited by M Abramowitz and I. A. Stegun. National Bureau of Standards, 1977.
10. Bateman Manuscript Project, Volume 1, Tables of Integral Transforms, edited by A.Erdelyi. New York: MCGraw-Hill, 1954.
11. Wylie, C. R. Advanced Engineering Mathematics (Fourth Edition). New York: McGraw-Hili, 1975.
12. Hornbeck. R. W. Numerical Methods. New York: Quantum, 1975 .
13. Lee, D. A. Scatter Sizing for Elastodynamic Backscattering Using Splines," Modeling and Simulation, Volume 12, Part 4, Proceedings of the Twelfth Annual Pittsburgh conference, edited by W. G. Vogt and M. H. Mickle. 1253-1257. Pittsburgh: Instrument Society of America, 1981.
14. Smith, R.E. Ultrasonicelastic Constants of Carbon Fibers and Their composites," Journal of Applied physics, 43-6: 2555-2561 (June, 1972).
15. Auld, B. A. Acoustic Fields and Waves in Solids, Volume 1. New York: Wiley. 1973.

Vita

Permanent Address: 902 hilary Ave.
Croydon, Pennsylvania 19020

UNCIASSIFTED
SECURITY CLASSIFIGATION OF THIS OGSE TWMOU Dace Eintured)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFCRE COMPLETING FORM
T. REPORT NUMDERC AFIT/GE/MA/81D-2 2. GOVT ACCESSION NO.	
4. TiTLE (End Subititio) TIME-DOMAIN FIRST BORN APPROXIMATIONS TO EIASTODYNAMIC BACKSCATTIRR WITH APPLICATIONS TO NON-DESTRUCTIVE evaluation of composites	
7. AUTHOK(O) Gregory T. Warhola 2Lt USAF	6. Conthact on orant numeeriaj
9. DERFONMING ORGANIZATION NAME AND ADORESS Air Force Institute of Technology (AFIT-EN) Wright-Patterson AFB, Ohio 45433	
11. CONTROLLING OFFICE NAME ANO ADONESS Air Force Materials Laboratory (AFWAL/MLIP) Wright-Patterson AFB, Ohio 45433	
T4. MONITOAING AGENCY NAME \& ADOntessit diflemi tron Controlina Oifico)	15. SECUVITY Class. (ot thie mpone Unclassified
 Approved for public release; distribution unl	imited
	noport search and al Development e of Teetnoiogy (ATC) AFB, OH 45433
	if release; IAW AFR 190-17 CH, Major: USAF maton
tion were used to obtain the beckscattered dilatat spherical and cylindrical inclusions of arbitrary tic material ombedied within a homogeneous isotropic the validity of the firat Bomn approximation is qu responses from cylinders and spheres are marikedly heve identical time form with amplitudes dependent	a time-domain integral equaion wave response from homogeneous anisotropic elasic host. For large ka, where estioned, the time weveform different; for lam $\rightarrow 0$, they upon the volume of the 1 result for scattering from

UNCIASSIFTED
3E CJRITY CLASSIFICATION OF THIS PAGE(Whan Date Entopod)
Block 20.
a cylindrical void was obtained for a value of $\mathrm{ka}=0.32$.
A "transparency condition" was obtained, allowing that for certain combinations of both density and stiffness of the scatterer and host, the scatterer appears transparent to the incoming wave in the first Born approximation.

These results are of practical significance for non-destructive inspection of fiber-reinforced composite materials, with elastic waves of long wavelength, for determining the presence of porosity remaining in the composite after manufacturing.

