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AFIT/GE/MA/81D-2

Abstract

The first Born approximations to solutions of a time-

domain integral equation were used to obtain the backscat-

tered dilatation wave response from spherical and cylindri-

cal inclusions of arbitrary homogeneous anisotropic elastic

mAterial embedded within a homogeneous isotropic host. For

large ka, where the validity of the first Born approximation

is questioned, the time waveform responses from cylinders

and spheres are markedly different; for ka -+ 0, they have

identical time form with amplitudes dependent upon the

volume of the scatterer. Excellent agreement with an exper-

imental result for scattering from a cylindrical void was

obtained for a value of ka = 0.32.

A "transparency condition" was obtained, allowing that

for certain combinations of both density and stiffness of

the scatterer and host, the scatterer appears transparent to

the incoming wave in the first Born approximation.

These results are of practical significance fo non-

destructive inspection of fiber-reinforced composite materi-

als, with elastic waves of long wavelength, for determining

the presence of porosity remaining in the composite after

manufacturing.
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I. Introduction

Background

Fiber-reinforced composite materials are being intro-

duced into primary structures of modern jet fighter aircraft

(e.g. vertical and horizontal stabilizers on the F-15 and

F-16 fighters). These materials are made up of many layers;

each layer consists of many rows of parallel fibers bound

together by a matrix material of different composition than

the fibers. Failure often occurs in these composites via

delamination which initiates at gas bubbles (porosity)

remaining in the matrix after the manufacturing process.

For this and other reasons, non-destructive inspection tech-

niques capable of determining the presence of the porosity

are being sought. Current efforts include inspection with

elastic waves. Items of interest include comparison of the

response from the fibers to that from porosity and the

degree to which the fibers may appear transparent to the

waves.

For this study, the fibers are modeled as cylinders and

the porosity as isolated spheres. Many studies have been

done on the scattering from cylinders and isolated spheres

(1-31, linear arrays of parallel cylinders (41, and two-

dimensional arrays of parallel cylinders (5-6] . These stu-

dies, however, all provide frequency-domain solutions.

Current inspection techniques utilize broadband time-domain

• . • i | i I .. .



pulse techniques; thus, a time-domain solution for the

scattering might be more readily applied to the inspection

problem.

Problem and Scope

The problem investigated in this study is the solution

for the dilatation wave backscatter from cylindrical and

spherical inclusions resulting from incident dilatation

pulses which are representative of the pulses produced by

piezoelectric transducers. Obtaining and exploring the

differences between backscatter from spheres and cylinders

and comparison with an experimental result are the major

objectives of this thesis. A secondary objective is a study

of the transparency of common composite-reinforcing fibers

to elastic waves in order to assess the feasability of non-

destructive inspection with backscattered dilatation waves.

The analysis is limited to backscatter from single

cylindrical or spherical inclusions of arbitrary homogeneous

anisotropic elastic composition embedded in a homogeneous

isotropic host. The solution for the cylinder is obtained

for normal incidence of the dilatation wave with respect to

the cylinder's axis of symmetry. All media are considered

to obey the laws of linear elasticity and are assumed to be

non-attenuative.

2



Approach and Presentation

A review of Lee's development [7] of a time-domain

integral equation for the scattered field is given in

Chapter II, followed by a statement of the time-domain first

Born approximation and the form of the solution for the

scattered pulse resulting from this approximation. A "tran-

sparency condition" is then obtained for a general anisotro-

pic homogeneous inclusion in a homogeneous isotropic host.

In Chapter III, the solution for backscatter from cylinders

and spheres is worked out in detail. Power series, Laplace

transform methods, and recursion relations are used to

obtain the solutions. Some specific results in the form of

graphs of backscattered responses are presented and dis-

cussed in Chapter IV, where comparison to an experimental

result is also presented. The transparency of typical

fibers is also addressed in Chapter IV. Conclusions and

recommendations are presented in Chapter V.

3
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II. Plane Pulse Scattering

The first section is intended to be a brief expose of

Lee's [7] theoretical analysis of dilatation wave back-

scatter from an object insonified by a plane dilatation

pulse. The time-domain first Born approximation is

presented therein to linearize the resulting expression for

the scattered displacement field. A product of this thesis

is presented in the following section where a result

obtained in [71 for scattering from a void is generalized

for any homogeneous anisotropic scatterer. It will be shown

that, in the first Born approximation, certain combinations

of density and stiffness of the host and scattering materi-

als render the scatterer "transparent" to the incoming

waves.

The first Born ajproximation

Following the development of Lee [7] , consider a piece

R of linear elastic material bounded by the surface aR. A

transducer located on a subset A of 9R launches a dilatation

pulse which encounters a region B of different linear elas-

tic material located somewhere within R, as shown in Figure

I. If B is far enough away from A, and if the radii of cur-

vature of A are large enough compared to the dominant

wavelengths of the pulse, then both the wave incident upon B

and the scattered wave received by the transducer can be

approximated by plane waves. The analysis which follows is

4
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not initially restricted to backscatter, i.e. the observa-

tion vector x may point in any direction. (This would, of

course, require another transducer to receive the scattered

waves.) The condition for backscatter is imposed later in

the chapter.

The material densities and stiffness tensors are given

by

and

Cii S + A + cj S ) a-

(2)

where A and KO are the Lame" constants in R-B and 0 ij is the

Kronecker delta defined by

K) ,(3)

The incident pulse is of the form

- - 6 
(4)



where a 0 is the dilatation wave speed in the region R-B and

e is a unit vector characterizing the direction of propaga-

tion of the pulse. The constant P allows the time origin to

be adjusted so that t - 0 corresponds to the instant that

the pulse first encounters B. Thus,

(5)

In (4), the scalar potential (s) satisfies

(S 00, =) (6)

and

( (7)

A minor modification of equation (5.4.2) of reference

(71 defines the pulse length T as that time after which a

specified fraction E of the total energy in the pulse

remains according to

7
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7?~ dE (8)

The displacement field then satisfies

- u ' U u x - -, , °

(9)

An application of Love's integral identity (81 gives

the scattered field as

(10)

where bi(xt) is a body force field which is dependent upon

the incident displacement field along with the density and

stiffness perturbations

I111

In (10) the dots indicate differentiation with respect to

time, and the functional U is given by

8



U.k jK *( W (4t - r)i

°l I i-n L tol

(12)

where

r = (13)

and b0 is the shear wave speed in R-B. Equation (10) shows

that the scattered field arises in an obviously nonlinear

manner. It may be possible to solve for u sc Q(,t) by an

iterative solution of (10), however, a simpler, linear prob-

lem results by assuming that the interaction of the scat-

tered field and its derivatives with the scatterer is much

smaller than that of the incident field. This requires that

ac sc
tcijkl, A, S(l,t), and 1x,t1 be small in some sense

so that

9
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Equation (14) is a statement of the "time-domain first

Born approximation" for elastodynamic scattering which then

gives the scattered field as

)J) (YL- (15)

Useful results may be obtained by considering far-field

dilatation wave backscatter resulting from a plane c late-

tion pulse input. Generally, both dilatation and shear

waves will be scattered due to mode conversion at the

scatterer's boundaries; however, at distances which are

large enough, time-gating may be employed to observe only

the response due to the faster-traveling dilatation waves.

By expanding equation (15) with (12), discarding terms

which are O(x 2 ) and terms corresponding to shear waves, and

applying Gauss' divergence theorem to what is left, the

far-field scattered dilatation field u (jt) is obtained as

10
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where

~ (17)

and

A (8

Taylor's expansion of r and order of magnitude arguments

allow further simplification of (16). The resulting expres-

sion for the scattered dilatation field for an incident

plane dilatation pulse is

,L T-¢, -a, ̂- " (it

(19)

I 1



where

(20)

is the amplitude of the incident displacement field, and

(21)

A homogeneous anisotropic scatterer

The result obtained in equation (19) is a statement of

the first Born approximation for the most general anisotro-

pic inhomogeneous scatterer embedded within an isotropic

homogeneous host. Reference [7] goes on to consider further

details for the special case of scattering from a void. In

this thesis, equation (19) is evaluated for a homogeneous

anisotropic inclusion. The solution has the same form as

that for the void, with the addition of a multiplicative

amplitude factor which depends upon the materials' elastic

constants.

The perturbations attributable to the scatterer are

taken as

- (22)

12



and

0

(23)

9B 0

where 3 and the cijkl are constants within B, and ci0 is

as defined in equation (2). Substituting these into (19),

evaluating with the Kronecker deltas, and setting -e for

backscatter, yields

+,.t.4 e v.e le, , "I, " A

( 0

(24)

Consider the product eie ekeIc jkl in (24). If the

C jkl are contracted according to the method described by

My* [9:131-149], the product can be written out in its full

glory (for future reference) as

13



eieekelcijkl - cl + + ec 3 3

22 2222

+4e 2 e 3 c 4 4 + 4e 1e c 5 5 + 4e 1 e2 C 6 6

1 2 12 1 3 13

33 133

+4e3e c + 4e3e c + 4ele~c
1 3 15 1 2 16 1 2 26

+ 4ee 3 c2 4 + 4ee 3 C 3 4 + 4e e 3 c 3 5

2 3 2 2 2 e

+4ee 2 e 3 c 14 + 4ee 2 e3 c 5  14e 1  e 2 3 6

2 2 2

+ B e2 + e e 2 e 3 c 4  + Be e 2 e 3 c 5 6  (25)1 2e e e3 45 1 2 6 1 2 3 S

Now, since

= (26)

and

CIO z (27)

equation (24) can be rewritten an

- (28)

1.4



Equations (25) and (28) together give the backscattered

dilatation wave amplitude from any homogeneous anisotropic

scatterer in the first Born approximation. This result has

the same form as that obtained for a void (7], i.e., the

backscattered dilatation wave amplitude is proportional to

(29)

It is shown in (7] that performing the integration results

in

100 (30a)

or

0 (30b)

for both ^(t)E C(2)(-oo,oo) and A(t) E C(2) (-po,po) where

equation (30a) is obtained for J(O) - 0 and (30b) for

A(0) - 0 To obtain these results, a coordinate system has

been introduced with the z axis parallel to e and the time T

is defined by

+ 2.'z

0o (31)

1.5



Note that Z(z min) = 0 so that

1 7 (32)

The function A(r) is a function which describes the

scatterer's cross-sectional area as a function of twice the

one-way transit time of the plane wave passing through the

scatterer. The dependence of A(t) upon twice the travel

time makes sense physically, since the backscattered portion

of a pulse which travels some distance into the scatterer

must also traverse the same distance back through the

scatterer.

By combining equations (28) and (29), the scattered

displacement field can be expressed as

(33)

where the material-dependent amplitude M is defined as

Co*

It is instructive to consider a homogeneous isotropic

16



inclusion B in order to obtain M is ropic in terms of fami-

liar engineering quantities. It is convenient to define

0

I-.= ,.+Ay (36)

t 0 -~ (37)

I_ .(38)

where E and V are Young's modulus and Poisson's ratio,

respectively. Substitution in (34) of an equation for

CBjkl, analagous to equation (2) for isotropic media, leads

to

Note that this expression reduces to the result obtaire-I in

[71 for scattering from a void, namely

Mo (40)

Equation (39) is alternately expressed in terms of R and V

as

17



which is linear in AE and A4.

Consider the ratio in (41)

PVI) (42)

Substituting for VB from (38) and expanding yields

RV4

If AY satisfies

(44)

then Rv can be approximated by keeping the first two terms

in the geometric series for the last two factors in (43)

18
18



(45)

Thus, M is also linear in Lv for small 61)

The possibility of a scatterer appearing "transparent"

to a plane dilatation pulse in the first Born approximation

is suggested by equations (34) and (39). By setting M - 0,

one form of the "transparency condition" for an isotropic

scatterer is obtained from (41) as

) 30 -046

19



III. Scattering from Spheres and Cylinders

The results of the previous chapter for a scatterer of

arbitrary shape are applied to spheres and cylinders.

First, the cross-sectional areas of the scatterers as a

function of time are determined. A model for the amplitude

of an incident displacement pulse as a function of time is

then introduced. The form chosen for the pulse is not only

mathematically attractive, it also closely models the pulse

which is produced by physical transducers. With the area and

pulse functions determined, *sc(t) is evaluated according to

equation (30a) for spherical and cylindrical inclusions of

arbitrary isotropic linear elastic constants. The analytic

character of these solutions is investigated, followed by a

look at scattering in the long wavelength limit.

Cross-sectional scattering areas

Consider a plane dilatation wave pulse traveling in the

positive z direction and incident upon a spherical scatterer

B, of radius s, as shown in Figure 2a. The cross-sectional

area A s(z) "seen" by the wave is the area of the family of

circles subtended by the plane on the sphere

Q+ tw~st(47)

Recalling equations (5) and (31) for and ', the area A()

20
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a.

M N0.50 1.00

a 0T/4a

b.

Figure 2. Plane wave interaction with a sphere

a 21



is obtained as

(48)

A S() is parabolic as illustrated in Figure 2b.

Now, consider a dilatation wave pulse incident up,- a

cylinder, where the vector e is perpendicular to the axis of

symmetry of the cylinder, as shown in Figure 3a. If the

radius of the cylinder is c, and the length of the cylinder

over which the wave can be approximated by a plane wave is

L, then the cross-sectional area is the family of rectangles

described by

0 (49)

or

0 Ot k .- Ws e (s )

which describes half of an ellipse, as illustrated in Figure

3b.

Since ac(t) is given in equation (30a) as a convolu-

tion of a pulse amplitude function with A(t), Figures 2b and

22
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a.C

a -r/4c

b.

Figure 3. Plane wave interaction with a cylinder
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3b suggest (by considering graphical convolution) that,

perhaps, spheres and cylinders will give similar scattered

time waveforms. This topic is considered in the section on

long wavelength scattering. However, the finite slope of

the sphere's area function at t - 0 and * L 4t compared to
a 0

the infinite slope of the cylinder's area function at the

corresponding points will be shown to give characteristi-

cally different scattered responses when the long wavelength

limit is not valid. Note that it is precisely the infinite

slope A) which requires the use of equation (30a) instead

of (30b) to obtain *sc(t) for the cylinder.

It will prove convenient, in what follows, to introduce

a normalized time

tv t

t ' = t- (5 1)

where

2s ,sphere

b 2c cylinder

This allows the incident pulse to be characterized in terms

of the width of the scatterers' cross-sectional area time

functions. Note that 2b is the time it takes the wave to

24



completely traverse the scatterer in the incident direction

and again in the backscattered direction.

Using (51) and (52) in (48) and (50), the normalized

area functions are

(53)

and

A , ') 0- o klt,I'S"9 (54)

Incident pulse model

A mathematically tractable and physically representa-

tive model of the incident plane dilatation pulse is given

as

:0
C 0 (55)

where W is the center frequency of the pulse. The factor of

t is used to obtain i(O) - 0 for use of equation (30a).

Differentiating twice with respect to time

25



t

=~w - ~ t 2>09

(56)

Using (51) and (52) in (55) and (56), the normalized

incident pulse amplitude functions are

t 1~k (2: 1:'tt St14>

0 0

and

z 4z,' - -c i '' ' -Ib .

0 0

(58)

26



where

= 2b() (59)

is the normalized radian frequency. In terms of the period

T

T - (60)2b

gives the period of the pulse relative to the time width of

the scatterers' area functions.

It is revealing to put this time domain pulse normali-

zation in the perspective of the frequency domain wavenumber

normalization ka employed throughout the literature, where a

is the characteristic dimension of the scatterer, and k - !2
a
0

is the wavenumber. If a corresponds to either radius, s or

c, and recalling (52) and (60) for b and TS,

k a -- (61)2T'

Solution for the sphere

With all the pieces now available, the normalized solu-

tion for the backscattered amplitude function 4:c(t') for

scattering from a sphere may be obtained. Either form of

equation (30) may be used to obtain sc(t) since .O) a 0.

27



For the form given by (30b), the required second derivative

of the area function is

*A 5( t = + :  [ '.r" -Z+-- ''  . .

0 (62)

The delta functions greatly simplify the convolution with

the incident field in (30b) and only the convolution with

the constant (-2) must be worked out in detail. The situa-

tion is not so pleasant for the cylinder and equation (30a)

is required due to the singular behaviour of A c(t') at T' - 0c

and at V - 1. In order to provide a unified treatment of

scattering from both objects, the form of (30a) is chosen,

obtaining the solution in terms of the area function con-

volved with second derivative of the incident pulse.

Substituting equations (53) and (58) into (30a) pro-

duces

*- z \ (y'-:J %L't') } , , -'-t 1
0, o.,,, , -t o - '

(63)

where dt - 2bdt' is employed, and

28



I ~~~I

(64)

which limits the integration to that portion of the pulse

which is encountered by the wave at time t'. Introducing

the complex exponent

K :t (1J, (65)

and using Euler's formulae for the sine and cosine func-

tions, equation (62) is expanded and rearranged to obtain

______ - Ad(') - Bt') '

s- I

-i AVt'jt'" & '

00

'itc' 6'29

0 (66)

29



where

and

L (68)

The asterisk denotes complex conjugation and i = V'7. The

integrals in (66) are easily handled by defining

0 
(69)

Integration of (69) by parts leads to the recursion relation

S(70)

which is particularly useful, since C I (O) is readily

evaluated. Note also that

o (71)
0

so that (66) can be rewritten as

~30



, A LtC A" V) -/ C
(t. C(tW )

+~o~ A V)L, ''-J V

(72)

If Im(e) denotes the imaginary part of a quantity, the back-

scattered wave amplitude from a sphere is finally obtained

as

+ C') )]

1(73)

31



where, recall, equals t' or 1 according to equation (64).

While equation (73) is not particularly revealing, it

is a beautifully simple result that is, together with (69)

and (70), quite amenable to numerical evaluation. It is

easy enough to observe from (67) through (70) and (73) that

s~tl) has the same center frequency as (t') and falls offs

as t'e - 2 bqt' for large t'.

32



Solution for the cylinder

By a similar development as that for the sphere,

4sc(t') is obtained for the cylinder by substituting equa-

tions (54) and (58) into (30a) producing, upon rearrangement

Ke

0

"/[% P- 2..Y-"cos'++J ' }'

0

I, LS 2. LjCos t)j

-j-.W KO 4.-LVI0S4 tj %)S.%

(74)

where, again M - t' or I according to equation (64). The

integrals in (74) lead to a solution for 
4
sc(t') which is

not as straightforward as O:c(t') obtained for the sphere.

33



Consider the integral

o (75)

Expansion of the radical in a binomial series gives

TI-o ( 76 )

provided O<t'(1 Now, since the series is uniformly con-

vergent within the interval, the summation and integration

may be interchanged to obtain

00

,(77)

where

A V ' o (78)

Similarly,

t'

0O (79)

i3



becomes

00

(80)

where

) S(81)

The functions Ac(t) andA.'(t') lend themselves to recursion
) )

relations which make them computationally attractive.

Integrating (78) and (81) by parts yields

,61

-~ ~ (~z(to) A~
(82a)

and

116 0 )) 1  
d Y L- 2 -6 S % Vi t - C4 o C L .3' ]

(261) t-, .j) _A .
(82b)

35
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The appearance of the recursion index j in the numerators

of the forward recursion relations (82) is not desirable

since truncation errors introduced in the numerical evalua-

tion of the functions will be amplified as j gets large. A

numerically stable evaluation scheme results from manipula-

tion of (82) which leads to the reverse recursion relations

r YN +.) -,,: ,. - t .O

A____SCSVI-W (83a)

Note that

limAc(t#) limA5(t') 0 (84)

j-..oo J  -o

which is easily seen by considering (78) and (81) remember-

ing that O<t'<1.

Because of (84), the reverse recursion relations are

also convenient in that an exact expression is not needed

for one of the recurring functions in order to start the

recursion. For large J,

A- Aj-,1  J -. oo (85)

;3



So, by substitutingAj_ 1(t') for At') in (82), the recur-

sion relations are started for j-*oo by

and

It would be nice to, somehow, insure that the functions

are being generated correctly as j is decreased from its

starting value to zero. A great deal of confidence could be

placed in the scheme if the final recursions toAs(t') and

4(t-) matched a known "correct" answer to within some

desired degree of accuracy. Surprisingly enough, the zeroth

integrals can be evaluated in closed form. This requires a

momentary diversion to consider the integral

I. SeP ~ci ~(87)

Making the substitution -u
2

37



which can be written as

7 d~t(89)

Now, let v 2 
- ku

2 . This gives

f k t 
(9 0 )

Furthermore, the substitution v -i, where i -

renders

~ [~ ~(91)

which is recognized to contain a form (10:297] of the com-

plex error function

__ (92)

dk k

Performing the indicated differentiation [10:2981

T- T - I~t4- 1(93)

k

Back to evaluatingA0(t') andA0(t'), Euler's formulae
00

38
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for the sine and cosine functions in (78) and (81), and an

application of (93) to both yield

(94a)

and

-( L 2xIt [ SI (.)+-LjCosw'i

(94b)

where, as before K
+
- 2bq + U P. Equations (74), (78), and

(81) can now be combined to give the solution valid for

O<t'<l, i.e. when the front edge of the pulse is within the

scatterer. The result is
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where

40 o +2~t- ]S~ (96a)

*A~cv) C'SJ+7 05 OSiIW ( 96b)

The f~nctionsA,(t') an~d AO(t') are started by equationh
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(86), evaluated by equation (83), and compared to (94) to

insure a desired degree of accuracy.

The solution for t'>1 must still be obtained. Equation

(74)for SC
(74) for It') is equivalent to a form more indicative of

the convolution operation (indicated by an asterisk), and

thus, amenable to Laplace transform methods. The desired

form of cC(t) is

where

wT G ~ (98a)

e(98b)
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and where

{ :~'~ ~(99)

If L['1 denotes the one-sided Laplace transform of a quan-

tity, the required transforms are evaluated in terms of the

transform variable s as

L=te_ v 
(100a)

L ~~~ ~ 2 [t r 
.(zt(0b

LJL~~~O~W I L

and from [11:138],

-- (101)

L,



where I (.) is the modified Bessel function of the first

kind of order V . Denoting L[fi(t')] by Fi(s), for i =

1,2,3,4, the Fi(s) are obtained by the multiplication of the

appropriate transforms in (100) by the transform in (101).

The f i(t') are conveniently obtained by summing the residues

st'
at the poles of e Fi(s), which poles are, in all cases,

-[2 + ~ (102)

'1 L

Note that s is an entire function of a and, therefore,

s 1 0 is not a pole of the Fi(s). Saving the details, the

result, valid for t'>1, is obtained as:

_ 2> (103)

where

(104)
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and

(105)

and where Re( * ) denotes the real part of the quantity.

Equations (95) and (103) together give the solution for

scattering from a cylinder for all t', including the criti-

cal point where the solutions are pieced together at t' = I.

Again, the form of the solutions is not particularly reveal-

ing, however, the same observations as those made for the

scattering from the sphere can be made with respect to the

scattered center frequency and the form of the solution for

large t'.

Given the simplicity of the solution for t'>1 compared

to the solution for Ot'<, one is tempted to look for a

Laplace transform solution valid for all t'. However, the

above inversions are valid only for t'>1. Consider, for

example, e ,F3 () in the form

es ---- (106)

The asymptotic expansion of I(z) (10:377] for large z and

Iarg(z)j cT along with the fact that I1(z) is an odd function

of z yields
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2. 4L.js/ 2(17

.I fu 00TlT

Thus,

e4 , Wi (AflV S <K ov)31 (108)

W .- 4r -()-s"2.ss 2.

Since the poles of eSt'F 3(s) are in the left half of the

complex plane, e StF 3 (s) is required to vanish as ls->oo

in order to sum residues to obtain f 3 (t'). However, for s in

the left half plane (with a negative real part),
st'

lim e F3 (s) = o, unless t'>1, which therefore limits
181 ->co

the Laplace transform solution to the region t'>1.

Smoothness of the solutions

The interaction of the incident pulse with scatterers

having abrupt onset and terminating boundaries raises ques-

tions about the smoothness of the scattered waveforms.

Recall, the scattered field's second time derivative must be

sufficiently integrable so that equation (14) is satisfied

for the first Born approximation to be valid. The solution

for the cylinder is particularly suspect due to the infinite

slope of the area function A (T') presented to the wave at

- 0 and ' - 1. Thus, t:c(t') is treated here first, in

the form presented by equations (97) and (98).

By writing out the convolutions as integrals, keeping
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the first terms in the expansions for all factors in the

integrands, and then performing the integrations, the result

obtained is

L_ _ _ _~* 
(1 0 9 )

Thus,

(110)

and

(111)

Note that -SC(t'), SC(t' )
' and Oc(t') are all zero if

C c

t'<0. Thus, only sc(t') is discontinuous at the onset of

scattering, with an infinite discontinuity from a t
- 1

/ 2

singularity.

Recall, in the convolutions of (97), the upper limit of

integration is t' for O(t<l. Differentiating with respect
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to t' according to Leibnitz' rule [12] yields

-I- ( It'

+~~~ L)k 3t

(112)

where the f.(t') obviously give back combinations of the1

f (t') and the last term results from differentiating f4 (t')

ala Leibnitz. For t1>1,

4 LQ 6- II)4L1

+ -L +~'

(113)

where the gi(t') are the same convolution integrals as the

fi(t'), except that the upper limit of integration is 1,

instead of t'. Since gi(1) - fi(1), for i - 1,2,3,4, com-

parison of (112) and (113) implies that ic(tq) is
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continuous at t = 1. Moreover, since the

f (t1)E C(I)(-oo,oo) , the important, physically expected,

I.I
result that, sc(t')EC()(oo,oo) is obtained. Now dif-

ferentiating sc(tt) introduces a factor of (t'-t' 2 )-1 / 2 for
c

0<t'<1 which obviously means that sc(t' ) is not continuous

at t' = 1. In fact,

lim A -o0 (114)
- 4bLa

2

Similarly, for t'>1

lisc( < 0 (115)

+ 4bLa1

Thus, C I(t') has an infinite discontinuity at t' - I just

as it does at t' - 0.

It is reasonable to question the validity of the first

Born approximation in the light of these results for

sc(t-), since this relates directly back, through equation

(33), to equation (14). The approximation is not

threatened, however, since the t' ' I/ 2 singularity is suffi-

ciently integrable in (12) and volume-integrable to insure

that (14) holds.
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The same analysis applied to the sphere yields that

I (116)

Again, the second derivative is discontinuous at the onset

of scattering although finite for the sphere. The discon-

tinuity bw is alternately expressed as

6 w= 7 2.k O. (1 17)

where ka is as mentioned in the section on the incident

pulse characteristics. The second derivative is found to be

discontinuous at t' I 1 by -bui, and more importantly,

(t) C (-COM).

Long wavelength limit

The time-domain first Born approximation can already be

thought of as a long wavelength approximation in its own

right. This seems reasonable since it's an approximation

based upon weak interaction of the incident field with the

scatterer; weak interaction is intuitively appealing for
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wavelengths long compared to the size of the scatterer.

However, it appears that the approximation as stated in (14)

could be satisfied by sufficiently small perturbations A

and Acijkl even in shorter (or at least resonant) wavelength

regimes. This certainly is an item begging for further

attention.

The long wavelength limit is stated according to T'>>l,

or equivalently, ka<<. In this case, equation (30a) is par-
2

ticularly revealing since both A (r) and Ac () now sample

the second derivative of the incident pulse over suffi-

ciently small intervals so as to produce results similar to

convolutions with a delta function. Thus, in the long

wavelength regime, spheres and cylinders produce essentially

identical backscattered fields which have pulse amplitudes

given, very nearly, by the second derivative of the input

pulse amplitude. This result is obtained independent of the

shape of any small scattering object. The most significant

difference between the backscattered fields, in the long

wavelength limit, will be the amplitudes of the scattered

fields due to the "strength" of the delta function. This

strength depends upon the size of the object and is mani-

fested, in the case of cylinders and spheres, in the volumes

2 3Llrc and 4ffs /3. Of course, the material dependent ampli-

tude factor M introduced earlier plays a role in the scat-

tered amplitude.

As an example of how the delta function strength and M
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affect a backscattered response, consider the problem of

distinquishing the response from a long cylindrical inclu-

sion and a spherical void in the lonq wavelength limit. The

scattered time functions will have indistinguishably similar

form, to within a minus sign attributable to M, and only the

relative amplitudes may be strikingly different. The

cylindrical inclusion may very well have an M which is quite

small compared to that for the spherical void. However, if

the length L over which the cylinder is illuminated by the

approximately planar wave is large enough, the response from

the weakly scattering inclusion can dwarf the response from

the relatively strongly scattering void, due to the strength

LITc 2 which is unbounded in L. This problem is of consider-

able interest to the Air Force for non-destructive inspec-

tion of fiber-reinforced composite materials, where detec-

tion of gas bubbles (porosity) in the epoxy matrix (host) is

desirable. It would be nice if the cylindrical fibers were

relatively transparent to the incident dilatation pulse, as

compared to a spherical void, allowing the response from the

porosity to stand out against a "background" of cylinders'

response. Further attention is given this item in the fol-

lowing chapter.
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IV. Numerical Results

Some of the numerical techniques used for computer

evaluation of the scattered responses from cylindrical and

spherical inclusions are presented. Responses obtained for

incident pulses having various normalized center frequencies

ka are then presented to illustrate the differences and

similarities between scattering from cylinders and spheres.

An experimental result for scattering from a cylinder is

presented and a comparison made to the response predicted by

the theory. Finally, the transparency of the fibers in a

fiber-reinforced composite material is addressed.

Numerical techniques

Recall, the incident pulse amplitude is modeled as an

exponentially damped sinusoid according to equation (55).

For the following results, the length of the pulse Tp

defined by equation (8) was chosen to be the time after

which ten percent of the energy in the pulse remains. With

a desired pulse length and center frequency specified, sub-

stitution of (55) into (8) leads to a transcendental equa-

tion for the damping q which was solved, most con-

veniently, by the simple method of bisection, as described

in 113:65].

The error function and modified Bessel functions of

complex arguments were evaluated by routines based upon the

forms of the functions given in [10] . Power series and
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continued fractions were utilized to provide at least eight

significant figures. Asymptotic expansions were employed in

the appropriate regions. The reverse recursion relations

(83) were considered to provide accurate results if they

matched the closed form expressions (94) to seven figures.

Finally, 251 points were calculated for each theoretical

plot displayed from here on.

Time-domain backscatter waveforms

A typical incident pulse and its second derivative are

shown in Figure 4, illustrating the particular case when the

pulse length is equal to the period. This may, of course,

be specified for a pulse of any period. The specific case of

scattering when T' - 0.5 (ka - 1() is shown in Figure 5. The

most interesting difference between the responses from the

cylinder and sphere occur around the point t' - I. It is at

this time that the portion of the wave which makes the round

trip through the entire scatterer is felt at the observation

point where the wave first enters the scatterer. The more

interestingly "structured" response from the cylinder is due

to the more abrupt nature of the change in density and

stiffness which the wave sees as a result of the infinite

slopes of the cylinder's area function. While the first

Born approximation is not guaranteed (or expected) to be

valid when ka is this large, these results are interesting

in that they predict marked differences in the backscatter

from cylinders and spheres at shorter wavelengths. Figure 6
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illustrates the scattering when ka for the same pulse
2

shape ( T - T' ) as that in Figure 4. These results illus-P

trate less structure around t' - 1 than for ka - fr. This is

to be expected since increasing T and T' have the effect ofp

narrowing the bandwidth of the frequency spectrum of the

incident pulse and centering it around a lower center fre-

quency. This effect then carries through to the spectrum of

the scattered pulse and is evidenced in a time-domain pulse

of less structure.

Comparison to experimental result

While the first Born approximation may be suspect for

values of ka as large as in the examples above, excellent

agreement between an experimental result and theoretical

predictions for smaller ka will be presented.

The experiment conducted at the Air Force Materials

Laboratory is illustrated in Figure 7. A voltage waveform

f(t), input to the transducer, produces a plane dilatation

pulse which interacts with a cylindrical void (radius 50.8

Pm ) located inside a piece of linear, homogeneous, and iso-

tropic elastic material. The scattered wave gives rise to

an output voltage g sc(t). The incident wave also reflects

from the planar "back wall" producing the response gbw(t).

This response can be considered to be unperturbed by the

incident and reflected waves traveling through the

scatterer, since the magnitude of the scattered field is
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much smaller than the incident and reflected fields. It is

shown in [14) that treating

is completely equivalent to treating the convolution (30a)

for the scattered field.

Figure 8 shows agreement between theory and experiment

for scattering from the cylindrical void when ka - 0.32

(T' - 4.85). The solid curve in Figure 8a is the back wall

reflection, modeled numerically by the broken curve given by

(119)

The scattered response and the numerical prediction are

similarly illustrated in Figure 8b. Such agreement between

theory and experiment lends credence to this approach to

elastic wave scattering. The lower center frequency of the

reflected pulse can be attributed to high frequency attenua-

tion present in the host material and not accounted for in

the model. The scattered pulse is not affected as much,

since it travels through only about one-fourth the distance

that the reflected pulse travels through. Figure 8c shows

the second time derivative of equation (119). Figures b and

c illustrate the result predicted earlier that the scattered

field, in the long wavelength regime, is very nearly given

by the second time derivative of the incident field's pulse
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amplitude.

Transparency considerations

The transparency of a single carbon or graphite fiber

in an epoxy matrix is considered based upon the fiber elas-

tic constants reported by Smith (15]. Adopting the notation

in (15], the coordinate axes are defined with the 3 axis

parallel to the fiber. For a plane dilatation pulse nor-

mally incident upon the fiber, e 3 = 0. Characteristics of

the fiber (modeled as having hexagonal crystal symmetry)

imply that c 16 = c 2 6 = 0 , c 1 1 = c 2 2 , and

c66 (c11 - c 12). Using these to evaluate (25) for the

product ei je k elcijkl' the amplitude Mfiber is obtained

according to (34) as

Note that this is the same result obtained for isotropic

media in (39). This is a consequence of the hexagonal model

of the fiber and the normal incidence of the dilatation

pulse. It is well known (16:116] that a hexagonal structure

will appear the same to a normally incident wave, indepen-

dent of where e lies in the 1-2 plane, i.e., the fiber is

"transversely isotropic."

Table I illustrates the scattering amplitudes for the

fibers considered in (15]
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Table I

Fiber Constants and Scattering Amplitudes

Fiber 
1 1  (M(f ibe 2(g/cm ) ( 10 Pa) fibe r  void )

WY. 1.32 3.13 5.10 6.50

T-25 1.38 1.94 2.89 2.09

T-40 1.57 1.42 2.06 1.06

T-50 1.67 1.25 1.82 0.83

T-50S 1.69 1.22 1.78 0.79

T-75S 1.88 0.97 1.47 0.54

VYB 1.53 4.92 8.69 18.88

PAN 1.72 2.31 3.88 3.76

HTS 1.69 1.60 2.51 1.58

T-400 1.77 2.33 3 .97 3.94

The epoxy density was taken as 0 1.16 g/cm 3 and c0

was calculated from E0 . 3.27xi0 9 Pa and V 0 
- 0.35 according

to

E(i-v (121)

62



The last column in the table compares the backscattered

energy from the fibrous material to that from a void of the

same shape. For only three materials is the backscattered

energy less than for a void.

Practical consideration of detecting porosity in an

array of fibers must also include the geometry of the

scatterer, i.e., the "strength" of the scatterer mentioned

in the section on long wavelength scattering. The factors

4fs3 /Lc2 are what is to be considered, not the fac-

tors 4bLa2 and 2ab2 appearing in equations (73), (95), and

(103), which are due to the time normalization employed.

Consider, for example, fibers 8 microns in diameter,

illuminated by a normally incident wave which is approxi-

mately planar over a length of 1/4 inch (the size of a typi-

cal transducer face). Without considering the material

parameters, the amplitude response from a single sphere will

exceed that of a single fiber for porosity diameter greater

than about 3.3 mils (I mil - 25.4 microns ). By including

the material-dependent amplitudes from Table I and requiring

that (443s/3)Mvoid be greater than lLc2 Mfiber' one finds

that the lower limit of porosity size that produces a larger

backscattered response than an 8 micron diameter fiber

varies little compared to the range of energy ratios in the

table. For energy ratios varying from 0.54 to 18.88, the

lower limit of "detectable" porosity varies from 3 to 5.5

mil in diameter.
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V. Conclusions and Recommendations

Conclusions

The first Born approximations to solutions of a time-

domain integral equation were used to obtain the backscat-

tered dilatation wave response from spherical and cylindri-

cal inclusions of arbitrary homogeneous anisotropic elastic

media embedded within a homogeneous isotropic host. For

relatively large values of normalized center frequency ka,

the time waveform responses from cylinders and spheres are

markedly different due to the difference in slopes of the

scatterers' cross-sectional areas which the wave sees as it

first meets the scatterer and then as it exits the

scatterer. For ka -* 0 the responses from the cylinder and

sphere have identical time form and are given by the second

derivative of the input pulse time profile; they differ in

amplitude and the difference depends upon the volume of the

scatterer. Excellent agreement with an experimental result

for scattering from a cylindrical void was obtained at a

value of ka - 0.32.

A "transparency condition" was obtained, which states

that for certain combinations of both density and stiffness

of the scatterer and host, the scatterer appears transparent

to the incoming wave in the first Born approximation. For

inclusion-host combinations which do not satisfy the condi-

tion exactly, a useful quantity is the energy scattered from
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an inclusion normalized to that scattered from a void. This

is of practical significance for non-destructive inspection

of fiber-reinforced composite materials with long

wavelengths. A limitation exists on the size of spherical

voids which give a larger amplitude response than a cylindr-

ical inclusion of a given size based upon both the relative

transparency of the inclusion and the volume of both

scatterers illuminated by the wave. For an 81A diameter

fiber illuminated over 1/4 inch, this lower limit on the

spherical void size ranges from 3 to 5.5 mil in diameter for

a wide variety of fiber compositions. Since these values

are within the range (1-20 mil) of practical interest, it

appears from this simple analysis, that an inspection tech-

nique based solely upon backscatterel\waves should not be

dismissed without further analysis.

Recommendations

Extensions of this study, immediately applicable to the

non-destructive inspection problem, should include con-

siderations of backscatter from spheres in the proximity of

an infinite linear array of parallel cylinders. All angles

of incidence with respect to the plane normal and the direc-

tion parallel to the fibers should be considered, since nor-

mal incidence alone is not usually used in current inspec-

tion techniques. Investigation of the effects of periodic,

almost periodic, and random spacing of the array could prove

useful. Since the number of cylinders needed to simulate
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the problem numerically would be very large in the long

wavelength regime of interest, the computer program

developed for use in this thesis would not be useful, pro-

viding as it does, complete solutions for the scattering

from each fiber in the array. Further analytical work, sum-

ming the responses from the cylinders, should be carried out

first, and the scattering from spheres obtained against a

"background" response from the cylinders. The extension to

many randomly distributed spheres near the array would then

provide a model which closely approximates the physical sys-

tem in the non-destructive inspection problem.

Basic questions regarding the validity of the time-

domain first Born approximation need to be answered. The

statement of the approximation, equation (14), suggests that

perhaps, larger ka problems might be solved by this tech-

nique provided the perturbations in density and stiffness

presented to the wave are sufficiently small. Certainly, as

4 --* 0 and 4cljkl -+ 0, the backscatter goes to zero, and a

regime of first Born validity should exist for small

material perturbations. Another nagging point is the artif-

icial unboundedness of the material-dependent amplitude fac-

tor M in the ratios of density and stiffness. An upper

bound needs to be obtained for the magnitude of N beyond

which the first Born approximation ceases to be usable.
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The first Born approximations to solutions of a time-domain integral equa-
tion mwe used to obtain the bckscattered dilatation wave response from
spherical and cylindrical inclusions of arbitry homogeneous anisotropic elas-

tic material embedded within a homogeneous isotropic host. For large ka, where
the vw1idity of the first Born apgroximation is questioned, the time waveform

responses from cylinders and spheres are mrkedly different; for k. - 0, they

have identical time form with amplitudes dependent upon the volume of the

scattexer. Exellent agreement with an experimental result for scattering from
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a cylindrical void was obtained for a value of ka : 0.32.
A 'transparency condition" was obtained, allowing that for certain combina-

tions of both density and stiffness of the scatterer and host, the scatterer
appears transparent to the incoming wave in the first Born approximation.

These results are of practical significance for non-destructive inspection
of fiber-reinforced composite materials, with elastic waves of long wavelength,
for determining the presence of porosity remaining in the composite after
manufacturing.
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