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Time-Domain Homogenization of Windings in

Two-dimensional Finite Element Models
J. Gyselinck, R. Sabariego and P. Dular

Abstract— In this paper the authors propose an original time-
domain extension of the frequency-domain homogenization of
multi-turn windings in FE models. For the winding type at hand
(e.g. round conductor with hexagonal packing), an elementary FE
model is used for determining dimensionless frequency and time
domain coefficients regarding skin and proximity effect. These
coefficients are readily utilized for homogenizing the winding in
the FE model of the complete device. The method is successfully
applied to an axisymmetric 103-turn inductor. The results agree
very well with those obtained by an accurate but very expensive
FE model in which all turns are finely discretised.

I. INTRODUCTION

For some electromagnetic devices, skin and proximity ef-

fects in the windings constitute an important design aspect.

Several analytical approaches have been proposed in literature

over the last decades [1], [2]. Their scope and accuracy can be

increased by combining them with numerical methods, in par-

ticular the FE method [3], [4]. Most often skin and proximity

effect are simply ignored in the FE resolution stage (assuming

a uniform current distribution in the winding domain of the

FE model) and the associated losses are estimated a-posteriori.

However, in some cases the behavior of the device under study

is significantly altered by the eddy-current effects and the

direct inclusion of the latter in the FE equations is mandatory.

In principle, this can be done by modelling each individual turn

as a so-called massive conductor and by finely discretizing

each of them [5]. For real-life applications, this brute-force

method produces a prohibitively large number of unknowns.

The use of dedicated homogenization techniques thus seems

unavoidable. Those sofar presented in literature are mainly –

if not entirely – limited to the frequency domain. Skin and

proximity effect are accounted for by adopting a complex

impedance in the electrical circuit and a complex reluctivity in

the homogenized winding domain respectively. The frequency

dependence of these complex quantities is obtained either

analytically [3] or using an elementary FE model [6]. Round

conductors with rectangular packing are mostly considered.

A more general approach has recently been proposed by the

authors [7]. In this paper, the latter homogenization technique

is further extended to the time domain.
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II. CHARACTERIZATION OF MULTI-TURN WINDINGS

A. Frequency-domain characterization

A multi-turn winding of periodically spaced conductors of

arbitrary but symmetric cross-section (e.g. round or rectangu-

lar) is considered. The equivalent radius of the conductors is is

defined as r =
√

Ωc/π, where Ωc is the cross-sectional surface

area. The skin depth at frequency f or pulsation ω = 2πf is

given by δ =
√

2/(σωµ0), where σ is the conductivity of

the conductors and µ0 = 4π10−7 H/m their permeability. The

normalized or reduced frequency X is defined as follows:

X =
r

δ
=

√

f · r
√

πσµ0 . (1)

1) 2D FE model: A complete eddy-current effect charac-

terization of the conductors and their packing can be carried

out by means of a representative 2D FE model consisting of a

central cell and one layer of cells around it [7]. In Fig. 1, such

a FE model is shown for a round conductor with hexagonal

packing (fill factor λ equal to 0.7).

Fig. 1. Elementary FE model of winding with proximity effect flux lines at
X = 1 (left) and X = 3 (right)

Frequency-domain FE calculations are carried out using

the classical magnetic vector potential (MVP) formulation.

(Complex quantities are printed in bold. j =
√
−1 is the

imaginary unit.) The conductors are each modelled as a mas-

sive conductor and the same net sinusoidal current is imposed

through them [5]. The sinusoidal induction (averaged over the

central cell, horizontal and vertical component) is imposed

by means of the boundary conditions. The characterization of

the winding is done through the active and reactive power

absorbed by the central cell [3]. By considering well cho-

sen reference values, dimensionless coefficients are obtained,

which are either equal to 1 or close to 1 for sufficiently low

frequencies (X → 0).

2) Skin effect: By imposing a unit current and zero average

induction, an elementary skin-effect solution at frequency X
is obtained. The corresponding complex impedance Zskin can

be written as follows:

Zskin(X) = pI(X) RDC + j ω qI(X)
µ0l

8πλ
, (2)

= RDC

(

pI(X) + j qI(X)
X2

4λ

)

, (3)
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with RDC = l/(σΩc) the DC resistance of the conductor and

µ0l/(8π) the internal DC inductance of a round conductor

(length l). The thus defined dimensionless coefficients pI and

qI depend on the winding type and the frequency X . As

evidenced in Fig. 2, the skin-effect losses and the coefficient

pI are practically independent of the fill factor λ.
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Fig. 2. Skin-effect coefficients pI and qI versus reduced frequency X for
different values of λ (round conductor with hexagonal packing)

3) Proximity effect: By imposing a zero net current and a

unit horizontal average induction, a pure proximity-effect flux

pattern is produced in the central cell (see also Fig. 1). The

corresponding complex reluctivity νprox (X) can be written as

follows:

νprox (X) = qB(X) ν0 + j pB(X)
1

4
λσr2ω , (4)

= ν0

(

qB(X) + j pB(X)
λX2

2

)

, (5)

where the factor λσr2ω/4 in (4) follows from the analytical

expression for low-frequency proximity losses in a round

conductor [6]. Fig. 3 shows the dependence of the coefficients

pB and qB on the frequency X and the fill factor λ.
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Fig. 3. Proximity effect coefficients pB and qB versus reduced frequency
X for different values of λ (round conductor with hexagonal packing)

In case of an ”anisotropic” winding (with e.g. conductors

of rectangular cross-section), a pair of coefficients pB(X) and

qB(X) has to be considered for two perpendicular directions

of the flux [7].

B. Time-domain extension

1) Skin effect: A frequency-dependent complex impedance

is commonly approximated by a ladder circuit comprising a

finite number of lumped elements (e.g. constant resistances

and inductances). This way, for the skin-effect impedance

Zskin(X) one may obtain a approximate time-domain rela-

tion between instantaneous voltage v(t) and current i(t) by

considering n − 1 auxiliary currents i2(t), i3(t), . . . and a

system of n first-order differential equations in terms of the n
currents [I(t)]T = [i(t) i2(t) i3(t) . . .]T :

[V (t)] = RDC [I(t)] + [L]
d

dt
[I] , (6)

with [V ]T = [v(t) 0 0 . . .]T and where the square matrix

[L] has to be determined on the basis of the given impedance

Zskin(X). With large enough n, a sufficient agreement can be

achieved in the relevant frequency range [0, Xmax ].

In agreement with (2-3), the system (6) is rewritten in terms

of the dimensionless square matrix [S(n)]:

[V (t)] = RDC

(

[I(t)] +
σµ0r

2

8λ
[S(n)]

d

dt
[I]

)

. (7)

In the frequency domain, this becomes

[V ] = RDC

(

[1(n)] + j
X2

4λ
[S(n)]

)

[I] , (8)

where [1(n)] is the n × n identity matrix. The skin-effect

impedance is thus approximated as

Z
(n)
skin(X) =

v

i
= RDC

(

[1(n)] + j
X2

4λ
[S(n)]

)

−1

(1,1)

, (9)

where the subscript (1, 1) indicates the first diagonal element

of the inverse matrix.

In practice, a symmetrical and tridiagonal matrix [S(n)]

allows to obtain a good agreement between Zskin and Z
(n)
skin.

This is illustrated in Fig. 4 for the round conductor (λ = 0.7).

With n = 3 the time-domain approximation is valid beyond

X = 4.
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Fig. 4. Real and imaginary part of skin-effect impedance vs X , obtained
with FE model (reference) and time-domain approximation (n = 1, 2, 3)
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2) Proximity effect: The proximity-effect reluctivity

νprox (X) gives rise to an approximate time-domain relation

between instantaneous magnetic field h(t) and magnetic

induction b(t) by considering n − 1 auxiliary induction

components b2(t), b3(t), . . . and a system of n first-

order differential equations in terms of the n inductions

[B(t)]T = [b(t) b2(t) b3(t) . . .]T . The proximity-effect

counterparts of (7-9) are

[H(t)] = ν0

(

[B(t)] +
λσµ0r

2

4
[P (n)]

d

dt
[B]

)

, (10)

[H] = ν0

(

[1(n)] + j
λX2

2
[P (n)]

)

[B] , (11)

ν(n)
prox(X) =

h

b
= ν0

(

[1(n)] + j
λX2

2
[P (n)]

)

−1

(1,1)

, (12)

with [H(t)]T = [h(t) 0 0 . . .]T .

With n = 3 and the following matrix [P (3)]

[P (3)] =





1.3880 0.9307 0

0.9307 0.7092 −0.1168

0 −0.1168 0.1916



 , (13)

an excellent agreement is obtained between νprox(X) and

ν
(3)
prox(X) up to X = 4, as can be seen in Fig. 5.
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Fig. 5. Real and imaginary part of proximity-effect reluctivity vs X , obtained
with FE model and time-domain approximation (n = 1, 2, 3).

III. HOMOGENIZATION OF WINDINGS IN FE MODELS

Adopting the 2D MVP formulation and considering the

classical nodal basis functions αk(x, y), the induction field
~b automatically satisfies the magnetic Gauss law. By weighing

the Ampère law rot~h = ~j with the same functions αl, a system

of complex algebraic equations in terms of the nodal MVP

values ak results in case of a frequency-domain calculation.

In the time-domain counterpart, this is a system of first-order

differential equations in terms of the nodal values ak(t) [5].

Both in frequency and time domain homogenization, the

ampère-turns of the winding are uniformly distributed over

the winding domain Ωw+i (conductor cross-sections plus

insulation). The winding is modelled as a so-called stranded

conductor, which in general is connected to other FE conduc-

tors and/or lumped electrical circuit components [5].

A. Frequency domain

Skin and proximity effect are simply taken into account by

replacing RDC by Zskin in the electrical circuit equations,

and ν0 by νprox in the contribution of Ωw+i to the stiffness

matrix of the system of FE equations [5].

B. Time domain

Skin effect is taken into account by means of the auxiliary

currents i2(t), i3(t), . . . The associated additional electrical

equations follow from (7), with fitted matrix [S(n)].
As for the proximity effect, additional induction components

~b2(x, y, t), ~b3(x, y, t), . . . in Ωw+i are considered through

auxiliary MVP components a2(x, y, t), a3(x, y, t), . . . For

these components, the same basis functions αk(x, y) are

adopted and the nodal values a2,k(t), a3,k(t), . . . associated

with nodes k situated in Ωw+i or on its boundary constitute

additional degrees of freedom.

Weakly imposing the Ampère law and the additional equa-

tions (10), the resulting system of differential equations in

terms of all nodal MVP values ak(t), a2,k(t), a3,k(t), . . .

(constituting vector [A]) can be written as follows

[K][A] + [M ]
d

dt
[A] = [J ] , (14)

where the entries of stiffness matrix [K] and righthand side

vector [J ] have the classical expression [5]: namely the in-

tegral over the complete FE domain (or subdomain Ωw+i) of

ν0 gradαk ·gradαl and integral of the uniform current density

multiplied by αk.

The different MVP components are solely coupled through

the symmetric and positive definite mass matrix [M ]. Follow-

ing (10), its entries read

λσr2

4
P

(n)
i,j

∫

Ωw+i

gradαk · gradαl dΩ , (15)

where for sake of brevity the type of symmetry (i.e. transla-

tional or axial) has not been considered explicitly [5]. The total

instantaneous proximity losses are given by
d[A]
dt

T
[M ] d[A]

dt
.

IV. APPLICATION EXAMPLE

The 2D FE model of an axisymmetric 103-turn inductor

having a magnetic core (relative permeability 1000) is shown

in Fig. 6. The conductor has a round cross-section (r =
0.52 mm, σ = 6 · 107S/m, λ = 0.7). The fringing flux due to

the 1 mm airgap in the core effects a significant increase of the

proximity losses. For illustrating this, two different 103-turn

windings are considered: the one shown in Fig. 6 (referred to

as ”winding 1”, RDC = 0.190 Ω), and the one whose cross-

section is moved 1 mm to the right, away from the airgap

(referred to as ”winding 2”, RDC = 0.203 Ω).

A. Frequency-domain results

Frequency-domain calculations with imposed unit current

are carried out, with the reduced frequency X ranging from

0.1 up to 4 (X equal to 1, 2, 3 and 4 corresponds to f equal to
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Fig. 6. 2D FE model of axisymmetric inductor: flux lines at X = 1 obtained
with fine model (left) and with homogenized model (right)

15.58, 62.34, 140.3 and 249.4 kHz). With a fine model (char-

acteristic element size equal to r/9 in the conductor cross-

sections, 45000 complex unknowns in total), one calculation

takes 50 to 129 s (increasing with X) on a Pentium 4, 2 GHz.

With a homogenized model (7000 complex unknowns) this is

between 0.9 and 1.5 s . Some flux patterns are shown in Fig. 7

(winding 1).

The winding resistance and inductance obtained with the

fine model and the homogenized model (n = 3) are compared

in Fig. 8. Up to say X = 2 the agreement is excellent. At

higher frequencies a slight deviation appears. Given the low

DC resistance and the skin-effect factor pI shown in Fig. 2,

the joule losses in the winding are nearly entirely due to the

proximity effect (say for X > 1). Clearly, winding 1 is more

subjected to the fringing field than winding 2.

Fig. 7. Flux lines in winding window at X = 3, obtained with fine model
(left) and homogenized model (right)

B. Time-domain results

Next time-stepping simulations with imposed triangular

current of fundamental frequency X = 2 (fundamental period

T = 1/f = 16.04 µs) are carried out. Only half a period

is simulated, with time step ∆t = T/200, during which the

current goes from 0 to 1 A, and back to 0. Fig. 9 shows how

the total joule losses vary in time. The homogenization method

(with n = 3) produces again accurate results.

V. CONCLUSIONS

The frequency and time domain homogenization methods

presented in this paper allow to take into account the skin

and the proximity effect in a winding in a 2D FE model with

good accuracy and at a reasonable computational cost. To this

end, the winding type is first characterized by means of a

computationally cheap 2D FE model, leading to four dimen-

sionless but frequency-dependent coefficients. This frequency-

domain characterization is next extended to the time domain,

requiring the introduction of a limited number of additional

unknowns for the homogenized winding. This method can be

straightforwardly extended to 3D FE models.
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