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It is an accepted practice in aeroaeousties to characterize the properties of an acoustically treated surface by a
quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-
domain analysis. Time-domain boundary, conditions that are the equivalent of the frequency-domain impedance
boundary, condition are proposed. Both single frequency and model broadband time-domain impedance boundary
conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler
equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious
instabilities that would render time.marching computational solutions impossible.

Nomenclature

ao = speed of sound
k = total wave number
M =Mach number

p = pressure
R = acoustic resistance

Ro = artificial mesh Reynolds number

Re( ) = real pan
t = time

u, v. w = velocity components
v = velocity vector

v. = velocity component normal to impedance surface
(positive pointing to the surface)

X = acoustic reactance

Z = impedance
a, _ = wave number components (Fourier transform

variables)

At = time step
Ax = mesh size

p = gas density
f2. w = angular frequency

I. Introduction

OWADAYS, acoustic treatment is invariably used on the in-
side surface of all commercial aircraft jet engines for fan noise

reduction. Acoustic treatment panels, when properly tuned, are ex-
tremely effective noise suppressorsJ Because of structural integrity

requirements, the treatment panels are usually of the Helmholtz res-
onator type. The damping mechanism of these types of panels are

gener'a]ly attributed to the dissipation associated with the oscilla-

tory, jets formed at the mouths of the Helmholtz resonators 2-4 (see

Fig. 1). These jets are induced by the pressure fluctuations accom-

panying the passage of acoustic disturbances over the surface of the
treatment panels.

The flow and acoustic fields around the Helmholtz resonators of

the treatment panels are exceedingly complicated, especially when
there is a mean flow adjacent to the panel. Figure 2 shows schemati-

cally the oscillatory jets at the mouths of the Helmholtz oscillators or

cavities induced by pressure waves in the presence of a mean flow as
observed by Baumeister and Rice 3"_ in a water channel simulation.

For engineering purposes, a gross macroscopic description of
the effects of the treatment panels on the incident acoustic waves is
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definitely preferred over a more demanding microscopic description

of the actual phenomenon. In the aeroacoustics community, it is

an accepted practice to characterize the macroscopic properties of

an acoustically treated surface by a single quantity Z called the
impedance. The impedance is defined as the ratio of the acoustic

pressure p to the acoustic velocity component normal to the treated

surface v_ (positive when pointing into the surface). That is,

p = Zv. (1)

Impedance is a complex quantity, Z = R - iX (e -i_" dependence

is assumed). The use of a complex quantit3' is needed to account

for the damping and phase shift imparted on the sound waves by

the acoustically treated surface. The acoustic resistance R and the

acoustic reactance X are generally frequent3' dependent. They also
vary with the intensity of the incident sound waves and the adjacent

mean flow velocity. These quantities are usually measured empiri-

cally, although some semi-empirical formulas are available for their

estimates, provided the construction of the panels is sufficiently

simple. Figure 3 shows a typical set of measured resistance and
reactance data for a 6.7%-perforate treatment panel at low sound

intensity given in Ref. I. An important feature is that R is positive

and does not vary much with frequency. On the other hand, X can

be both posi five or negative depending on the frequency. The depen-
dence of X on frequency can be represented by a simple analytical

Fig. 1 Schematic diagram of the oscillatory, jets induced by incident
acoustic waves at the mouths of the Helmholtz resonators of a treatment
panel.
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Fig. 2 Schematic diagram of the oscillatory jets induced by sound
waves in the presence of a mean flow.
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Fig. 3 Dependence of the resistance and reactance of a 6.7%-perforate

treatment panel on frequency at low sound intensity (no flow) given in

Ref. 1; o, reactance and e, resistance.

expression. For instance, the data in Fig. 3 are accurately represented

by a two parameter formula,

X/pao = (X_l/w) + Xtw (2)

The parameters X-x and X: are found by mean-least-square fit to

be -13.48 and 0.0739, respectively, where w is measured in kilo-
radian/second.

Impedance boundary, condition (I) is basically a boundary con-
dition established for frequency-domain analysis. As it is, it cannot

be used in time-domain computation. The primary objective of this

paper is to derive a suitable equivalent of the impedance boundary
condition in the time domain. Such a boundary condition has not

been considered before. Time-domain impedance boundary con-

dition would allow the use of the newly developed computational
aeroacoustics methods for the solution of duct acoustics and tur-

bomachinery noise problems. One significant advantage of time-

domain methods over frequency domain methods is that broadband

noise problems can be handled relatively easily, almost without extra

effort. For broadband noise problems, frequency domain methods

are computationally intensive and laborious.
Time-domain problems can be solved only if they are well posed.

One of the requirements of well-posedness is that the mathemat-

ical problem is stable and dependent continuously on the initial

and boundary data. In this paper, it will be shown that the time-

domain impedance boundary conditions developed do not lead to

ill-posed mathematical problems. There are no spurious unstable so-
lutions. Results of direct numerical simulations using these newly

developed time-domain impedance boundary conditions are found

to agree well with analytical solutions.

In the presence of a mean flow, the standard formulation of the
impedance boundary condition s is known to give rise to a spurious
unstable solution of the Kelvin-Helmholtz type. 6 A general proof

of the existence of such instability is provided here. Because of

this instability, time-domain methods cannot be successfully imple-

mented. An alternative way of prescribing the impedance condition,

that would not lead to an ill-posed initial boundary value problem,

is proposed. A time-domain solution is possible when the proposed

impedance boundary condition is used.

II. Single-Frequency Time-Domain

Impedance Boundary Condition
A. Time-Domain Impedance Boundary Condition

Let us first consider the case in which the sound field consists of a

single frequency f2 (f2 > 0). That is, the pressure and velocity fields
of the sound waves have time dependence, at t _ oo, of the form

p(x. t) = Re[/3(x)e -ica] and v(x, t) = Re[_,(x)e-if2:]. Suppose the
resistance and reactance of a treatment panel at angular frequency f2

is R and X; then a suitable set of time-domain boundary condition

at the surface of the panel is

X <0, Op ROUn
0-7 = at - Xf2v. (3)

X Or.
X>_O, p=Ru,+---- (4)

(2 at

X
Y
;<

acoustical] treated pancl

Fig. 4 Sound field adjacent to an acoustically treated panel.

It is easy to verify by direct substitution that Eq. (3) or (,t)

yields the frequency-domain impedance boundary condition p =
Zu,(Z = R - iX) for a sound field of single frequency Q. The

reason why boundary condition (3) should not be used when X is

positive is that it will lead to spurious unstable solutions. In other

words, Ec1. (3) will give rise to ill-posed initial boundary value prob-

lems for X > 0. The same reason applies to the restriction imposed

on boundary condition (4).

B. WelI.Posedness of T'tme-Domain Impedance Boundary Condition

To show that Eq. (3) or (4) leads to well-posed initial boundary

value problems, we will consider a plane treatment panel adjacent
to a sound field as illustrated in Fig. 4. For simplicity, we will let

the surface of the panel be the x-z plane. In terms of dimensionless

variables with L (a typical length of the problem) as the length scale,

ao as the velocity scale, L/ao as the time scale, Po (the ambient

gas density) as the density scale, and _a o as the pressure scale,
the acoustic field equations (the linearized momentum and energy

equations) are

av
-- = -vp (5)
0t

ap = _V. v (6)
at

Let f(ot, _, w) be the Fourier-Laplace transform of a function

f(x, z, t). The functions f and f are related by

f(ct, ,8. co) = (2rr)-----_ f(x,z, t)

x exp[--i(ctx + _z -- wt)] dt dx dz (7)

x exp[i(tzx +/_z -- wt)] dcoda d/_ (8)

By applying Fourier-laplace transforms to Eqs. (5) and (6), it is

easy to find that the solution that satisfies radiation or outgoing

wave condition at y _ oo is

[_]=m[(co.,ll)½/_]exp[ik<_:-l)½y] (9)

whel_ k ---_ (Q,2 .-I- fl2)1/2 _.) = o.)lk and v is the velocity component

in the y direction (note that v = -o.). The branch cuts of the
function (&2 - 1) I/'- are taken to be 0 _< arg(_: - 1) I/2 _< rr; the

left (right) equality is to be used if & is real and positive (negative).

The branch cut configuration in the _ plane is shown in Fig. 5. The

Fourier-Laplace transforms of boundary conditions (3) and (4) (in
dimensionless form with ,_) as the scale of impedance) are

X < 0, /3 = [-R + (iXf2./k_)]_ (I0)

X>_O, _={-R+(i_kX/f2)]_ (11)

Substitution of EcI. (9) into Eqs. (10) and (l 1) leads to the following

dispersion relations:

co- i X_
X <0. +R_=_ (12)

(rift- 1)½ k
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Fig. 5 Branch cut configuration for (&2 -- 1)l/:. Argument of (,_,1 _
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Fig. 6 Map of the upper half_ plane in thef plane: a) & plane and b)
f plane.

& kX.

x > 0, i--_-w= -R (13)
- (_ - 1)½

Initial boundary value problems involving governing equations

(5) and (6) and boundary conditions (3) or (4) are stable and well
posed if dispersion relations (12) and (13) have no solutions in the

upper half & plane. To prove that this is the case, let the left-hand side

of Eqs. (12) and (13) be denoted by f(&) and g (&). respectively:

_2

f(_) = , + RS_ (14)
(d3 - 1):

kX.
g(_) = i--_-w (15)

1)½(_- _g

Figures 6 and 7 show the maps of the upper half cb plane in the f

and g planes. The shaded region represents the image points of the

upper half & plane. Since the right-hand side of Eq. (12) is purely

ima_nary and negative, and the shaded region in the f plane does

not include the negative ima_nary axis, no value of & in the upper
half & plane can satisfy dispersion relation (12). Also, the right-

hand side of Eq. (13) is real and negative so that it will not lie in
the shaded region of Fig. 7. Thus, dispersion relation (13) has n6
solution in the upper half t3 plane. Therefore, Eqs. (3) and (4) would

lead to well-posed problems. On the other hand. it is easy to show

if boundary condition (3) is used when X is positive or boundary
condition (4) is used when X is negative, there will be unstable roots

associated with dispersion relations (12) and (13). In these cases,

there _-il] be spurious unstable solutions and the initial boundary

value problems are ill posed.

a)

t Im(_)

G A
;i , 27 ....

Re(h)

b)

Ira(g)

H

A

Re(g)

Fig. 7 Map of the upper half _ plane in the g plane: a) if: plane and
b) g plane.
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Fig. 8 Normal incidence impedance tube-

C. Numerical Implementation and Results
To illustrate the effectiveness of time-domain impedance bound-

ary conditions (3) and (4), we will apply them to the numerical

simulation of the standing wave pattern of the normal-incidence
impedance tube problem. 1'7-9 The impedance tube is designed to

measure the impedance of an acoustic liner sample. The sample is

placed at one end of a long tube as shown in Fig. 8. A single fre-

quency acoustic wave train is introduced at the open end. The sound
waves are reflected off the surface of the acoustically treated panel.

The inciden_ and reflected waves form a standing wave pattern. By

measuring the standing wave ratio of the pressure envelope and the

relative phase of the incident and reflected waves (from the position

of the first minimum of the pressure envelope) the impedance of the
treatment panel can be determined) ._

Now let us consider an impedance tube of length 1.8 m. The speed

of sound at room temperature is 340 m/s. To ensure there are at least

seven mesh points per wavelength in the computation for sound

frequency up to 4 kHz, we will divide the impedance tube into 150
mesh spacings yielding Ax = 0.012 m. In the rest of this paper, Ax
is used as the length scale in all of the computations (i.e., L = Ax).
We will assume that the treatment panel is the 6.7% perforate of

Fig. 3. The equations governing the acoustic field inside the tube
are the one-dimensional version of Eqs. (5) and (6). They are

Lru o
The time-domain boundary condition to be applied at x = 0, the

right end of the tube, is

3p 3u
X < O, (9-'7= Rc_t --Xftu (17a)

XOu
X>O, p=Ru+---- (17b)

f2 at
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The incident sound wave will be taken to be

At the left end of the tube, the radiation boundary condition is to be

enforced. Such radiation boundary condition has been formulated

by Tam. m It may be written in the form

L 0
at[;]=-_x[;]-t-[ll]2_sin[i2(x-t)] , (18)

The nonhomogeneous term in Eq. (18) is from the incident acoustic

waves.

We will use the seven-point stencil dispersion-relation-preserving

(DRP) time-marching scheme m"t l for the numerical solution of the

impedance tube problem. The DRP scheme was designed for high-

quality numerical solution of aeroacoustics problems. It is highly

accurate even when as few as seven mesh points per wavelength are

used in the computation. The discretized form of the right-hand side

of Eq. (16) is

± ,K_,) (,) I _ d.u (") (19)
=--j=-3a)Pt+J--_-)Z-_ 3,,a=_ j t+j

3 1 3
(") (°) (20)

= -j=-3 ajut+_ -_ 1_"'3 ajpt÷j=-

where subscript g is the spatial index; e = 0,-1, -2 ..... -150,

and superscript n denotes the time level. The coefficients aj and

d_ are provided in Ref. I0. The last terms on the right-hand sides
of Eqs. (19) and (20) are the artificial selective damping terms} 2

The artificial selective damping terms are designed to remove any

spurious short wavelength numerical waves inside the computation

domain. It can be shown that the damping terms do not affect the

part of the solution that has wavelength longer than seven mesh
spacings. In the present computation, R, = 20 has been used.

The impedance boundary condition (3) or (4) or (17) is to be

imposed at e = 0. Here, we will follow Ref. 13 and introduce a

ghost value of pressure Pt at t = 1. The ghost value Pt is to be

chosen so that both the governing equation (16) and the impedance

boundary condition are satisfied at the boundary point e = 0. The

addition of a ghost value at £ = 1 allows Eq. (19) to be applied to
- 147 < t < -2, whereas Eq. (20) is used only for- 147 < e < -3.

To march in time, the DRP scheme uses the following four-time-

level algorithm:

["I '°÷'' "I'°' KI"-''= + At (21)
I. Plt P Jr _=[) LLJt

Coefficients by may be found in Ref. I0. This time-marching
algorithm applies to all points on the computation grid; £ =

0, -I, -2 ..... -150. For the last three points on the left-hand side

of the computation domain; i.e., £ = - 150, - 149, - 148, K_") and
L(.) are obtained by applying backward difference to the spatial
derivative terms on the right-hand side of radiation boundary con-

dition (18). Similarly, for the bounda_, points on the right end of
the tube, the expressions for K_ ) and L_ ) are obtained by backward

differencing the right-hand side of (16). Artificial selective damping
terms similar to that of Eq. (19), but with reduced stencil size, t° are

again added.

To enforce the impedance boundary condition (3) or (4) or (17)
at £ = 0, we note that cOp�at and _u/at are given by Eq. (16). On

eliminating the time derivative terms by Eq. (16), the impedance

boundary condition at e = 0 becomes

0u

= R_x + i2Xu (22)X <0, _x x

X ap
X >__O, p = Ru- --_ (23)

f2 0x

upon discretizing Eq. (22) or (23), at time level (n + 1) by backward

differences, an algebraic equation involving the ghost value p(j"+_)

ii,,q

- 150.0 -100.0 -50.0
X

. • , •
O0

Fig. 9 Spatial distribution of the pressure envelope in a normal-
incidence impedance tube at 1600 Hz frequency: _, time-domain
solution (DRP scheme) and .... , exact (frequency-domain) solution.
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6

- 15o.o

, , , I ,
-_00.0

i

, , , I )
-50.(:

X

Fig. 10 Spatial distribution of the pressure envelope in a normal-
incidence impedance tube at 3000 Hz frequency.: _, time-domain so-
lution (DRP scheme) and .... , exact (frequency-domain) solution.

is obtained. This equation provides the formula by which the ghost
value may be found. For instance, ifEq. (22) is used, we find

, Ra_-----fkj__L__, ,.,, .._u,, ,____ a, p, )

(24)

In carrying out the time-marching DRP algorithm, the computa-
tion foUows the following procedure. After the solution at time level

n has been found, the values of u and p are updated to the next time

level (n + I) by Eq. (21) at every point on the grid except the ghost

point. The ghost value pl _+ II is calculated by Eq. (24). With the

ghost value found, the calculation proceeds to the next time level

(n + 2). The entire process is then repeated.

Figure 9 shows a comparison of the time-domain solution of the

pressure envelope along the full length of the impedance tube calcu-

lated by the DRP scheme and the exact frequency-domain solution
at a frequency of 1.6 kHz. At this frequency X is negative so that

impedance boundary condition (3) was used in the numerical solu-

tion. Figure 10 shows a similar comparison at a frequency of 3.0
kHz. In this case X is positive. Accordingly, impedance boundary

condition (4) was employed. The time-domain solutions compare
well with the exact frequency-domain results. The peak values and

their locations, which are important quantities in impedance tube

experiments, are accurately calculated. These simulations suggest
that time-domain solutions involving impedance boundaries are fea-

sible and accurate. Moreover, the proposed time-domain impedance

boundary condition, indeed, leads to well-posed initial boundary
value problems.

Ill. Broadband Time-Domain Impedance

Boundary Condition
A. Three-Parameter Broadband Model

Both the resistance and impedance of an acoustic treatment panel

of the Helmholtz resonator type are frequency dependent. Figure 3

shows measured data typical of such panels, as reported in Ref. 1.
It is seen that over the frequency range of interest, 1-3 kHz. the

variation in the resistance is small. However, there is a significant
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change in the reactance. The measured data of Fig. 3 can be closely
approximated by analytical formulas of the form

R = Ro, X = (X_l/w) + Xjoo (25)

where Ro(Ro > 0), X-l(X-l < 0), and Xl(Xt > 0) are parame-

ters. The values of these parameters are determined by mean-least-

square fit to the data. The impedance corresponding to this three-

parameter model is

Z = Ro - i[(X_t/w) + Xico] (26)

Now we propose the use of the following time-domain impedance

boundary, condition:

Op by, 02vn

= R_-_t - X__v. + Xl _t---i-" (27)0"-'7

h is straightforward to show by assuming time dependence of the

form e -i'°' that Eq. (27) is equivalent to the frequency-domain

impedance boundary condition with the impedance given by Eq.

(26). But before Eq. (27) is applied to any large-scale computation,

it is prudent to show that this boundary condition would not give

rise to spurious instabilities.

B. Stability of Three-Parameter Time-Domain Impedance
Bounda_" Condition

Let us return to the boundary value problem of Fig. 4. It will be

assumed that the time-domain impedance boundary condition (27)
is to be imposed at the x-z plane. The Fourier-Laplace transform

of Eq. (27) is

-co_ = [-,oRo +i(x_, + o_x_)]_. (28)

Substitution of Eq. (9) into Eq. (28) results in the dispersion relation

(.,O2

(off - k")_ + wR_ - iXlw 2 = iX-i (29)

,xhere the branch cuts of the function (w2 - k:) _a are to be taken

such that 0 < arg(w-" - k'-) l/'- < rr; the left (right) equality is to be

used if w is real and positive (negative). Let

CO2

F(w) -- ( "wz_ k2)½ + wRy, - iX_w 2 (30)

that is, the left-hand side of Eq. (29). By tracing over the contour
ABCDEFGH in the upper half co plane, it is easy to establish that

the upper half w plane is mapped into the shaded region in the F

plane as shown in Fig. 11. The mapped region does not include the

negative imaginary axis. Now X_t, on the right-hand side of Eq.

(29), is negative. This means that no value of co in the upper half w

plane would satisfy dispe.-'sion relation (29). Thus, the solutions of

the initial boundary value problems are stable.

C. Numerical Implementation and Comparison with Exact Solution
We will consider an initial value problem associated with the

normal-incidence impedance tube (see Fig. 8) to illustrate how the

time-domain impedance boundary condition (27) can be imple-

mented. With respect to a fixed point in space, a transient acoustic
pulse produces a broadband pressure field in the frequency domain.

Thus, for a time-dependent acoustic pulse problem, the broadband

impedance boundary condition should be used at the right terminal
of the tube.

Equation (16) is the governing equation of the problem. Now,

at the impedance surface, i =0, boundary condition (27) may be
rewritten in the following form after eliminating Op/at by the second

equation of (16):

dt 2 = _ - 7x _,- _'-T[" + X__u,, (31)

We will rewrite this equation as a first-order system in time.
Let

duo

ro = -- (32)
dt

a) -k

, lm(a_)

H

+k Re(_)

b) G

Imff'3

LH

A

Fig. 11 Map of the upper half ca plane in the F plane: a) ca plane and
b) F plane.

Equation (31) may be casted into the following system of

equations:

 -ru°l -z: +,_.,,oo+x,uo (33)

In Eq. (33) the term (Ou/Ox)o has been replaced by a seven-point

backward difference according to the DRP scheme. Upon discretiz-

ing Eq. (33) in time, we find

3 1)1)

+ At E bj 1 a?uj -Rov, i + X_luo
jffi0 _l -- j=-6

(34)

(, + 1) can also be found from the discretized form ofBut the value uo
(n+ 1) calcu-governing equation (16), namely, Eq. (21). The value u o

lated by either Eq. (21) or Eq. (34) must be the same. This provides
the condition for determining the ghost value p_t"). The explicit ex-

pression for pl "_ is

p<._ 1 ( c.+,_+,.h._- boaSZAt - u o

S." ]+ At _j'-o -- Atbo aj pj (35)

)=t jr-5 /

The boundary condition on the left end of the tube is still _ven by

Eq. (18) except that the nonhomogeneous terms should be omitted
as there is no incoming wave.

We will assume that the disturbance is generated by the following

initial conditions at t = 0:

u = 0. p = exp[-0.0044(x + 83.333):] cos[0.444(x + 83.333)
(36)
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Fig. 12 Pressure waveform of the incident acoustic pulse inside the

normal-incidence impedance tube at t = 60.1: _, time-domain solu-

tion (DRP scheme) and .... , exact solution.
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Fig. 13 Pressure waveform of the reflected acoustic pulse inside the

normal-incidence impedance tube at t = 140.1: _, time-domain solu-

tion (DRP scheme) and .... , exact solution.

Here, the same dimensionless variables as in Sec. II.C are used. This
choice of initial conditions ensures that the center of the acoustic

spectrum of the incident wave at the surface of the acoustic treatment

panel has a frequency of 2 kHz and a spectrum half-width of 0.5

kHz. In this example, the values of the dimensionless parameters of

Eq. (27) are obtained by fitting Eq. (25) to the data of Fig. 3.
Figure 12 shows the computed pressure distribution at time t =

60.1. At this time, the left half of the initial pulse is about to exit the

computation domain, whereas the right half of the pulse is about to

impinge on the surface of the treatment panel. The dotted curve is
the exact solution. Figure 13 shows the reflected pulse propagating

away from the impedance boundary of the tube at t = 140.1. The
amplitude of the reflected pulse is considerably smaller than that of

the incident pulse. Part of the acoustic energy is dissipated during the

reflection process off the impedance surface. The exact frequency-
domain solution is represented by the dotted curve. There is excellent

agreement between numerical results and the exact solution. This is

true in both the wave amplitude and phase. This example provides

further confidence in the use of time-domain impedance boundary
conditions.

IV. Impedance Boundary Condition in the Presence
of a Subsonic Mean Flow

A. Traditional Model

In jet cannes, the acoustic treatment panel is always placed next

to a mean flow. Traditionally, 5 the impedance boundary condition in
the presence of a mean flow is formulated with the assumption of the

existence of a very thin zero-velocity fluid layer at the surface of the
treatment panel. At the interface of the zero-velocity fluid layer and
the mean flow, the condition of continuity of particle displacement is

used. In dimensionless variables, the frequency-domain impedance

boundary condition, after simplification, may be written as

--iwp + Map = -i_Zu, (37)
Ox

where M is the mean flow Mach number, and x is in the direction
of the mean flow.

In an extensive numerical study of the normal modes of a duct

with treatment panels, Tester _ found that boundary condition (37)

Y M

vortex sheet zero vel0ci_ layer

treatment panel

Fig. 14 Schematic diagram showing a postulated zero-velocity layer

adjacent to an acoustically treated panel in the presence of a mean flow.

led to an unstable solution. The unstable solution is of the Kelvin-

Helmholtz type arising from the vortex sheet interface between the
mean flow and the zero-velocity fluid layer. In standard duct acous-

tics analysis using frequency-domain approach, this instability is

either not mentioned or totally ignored. _ We will now show that

the use of boundary condition (37) always gives rise to an unstable
solution.

The linearized momentum and energy equations governing the
sound field superimposed on a uniform mean flow of Mach number

M in the x direction (see Fig. 14) are

av av

aS + M_ = -vp (38)

at+M +V.v=0 (39)

By applying the Fourier-Laplace transform to Eqs. (38) and (39),

it is easy to find that the solution that satisfies the outgoing wave

condition at y --+ _ is

__AL _ /y] (4o)

where (3 = co - Ma, k = (¢x: + _:)1/:, and _ = Colk. The branch
cuts of the function (&2 _ I)tD are the same as those stipulated just

after Eq. (9).

Substitution of Eq. (40) into the Fourier-Laplace transform of
boundary condition (37) yields the following dispersion relation:

&2 o[

_-Z_ = --_MZ (41)
(_ - I)½

Now lettheleft-handsideof Eq. (41)be denotedby f(_):

= , + Z_ (42)
(&z _ 1)

Figure 15 shows the map of the upper half _ plane in the f plane
(shaded region) for X > 0. Since a can be positive or negative,
there will always be values of a for which the point representing
the right side of Eq. (41) lies in the shaded region of the f plane.

Therefore, there will always be an unstable solution. If X is nega-

tive. a similar mapping procedure will show that there is always an
unstable solution.

The existence of a Kelvin-Helmholtz-type instability renders the

boundary value problem ill posed for the time-domain solution.
The instability is, however, nonphysical. As pointed out before, its
origin is in the postulate of a vortex sheet discontinuity right next
to the impedance boundary. In reality, no such vortex sheet exists
in the flow. It is an exaggerated idealization of a zero-thickness
boundary layer. The pertinent point to remember is that the concept
of impedance is just a gross macroscopic description of the effect
of a treatment panel on the sound field. One could include the effect
of the mean flow in the definition of the impedance directly without
having to introduce its effect through the kinematic property of the

vortex sheet discontinuity. If this is done, there is no need to assume
the existence of a vortex sheet interface. A well-posed time-domain

impedance boundary condition may then be derived. This possibility
is discussed in the next subsection.
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Fig. 15 Map of the upper half _ plane in the.f plane (X > 0): a) &
plane and b)f plane.

B. Direct Interaction Model

The experimental studies of Baumeister and Rice 3"4 indicate that,
for Helmholtz resonator type treatment panels, the jet flows at the
mouths of the resonators or cavities interact directly with the mean

flow outside. This is illustrated in Fig. 2. There is no zero-velocity
fluid layer nor any vortex sheet discontinuity. When the boundary.

layer over the treatment panel is, indeed, thin, the jet flows at the
mouths of the cavities are directly coupled to the mean flow. When
this is the case, it would be more desirable not to introduce the
mean flow effect through the kinematic condition of a vortex sheet

discontinuity, but consider a direct interaction model by lumping
the mean flow effects on the definition of impedance. What this

amounts to is to define the impedance in exactly the same form as
Eq. (I) even in the presence of a mean flow: i.e.,

p = Zv, (43)

where Z = R - iX is the impedance. Here Z is a function of the
mean flow. That is, R and X are flow Mach number dependent.

Equation (43) is to replace Eq. (37). The relationship between R,
X, and the mean flow Mach number must be found experimentally

at this time. Further theoretical and experimental validation of this

suggestion would certainly be useful and needed.
It is easy to show by the mapping technique that the dispersion

relation arising from Eqs. (38) and (39) and boundary condition (43)
does not give rise to an unstable solution. In other words, they form
well-posed initial boundary value problems.

C. Single-Frequency and Three-Parameter Broadband
Time-Domain Impedance Boundary Condition

If impedance boundary condition (43) is accepted instead of (37),
then the single-frequency time-domain impedance boundary condi-
tion discussed in Sec. II and the three-parameter broadband model

impedance boundary condition (27) can again be used. Specifically,
for sound waves of a single frequency f2, we have the time-domain
impedance boundary condition

x < o, o.__[p= ROy. _ Xnv. (44)
Ot Ot

X Or,
X >_ O, p = Rv. + ---- (45)

It can be easily shown that solutions of governing equations (38)
and (39) and boundary condition (44) or (45) are stable. The same is

true with boundary condition (27). That is, by omitting the fictitious

vortex sheet discontinuity that is postulated in the traditional for-

mulation of the impedance boundary condition, the resulting initial

boundary value problems are well-posed and hence can be solved

by time-domain methods.

V. Concluding Remarks

For Helmholtz resonator type of acoustic treatment panels.

impedance is merely a macroscopic representation of the ague-
gated effects of the numerous microscopic cavity flows that take

place in the surface region of the panel. In the presence of a mean

flow, the actual flowfield in this region is extremely complicated.

So far, it appears that no experiment has been performed to provide

an adequate understanding of the microscopic cavity flowfields and
their cumulative effects. This is, perhaps, not too surprising, for

it is very difficult to make accurate time-dependent measurements

in the small confined space of the cavities. Without such knobq-

edge of the flowfield, the impedance of a panel can only be found

empirically.

Recently, computational aeroacoustics methods have made im-

pressive advances. It seems, therefore, that a feasible alternative
to study the microscopic cavity flowfields is to use direct numeri-

cal simulations. Such simulations, when properly carded out, could

shed light on the physical processes that lead to the damping and

phase shifting of the acoustic wave field adjacent to the panel sur-

face. When perfected, such time-domain simulations might even
offer a way to determine the resistance and reactance of acoustic

treatment panels from first principles.
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