
Time-Domain Impedance Boundary Conditions for
Simulations of Outdoor Sound Propagation

Benjamin Cotté,∗ Philippe Blanc-Benon,† and Christophe Bogey‡

École Centrale de Lyon, 69134 Écully Cedex, France
and

Franck Poisson§

Société Nationale des Chemins de Fer, 75379 Paris Cedex 08, France

DOI: 10.2514/1.41252

Finite difference time-domainmethods are well suited to study sound propagation in the context of transportation

noise. In this paper, time-domain boundary conditions are considered for impedance models classically used for

outdoor grounds. These impedance models have usually been obtained in the frequency domain and cannot be

translated directly into the time domain. The derivation of the time-domain boundary condition is based on the

approximation of the impedance as a sum of well-chosen template functions. Because of the forms of the template

functions, the recursive convolution technique can be applied; this is a fast and computationally efficient method to

calculate a discrete convolution. The impedance boundary conditions are validated using a linearized Euler

equations solver in one- and three-dimensional geometries; comparisons with analytical solutions in the time and

frequency domains are presented. Themethods used to identify the coefficients of the template functions are shown to

be of great importance.Among the threemethods described, the optimizationmethod in the frequencydomain canbe

recommended, because it can be applied to many impedance models and allows the values of the coefficients to be

constrained, which is needed to obtain accurate numerical results.

Nomenclature

B = Gaussian half-width, m
c0 = speed of sound, m=s
dL = porous layer thickness, m
f = frequency, Hz
Im� � = imaginary part
j = imaginary unit
k = complex wave number, m�1

p = pressure, Pa
q = tortuosity
Re� � = real part
S = number of first-order systems in the impedance

approximation
sf = coefficient of the selective filter
T = number of second-order systems in the impedance

approximation
t = time, s
v = velocity component normal to impedance surface, m=s
Z = complex impedance, kg=m2=s
� = ratio of specific heats
�L = sound pressure level relative to the free field, dB

�t = time step, s
�x = spatial mesh size, m
�0 = air density, kg=m3

�0, �e = flow resistivity, Pa � s=m2

� = porosity
! = angular frequency, rad=s

I. Introduction

T IME-DOMAIN numerical solutions of the linearized Euler
equations (LEE) are well suited to study broadband noise

propagation outdoors, because they can take into account the inter-
actions of the acoustic waves with local wind and temperature
fluctuations in the atmospheric boundary layer. The motion of the
acoustic sources can also be considered with this type of simulation,
which can be useful in the context of transportation noise. Finite
difference time-domain methods are thus becoming increasingly
popular in the outdoor sound propagation community [1,2]. How-
ever, obtaining a time-domain boundary condition (TDBC) for a
ground of finite impedance is not straightforward. Indeed, impe-
dance models classically used for outdoor grounds have been
obtained in the frequency domain [3–6], and most of them cannot be
translated directly into the time domain. To translate a frequency-
domain impedance boundary condition to the time domain, the
definition of impedance has to be extended to the whole complex
frequency plane [7]. Using the exp��j!t� convention, this leads to
these necessary conditions for an impedance model to be physically
possible [7] (where Re� � and Im� � correspond to the real and
imaginary parts of a complex number, and � means complex
conjugate of):

1) For the causality condition, Z�!� is analytic and nonzero in
Im�!�> 0.

2) For the reality condition, Z��!� � Z��!�.
3) For the passivity condition, Re�Z�!�� 	 0.
The causality condition implies that the real and imaginary parts of

the impedance are related by a Hilbert transform [8–10].
Several authors have proposed techniques tomodel the impedance

of lining materials in the time domain [11–14]. These techniques
have been applied with some success in duct acoustics configura-
tions, but it is not clear how they would perform with ground
impedance models. Also, it must be noted that these studies were
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aiming at developing a TDBC in the presence of a mean flow. This is
not an issue outdoors because the wind speed in the surface layer
of the atmospheric boundary layer is quite low; typically, the
corresponding Mach number is lower than 0.05. In addition, in the
outdoor sound propagation community, several studies have aimed at
modeling sound propagation over an impedance ground in the time
domain using two different approaches. Some authors chose to
add a porous layer to the computation domain and calculated sound
propagation in the porous medium explicitly [1], whereas others
developed TDBC from a classical ground impedance model, such as
the phenomenological Zwikker and Kosten (ZK) model [2,15].

In this paper we follow the latter approach because it avoids extra
calculations in the porous medium. First, following Reymen et al.
[14], we will show that the impedance can be approximated by a set
of well-chosen template functions for which the coefficients can be
selected so that the causality, reality, and passivity conditions aremet.
A general TDBC is then obtained using the recursive convolu-
tion method originally developed in the context of electromagnetic
propagation [16]; this is a fast and computationally efficient method
to calculate a discrete convolution. It will be shown that the TDBC
obtained by Ostashev et al. [15], starting from the unit impulse
response of the impedance in the time domain, is quite similar to
this general TDBC. Second, different identification methods will
be proposed to find the coefficients of the template functions. The
identification process can be performed in the frequency domain, as
done by Fung and Ju [13] or Reymen et al. [14], or in the time
domain, as done by Ostashev et al. [15]. It will appear that additional
constraints on the value of the coefficients are required to ensure
stability and good accuracy. Thus, the coefficient identification must
be performed with great care to obtain both a good approximation of
the impedance over the frequency band of interest and coefficient
values that are suitable for numerical simulations.

In Sec. II of this paper, several ground impedance models that are
commonly used in the frequency domain are reviewed. These are
simple models, with no more than two adjustable parameters. Then,
in Sec. III, the general TDBC is derived and compared with other
TDBC found in the literature. Different methods of coefficient
identification are also presented. In Sec. IV, the TDBC is validated in
aLEE solver.One- and three-dimensional test cases are considered in
Secs. IV.B and IV.C, respectively. Finally, a calculation is perfor-
med in Sec. IV.D for a configuration that is more realistic in the
context of outdoor sound propagation.

II. Ground Impedance Models in the
Frequency Domain

One of the most popular model used to calculate the impedance of
outdoor grounds is the empirical Delany–Bazley (DB)model [4]. For
a semi-infinite ground layer, the characteristic impedance has the
following form:

Z=�0c0 � 1
 a�f=�e�
b 
 jc�f=�e�

d (1)

where �0 is the air density; c0 is the sound speed in the air; f is the
frequency; �e is an effective flow resistivity; and a, b, c, and d are
empirical coefficients. This is a simple one-parameter model that has
been extensively used to model the impedance of grassland [17–19],
although originally developed for fibrous absorbing materials.

A two-parameter impedance model can be built on the basis of
Eq. (1), considering a rigidly backed layer of thickness dL. The
characteristic impedance is then written [18]

ZL � jZ= tan�kdL� (2)

where k is the complex wave number in the porous layer, which has
the following form in the DB model:

k�
!

c0
�1
 p�f=�e�

q 
 jr�f=�e�
s� (3)

where p, q, r, and s are empirical coefficients. This ground
impedance model has two adjustable parameters, �e and dL.

For the classical DB model, the empirical coefficients in Eqs. (1)
and (3) in SI units are

aDB � 0:0511; cDB � 0:0768

bDB ��0:75; dDB ��0:73 (4)

pDB � 0:0858; rDB � 0:175

qDB ��0:70; sDB ��0:59 (5)

Miki [9] showed that this choice of coefficients breaks the causality
condition for an impedance model to be physically possible. He
proposed new coefficients in Eqs. (1) and (3) to obtain an impedance
model verifying the causality, reality, and passivity conditions:

aM � 0:0699; cM � 0:107; bM ��0:632 dM � bM (6)

pM � 0:109; rM � 0:160; qM ��0:618 sM � qM (7)

Figure 1 compares the normalized impedance of a rigidly backed
layer of thickness, 0.01 m, and effective flow resistivity,
100 kPa � s �m�2, using the DB or Miki model. Below 300 Hz, it
appears that the real part of the impedance is negative using the
DB model; thus, the ground is not passive anymore. Using the Miki
model, the real part of the impedance remains positive on the
frequency band 50–5000 Hz.

Recently, Wilson et al. [2] and Ostashev et al. [15] developed
TDBC based on the phenomenological ZK model [3]. The char-
acteristic impedance for a semi-infinite ground layer has the
following form:

Z� Z1

�����������������

1 � j!�

�j!�

s

(8)

where Z1 and � are the parameters of the model. With classical
parameter values of the ZK model, the impedance is not correctly
predicted at high frequencies or low flow resistivity. Thus, Wilson
et al. [2] suggested the following parameter values:

Z1 �
�0c0

�
; � �

�0q
2�

�0�
(9)

where� is the porosity of the ground,q is the tortuosity,�0 is theflow
resistivity in the limit of low frequency, and � is the ratio of specific
heats for air. With this choice of parameters, the model, called
modified ZK model, compares well to more sophisticated models
(microstructural and relaxation models), and has a broader range of
applications than theDBmodel, especially at low frequencies and for
materials with high flow resistivity such as soil and asphalt [2].
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Fig. 1 Real and imaginary parts of the normalized impedance of a
rigidly backed layer of thickness 0.01 m and effective flow resistivity

100 kPa � s �m�2: DB model (solid line) and Miki model (dashed line).
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However, the modified ZK model should be avoided to calculate
the impedance of grounds with an inhomogeneous structure, such as
the rigidly backed layer of Eq. (2), because it yields predictions of the
complex wave number that are significantly different from more
sophisticated model predictions (see attenuation prediction compari-
sons done by Wilson et al. in [20]. Figure 2 shows the frequency
dependence of the normalized impedance using the modified ZK
model with porous material parameters typical of soft soil and snow.

III. Derivation of Time-Domain Impedance
Boundary Conditions

Let p�t� be the acoustic pressure and v�t� the component of
particle velocity normal to the interface between the ground and the
air, with P�!� and V�!� their respective Fourier transform. The
frequency-domain boundary condition

P�!� � Z�!�V�!� (10)

can be translated into the time domain yielding the following TDBC:

p�t� �

Z


1

�1

v�t � t0�z�t0� dt0 (11)

where z�t� is the inverse Fourier transformof the impedanceZ�!�. To
avoid the calculation of the convolution in Eq. (11), which is not
efficient from a numerical point of view, it has been suggested to use
the recursive convolution (RC) method introduced by Luebbers
and Hunsberger [16] in the context of electromagnetic propagation
through dispersivemedia. TheRCmethod can be applied through the
use of special functions corresponding to Debye and Lorentz disper-
sive media in electromagnetics [16]. To introduce these functions,
some kind of approximation needs to be done. In Sec. III.A, the
impedance is approximated in the frequency domain, following a
method proposed by Fung and Ju [13] and also used byReymen et al.
[14]. The frequency-domain approximation can be applied to any
impedance model. In Sec. III.B, the approximation is performed in
the time domain, following a technique that Ostashev et al. [15]
applied on themodifiedZK impedancemodel. The response function
z�t� must be known analytically to use the time-domain approxi-
mation. It will be shown that this function can be calculated for the
Miki model of a semi-infinite ground layer. Finally, in Sec. III.C,
three methods that can be used to identify the coefficients appearing
in the TDBC are presented.

A. Frequency-Domain Approximation

Following Reymen et al. [14], the impedance is written as the sum
of S first-order systems (real poles) and T second-order systems
(complex conjugated poles):

Z�!� �
X

S

k�1

Zk�!� 

X

T

l�1

Zl�!� (12)

The impedance Zk�!� and the corresponding unit impulse response
zk�t� for a real pole �k > 0 are

Zk�!� �
Ak

�k � j!
(13)

zk�t� � Ake
��ktH�t�; �k 	 0 (14)

whereH�t� is the Heaviside function, which is zero for t < 0 and one
otherwise. The impedanceZl�!� and the corresponding unit impulse
response zl�t� for a pair of complex conjugated poles �l and ��l ,
written �l � j�l, are

Zl�!� �
Al

�l � j!



Bl

��l � j!
�

Dl � j!Cl

��l � j!�
2 
 �2

l

(15)

zl�t� � e��ltH�t�

�

Cl cos��lt� 

Dl � �lCl

�l
sin��lt�

�

; �l 	 0

(16)

From Eq. (15),

Cl � Al 
 Bl (17)

Dl � �l�Al 
 Bl� 
 j�l�Bl � Al� (18)

Thus, we must have Bl � A�
l for Cl and Dl to be real, which is a

necessary condition for the impedance model given by Eqs. (12–16)
to be real. This impedance model is also causal if the conditions
�k 	 0 and �l 	 0 are met and it is passive for a good choice of the
coefficients.

The impedance model given by Eqs. (12–16) was originally
proposed by Fung and Ju [13], who used similar template functions
to approximate the reflection coefficient. Their model relates the
incoming and outgoing velocities, whereas the model proposed here
relates the pressure and the normal velocity. Note also that the mass-
spring-damper model used by Tam and Auriault [11], Özyörük and
Long [12], and Fung and Ju [13] can be written as a second-order
system of the form of Eq. (15) [14]. This is a three-parameter model
that is able to match any given impedance at a single frequency.

Let us now consider the variables p�n� � p�n�t� and v�n� �
v�n�t� in their discretized form, with�t as the time step. Because of
the special form of the template functions zk�t� and zl�t�, the RC
method can be used and the following TDBC is obtained [14]:

p�n� �
X

S

k�1

Ak�
�n�
k 


X

T

l�1

Cl Re� 
�n�
l � 


Dl � �lCl

�l
Im� 

�n�
l � (19)

where �k and  l are accumulators given by

�
�n�
k � v�n�

1 � e��k�t

�k

 �

�n�1�
k e��k�t (20)

 
�n�
l � v�n�

1 � e���l�j�l��t

�l � j�l

  

�n�1�
l e���l�j�l��t (21)

Equations (20) and (21) are obtained assuming the velocity is
constant over a time step �t, which is referred to as the piecewise
constantRCmethod, in contrastwith the piecewise linear RCmethod
proposed by Kelley and Luebbers [21]. Equations (19–21) show that
the RC method is a very computationally efficient algorithm. If only
real poles are considered, S real-valued accumulators �k are
introduced.T complex-valued accumulators l are also introduced if
complex conjugated poles are considered, and only two storage
locations per accumulator are needed. Finally, we will see in
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Sec. IV.A that this TDBC can be included in the optimized Runge–
Kutta scheme used for time integration in the LEE solver.

B. Time-Domain Approximation

Ostashev et al. [15] proposed a method to derive a TDBC for the
modified ZK model. This method is based on an approximation in
the time domain. In a first step, the impedance given by Eq. (8) is
converted to the time domain by inverse Fourier transform, and in a
second step, the slow decaying response function obtained in the
time domain is approximated by a sum of decaying exponential
functions, having the same form as in Eq. (14).We now show that this
method can be applied to the Miki model of a semi-infinite ground
layer.

Because cM � aM cot��bM 
 1�	=2� and dM � bM [9], the
impedance given by Eq. (1) can be rewritten

Z�!� � �0c0

�

1




��j!��bM

�

(22)

with


�
aM

��2	�ej�
bM

�

1
 j cot
�bM 
 1�	

2

�

�
aM

�2	�e�
bM

�

sin
�bM 
 1�	

2

�

�1

(23)

The second equality of Eq. (23) shows that 
 is real. Using
Eq. (29.3.7) of [22], the following Fourier transform is found:

F �1

�

1

��j!��b

�

�
t�b�1

���b�
(24)

Hence,

z�t� � �0c0

�

��t� 




���bM�
t�bM�1H�t�

�

(25)

where ��t� is the Dirac delta function. Then the slow decaying
response function t�bM�1 is approximated by a sum of decaying
exponential functions:

t�bM�1 �
X

S

k�1

Ake
��ktH�t� (26)

Using Eq. (19), and taking into account the Dirac delta function in
Eq. (25), the following TDBC is obtained:

p�n� � �0c0

�

v�n� 

X

S

k�1

A0
k�

�n�
k

�

(27)

with A0
k � Ak
=���bM�. The accumulator �k is updated using the

recursive formula (20).
To obtain the same type of TDBCas inOstashev et al. [15], another

form of the recursive formula (20) is used:

�
�n�
k � v�n��t
 �

�n�1�
k e��k�t (28)

which assumes that �k�t is small. Equation (28) can be plugged into
the TDBC of Eq. (27), which is then written

v�n� �
1

1
�t
P

S
k�1 A

0
k

�

p�n�

�0c0
�
X

S

k�1

A0
ke

��k�t�
�n�1�
k

�

(29)

Equation (29) is very similar to Eq. (15) of Ostashev et al. [15]
derived for the modified Zwikker and Kosten model.

It appears that Ostashev et al. [15] used the same template
functions as Reymen et al. [14], considering real poles only. As will
be seen in Sec. III.C, the main difference is that Reymen et al. [14]
obtain the coefficients of the template functions by approximating
the impedance in the frequency domain, whereas Ostashev et al. [15]

obtain them by approximating the response functions in the time
domain. Also, the latter approach can only be applied if the inverse
Fourier transform of the impedance can be calculated analytically
and thus cannot be applied to arbitrary impedance models.

C. Coefficient Identification Methods

1. Vector Fitting Approximation

The first coefficient identification method that is presented is the
Vector Fitting (VF) technique proposed by Gustavsen and Semlyen
[23]. This technique has been used by Reymen et al. [14] to identify
the coefficients of Eqs. (13) and (15) in the frequency domain.
VF is a powerful technique to fit calculated or measured frequency-
dependent data with rational function approximation; the poles
are guaranteed to be real and causal. It is an iterative method¶ that
generally converges on an optimum solution after a few iterations.

The VF technique is first applied to the Miki model of a semi-
infinite ground layer. For this impedance model, VF yields only real
poles if the number of poles is kept relatively small (less than 10). In
Table 1, the errors err�Re�Z�!��� and err�Im�Z�!��� are given, where
the error for the estimate X of the exact function Xexact is defined as

err �X� �

�

X

N

m�1

�Xm � Xexact
m �2

�

X

N

m�1

�Xexact
m �2

�

1=2

(30)

The estimates are obtained considering N � 100 frequencies
logarithmically spaced between 50 and 1200 Hz, which corres-
ponds to the frequency range covered by the numerical simulations
presented in Sec. IV. It took a few seconds to obtain each of the
estimates on a personal computer equipped with a Pentium 4
processor running at 3.2 GHz and with 2 GB of RAMmemory. The
impedance fit obtained with four poles, referred to as VF S4 in
Table 1, is compared with the Miki model in Fig. 3 using a log–log
scale. The fit and the model cannot be distinguished over the
frequency band 50–1200 Hz. This result is confirmed by Table 1,
where the errors are seen to be quite small using the VF technique,
even when only four poles are considered. The maximum value of
�k�t is also given in Table 1. A time step�t of 1:47 
 10�4 s is used,
corresponding to the largest time interval encountered in the
simulations. The maximum value of �k�t increases rapidly with
the number of real poles S. It will be shown in Sec. IV that this
increase has an impact on the accuracy of the numerical calculations.

The VF method is then applied to the Miki model of a rigidly
backed layer of thickness 0.01 m. When the total number of poles
S
 2T is greater than six, VF now yields complex poles as well as
real poles, as can be seen in Table 2. The maximum value of �l�t is
seen to increase rapidly with the total number of poles.

2. Optimization in the Frequency Domain

It will be seen in Sec. IV that it is desirable to constrain the values
of the coefficients �k. This cannot be done straightforwardly using
the VF technique; thus, another coefficient identification method is
proposed. It is based on a minimization procedure in the frequency

Table 1 Errors err�Re�Z�!��� and err�Im�Z�!��� for theMiki

impedance model of a semi-infinite ground layer

(�e � 100 kPa � s �m�2) using two coefficient identification

methods in the frequency domain

Sets of
coefficients

S max��k�t�
a err�Re�Z�!��� err�Im�Z�!���

VF S4 4 7.0 0.3% 0.2%
VF S5 5 13.3 0.1% 0.0%
VF S6 6 23.0 0.0% 0.0%
OF v1 5 5.0 0.5% 0.4%
OF v2 4 2.5 0.9% 0.7%

a�t� 1:47 
 10�4 s.

¶Data available only at http://www.energy.sintef.no/produkt/VECTFIT/
index.asp [retrieved 22 July 2009].
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domain. Considering only real poles, the optimization in the
frequency domain (OF) aims at finding the coefficients Ak and �k in
the approximation

Z�!� �
X

S

k�1

Ak

�k � j!
�
X

S

k�1

Ak�k

�2k 
 !2

 j

X

S

k�1

Ak!

�2k 
 !2
(31)

Furthermore, the causality condition �k 	 0 and the accuracy
condition �k�t � Lthres are imposed, withLthres as a threshold value.
The optimization cannot be done using a simple minimization
procedure, as it will be done in the time domain, because Z�!� is
complex. There are two functions tominimize, which are the real and
imaginary parts of Eq. (31); this corresponds to a multiobjective
optimization problem. This type of problem can be solved, for
instance, using an �-constraint method [24]. With the MATLAB
function fmincon from the Optimization Toolbox, the function

Re �Z�!�� �
X

S

k�1

Ak�k

�2k 
 !2

is minimized under the following constraints:
Constraint 1: �k 	 0
Constraint 2: �k�t � Lthres

Constraint 3:
�

�

�

�

Im�Z�!�� �
X

S

k�1

Ak!

�2k 
 !2

�

�

�

�

� �

where �t� 1:47 
 10�4 s.
The two first sets of coefficients are obtained for the Miki model

of a semi-infinite ground layer. In the first optimization that is
performed, 100 frequencies logarithmically spaced between 50 and
1200 Hz are considered, and Lthres is set to five. A number of 100
optimizations with random values of Ak and �k are performed with a
relatively large value of �, equal to min�Im�Z�!���=5. The initial
random values ofAk and �k are chosen between zero and 1=�t. A set
of coefficients that yields small values of the errors err�Re�Z�!��� and

err�Im�Z�!��� is selected. Then, additional optimizations are perfor-
med with smaller values of � until a good approximation of the real
and imaginary parts of the impedance is obtained. The results
associated with this first optimization, noted OF v1, are given in
Table 1 and the associated fit is plotted in Fig. 3. The second
optimization, noted OF v2, is performed in a similar way, consi-
dering 100 frequencies logarithmically spaced between 50 and
600 Hz; Lthres is reduced to 2.5.

Two sets of coefficients are also obtained for the Miki model of a
rigidly backed layer of thickness 0.01 m following the same
procedure. The first optimization, noted OF v1L, is performed on
the frequency range 50–1200 Hz with a threshold value of 5, and the
second optimization, noted OF v2L, is performed in the frequency
range 50–600Hzwith a threshold value of 2.5. The results associated
with these sets of coefficients are given in Table 2. Each optimization
process took about 20 min to run on the same computer as the one
used in Sec. III.C.1. Compared with the vector fitting technique, the
optimization in the frequency domain is more time-consuming
because the initial values of Ak and �k in the algorithm are chosen
randomly. However, once a good choice of initial values ofAk and �k
has been selected, it is quite fast and efficient to perform the
additional optimizations yielding the desired sets of coefficients.

3. Optimization in the Time Domain

The third and last method of coefficient identification that is
described is based on Eq. (26), corresponding to the Miki model of a
semi-infinite ground layer. An optimization procedure is used to
minimize the difference between the left and right hand sides of
Eq. (26). This optimization in the time domain (OT) is performed
over the range 0 � t � 100 ms, with a time step of 0.1ms.As done in
the optimization method in the frequency domain, 100 optimizations
with random values of Ak and �k are performed, and then a set of
coefficients that yields a small value of the error err�t�bM�1� is
selected. First, following Ostashev et al. [15], the optimization
procedure is based on the MATLAB function fminsearch. This
corresponds to an unconstrained nonlinear optimization, because
there is no constraint on the values of Ak and �k. This first opti-
mization is referred to as OT v1 in Table 3. Second, the MATLAB
function fmincon is used to perform the optimization with the
additional constraint�k�t � 1.With this second optimization, noted
OT v2, the error in the approximation of the response function t�bM�1

is larger than with OT v1. Each optimization process took about
50 min to run on the same computer as the one used in Sec. III.C.1.
Compared with the optimization method in the frequency domain,
the computation time is greater because of the large number of
time samples considered here (1000 time samples) with respect to
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semi-infinite layer of effective flow resistivity 100 kPa � s �m�2: Miki

model (solid line), fit obtained with the set of coefficients VF S4 (dashed

line), fit obtained with the set of coefficients OF V1 (dashed-dotted line),

and frequency band 50–1200 Hz (vertical lines).

Table 2 Errors err�Re�Z�!��� and err�Im�Z�!��� for the Miki impedance model of a rigidly backed layer of thickness 0.01 m

(�e � 100 kPa � s �m�2) using two coefficient identification methods in the frequency domain

Sets of coefficients S max��k�t�
a T max��l�t�

a max��l�t�
a err�Re�Z�!��� err�Im�Z�!���

VF S4T1L 4 0.8 1 5.5 3.2 1.5% 0.1%
VF S6T1L 6 0.7 1 4.9 6.3 0.1% 0.0%
VF S8T1L 8 0.9 1 0.4 11.5 0.1% 0.0%
OF v1L 6 4.7 0 —— —— 0.6% 0.0%
OF v2L 6 2.1 0 —— —— 0.3% 0.0%

a�t� 1:47 
 10�4 s

Table 3 Error err�t�bM�1� for the Miki impedance
model of a semi-infinite ground layer

(�e � 100 kPa � s �m�2) using the coefficient

identification method in the time domain

Sets of coefficients S max��k�t�
a err�t�bM�1�a

OT v1 6 1.3 0.3%
OT v2 6 0.4 1.0%

a�t� 1:47 
 10�4 s
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the number of frequency samples used in Sec. III.C.2 (100 frequency
samples).

IV. Numerical Results Using the Linearized
Euler Equations

A. Linearized Euler Equation Solver

The LEE are solved in the time domain using low-dispersion and
low-dissipation explicit numerical schemes developed in the compu-
tational aeroacoustics community, and also used for turbulence
simulations [25]. Optimized finite difference schemes and selective
filters over 11 points are used for spatial derivation and grid-to-grid
oscillations removal, respectively. These schemes allow accurate
calculation of acoustic wavelengths down to approximately five
times the spatial mesh size. For the interior points, the points
separated from the boundary by at least five points, the centered
fourth-order finite difference scheme of Bogey and Bailly [26] and
the centered sixth order selective filter recently proposed by Bogey
et al. [27] are chosen. For the boundary points, the five extreme
points in each direction, the 11-point noncentered finite difference
schemes and selective filters of Berland et al. [28] are used. Applying
a selective filter to a variable U on a uniform mesh of size �x
provides

Uf�x0� �U�x0� � sf
X

Q

m��P

dmU�x0 
m�x� (32)

In the following, a filtering coefficient sf of 0.2 is taken for all
selective filters except at the extreme points where no filtering is
applied. The optimized six-stage Runge–Kutta algorithm proposed
byBogey andBailly [26] is used for time integration. It only uses two
storage locations per variable and has a high stability limit. For the
differential equation

@U

@t
� F�U� (33)

the explicit p-stage Runge–Kutta algorithm advances the solution
from the nth to the (n
 1)th iteration as [26]

U�0� �U�n� (34a)

U�i� �U�n� 
 �i�tKU; i� 1 . . .p (34b)

U�n
1� �U�p� (34c)

where KU � F�U�i�1�� in Eq. (34b). The simulations presented in
this paper are obtained with a Courant–Friedrichs–Lewy (CFL)
c0�t=�x of 1.

The TDBC described in Sec. III can easily be adapted to this
Runge–Kutta algorithm, noting that the time step between two
consecutive stages is taken as ��i � �i�1��t. For the frequency-
domain approximation, the following steps are implemented at stage
i for the points at the boundary:

1) Advance v in time following Eq. (34b): v�i� � v�n� 
 �i�tKv.
2) Advance �k and  l in time using Eqs. (20) and (21):

�
�i�
k � v�i�

1 � e��k��i��i�1��t

�k

 �

�i�1�
k e��k��i��i�1��t

 
�i�
l � v�i�

1 � e���l�j�l���i��i�1��t

�l � j�l

  

�i�1�
l e���l�j�l���i��i�1��t

3) Calculate Kp using Eq. (19) and (34b):

Kp �
1

�i�t

�

X

S

k�1

Ak�
�i�
k



X

T

l�1

�

Cl Re� 
�i�
l � 


Dl � �lCl

�l
Im� 

�i�
l �

�

� p�n�

�

4) Advance p in time following Eq. (34b): p�i� � p�n� 
 �i�tKp.
For the time-domain approximation, the following steps are

implemented at stage i for the points at the boundary:
1) Advance p in time following Eq. (34b): p�i� � p�n� 
 �i�tKp.
2) Calculate Kv using Eq. (29) and (34b):

Kv �
1

�i�t

�

p�i�=�0c0 �
P

S
k�1 A

0
ke

��k��i��i�1��t�
�i�1�
k

1
 ��i � �i�1��t
P

S
k�1 A

0
k

� v�n�
�

3) Advance v in time following Eq. (34b): v�i� � v�n� 
 �i�tKv.
4) Advance �k in time using Eq. (28):

�
�i�
k � v�i���i � �i�1��t
 �

�i�1�
k e��k��i��i�1��t

These are two ways to implement the time-domain boundary
conditions, but other implementations could also be considered.

In the numerical simulations, the initial pressure distribution at
t� 0 has a Gaussian form. In 1-D,

p�x; t� 0� � exp

�

� ln 2
x2

B2

�

(35)

where B is the Gaussian half-width. The shape of the Gaussian pulse
and its frequency content are plotted in Fig. 4 for B� 3�x and
B� 5�x. To avoid spurious reflections, the source should be located
at least 10�x away from a boundary if B� 3�x, and 15�x away
from a boundary if B� 5�x. In the one- and three-dimensional test
cases presented in Secs. IV.B and IV.C , the mesh size �x is set to
0.05 m or 0.10 m. Figure 4 shows that the pulse has a significant
frequency content for kx�x approximately between zero and 3	=8
with B� 3�x. The upper limit kx�x� 3	=8 corresponds to a
frequency of 1280 Hz if �x� 0:05 m or 640 Hz if �x� 0:10 m.
With B� 5�x, the upper limit is reduced to approximately
kx�x� 	=4, which corresponds to a frequency of 850 Hz if �x�
0:05 m or 430 Hz if �x� 0:10 m.

For the three-dimensional simulations of Secs. IV.C and IV.D, the
radiation boundary conditions derived by Bogey and Bailly [29] are
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used; they are an extension of Tam and Dong’s [30] work in a two-
dimensional geometry. These boundary conditions are applied to the
last three rows of points at each boundary except at the impedance
boundary. The origin used for the radiation boundary conditions is
located on the ground.

B. One-Dimensional Test Cases

Consider a one-dimensional propagation test case, with an
impedance boundary condition on the left (x� 0) and a radiation
boundary condition on the right. The computational domain has a
length of 101 points and theGaussian pressure distribution is initially
located at the center of the domain. First, a perfectly reflecting
boundary condition is placed on the left of the domain. Results are
given in terms of nondimensional variables because they are
independent on the mesh size. In particular, let �t� t=��x=c0� be
the normalized time. Two pressure distributions at �t� 20 and �t�
140 are plotted in Fig. 5.At �t� 20, the left- and right-travelingwaves
are in the computational domain. The right-traveling wave is exiting
the domain at about �t� 50, whereas the left-traveling wave is
reflected by the wall. At �t� 140, the reflected wave is then close to
the limit of the domain. The error rate is defined as

enum �

�

X

Nx

m�1

�pnum
m � pexact

m �2
�

X

Nx

m�1

�pexact
m �2

�

1=2

(36)

where Nx � 101 is the number of points in the domain, pnum is the
numerical solution, and pexact is the analytical solution. In Fig. 6, the
dashed curve corresponds to the plot of the error rate with respect to
the normalized time �t for the perfectly reflectingwall. In testing, it has
been found that by increasing the length of the domain, the error due
to the radiation boundary condition is very small. Over a perfectly
reflecting ground,

max
�t�140

�enum� �

�

0:3% for B� 5�x;

0:9% for B� 3�x
(37)

These values can be considered as a lower bound for the error rate.
Consider now an impedance TDBC on the left of the domain. The

analytical solution pexact that appears in Eq. (36) is calculated by
inverse Fourier transform of the frequency-domain solution, as
proposed by Rienstra [31]. First, the Miki model for a semi-infinite
ground layer with an effective flow resistivity of 100 kPa � s �m�2 is
considered. The error rates are given in Table 4 for the sets of
coefficients obtained using the twomethods in the frequency domain
(see Table 1), and the method in the time domain (see Table 3).
Using the vector fitting approximation, it appears that the error rate
increases with the number of poles, whereas the impedance is better
approximated with a greater number of poles as seen in Table 1. This
unexpected behavior is also illustrated in Fig. 6, in which the error
rates are plottedwith respect to the normalized time for amesh size of
0.05 m. This result can be explained by the values of the poles �k. In
the context of electromagnetic propagation through dispersive
media, it is common to approximate the complex permittivity with a
sum of single-pole systems; this is referred to as Debye function
expansion [32]. Several authors, including Young et al. [33], Beck
and Mirotznik [34], and Kelley et al. [32], have shown that the time
step �t must be small compared with all the time scales of the
problem, including 1=�k, to accurately represent the problem. In
Table 1, the maximum of �k�t is seen to increase from seven to 23
when the number of real poles S goes from four to six in the VF
algorithm, which explains the increase of the error rate with S. A
value of �t of 1:47 
 10�4 s is used in Tables 1–3, which
corresponds to�x� 0:10 m, taking into account that the maximum
of (�i � �i�1) is 0.5 with the Runge–Kutta algorithm used in the
solver [26]. For a mesh size of 0.05m, the time step is twice as small,
and the error is expected to be somewhat smaller. For instance, with
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the set of coefficients VF S6 and a Gaussian half-bandwidth
B� 3�x, the error rate is 1.7% with �x� 0:05 m and 2.0% with
�x� 0:10 m.

In the optimization method in the frequency domain, an accuracy
condition �k�t � Lthres has been added to constrain the value of the
coefficients �k. For the set of coefficients OF v1, obtained over
the frequency range 50–1200 Hz with Lthres � 5, small values of the
error rate are found, especially when a mesh size of 0.05 m is used
with error rates of 0.9% with B� 3�x and of 0.6% with B� 5�x.
The set of coefficients OF v2 is obtained over the frequency range
50–600 Hz with Lthres � 2:5; thus, the error rates are only calculated
with a mesh size of 0.10 m, at which most of the energy is below
600 Hz. The optimization OF v2 yields an error rate of 0.8% for the
two half-bandwiths considered. Finally, results for the optimization
in the time domain are given in Table 4. The set of coefficients OT v1,
obtained using an unconstrained optimization procedure, performs
well with a mesh size of 0.05 m, with error rates � 1:0%. On the
other hand, the optimization OT v2, obtained with the constraint
�k�t � 1, yields small error rates with�x� 0:10 m equal to 0.6%
with B� 3�x and equal to 0.4% with B� 5�x. Generally
speaking, the results for the sets of coefficients OF and OT show
that a trade-off must be found between the quality of the fit of the
impedance Z�!� or the response function z�t� and the constraint on
the maximum value of �k�t.

TheMiki model for a rigidly backed layer of thickness 0.01m and
effective flow resistivity 100 kPa � s �m�2 is now considered. The
error rates are given in Table 5 for the sets of coefficients obtained
with the twomethods in the frequency domain (see Table 2). The role
of complex conjugated poles is investigated using the sets of
coefficients obtained by vector fitting. The error rates are seen to be
higher when the total number of poles S
 2T goes from six to eight.
This can be explained by the increase of themaximum value of�l�t,
as seen in Table 2. As mentioned before, the time step �t must be
small compared with all time scales to accurately represent the
problem. When complex conjugated poles are used, this means that
not only �k�t but also �l�t and �l�tmust be small to keep a good
accuracy. With the set of coefficients VF S8T1L, including 10 poles,
the calculations become unstable, which seems to be linked with the
large value of �l�t obtained with these coefficients. This stability
issue has been studied by Beck and Mirotznik [34] in the context of
electromagnetic propagation through dispersive media. For second-
order systems (complex conjugated poles), also referred to as
Lorentzmedia, Beck andMirotznik [34] showed that the calculations
are not unconditionally stable, and that it might be necessary
to reduce the time step to maintain stability. Finally, using the

optimization method in the frequency domain, small error rates are
obtained. The set of coefficients OF v1L is better suited to calcula-
tions with a mesh size of 0.05 m, whereas the set OF v2L performs
better with a mesh size of 0.10m. These two sets of coefficients yield
error rates � 0:8% with B� 3�x and � 0:4% with B� 5�x.

C. Three-Dimensional Test Cases

Consider now a three-dimensional propagation test case, with an
impedance boundary condition on the bottom (z� 0) and radiation
boundary conditions at the other limits of the domain. The initial
Gaussian pulse is located at �xS; yS; zS� � �0; 0; 20�x�; this value of
the source height zS ensures that the entire pulse is in the computa-
tional domain (see Fig. 4). The computation domain must be suffi-
ciently large so that the error introduced by the radiation boundary
conditions is small; thus, the size of the domain is set to 201 
 201

201 points, but the error rate will be calculated over a subdomain
of 101 
 101 
 101 points. First, the acoustic propagation over a
perfectly reflecting ground is studied to define a criterion for the
error; the results are independent of the mesh size �x in that case.
Pressure contours in the y� 0 plane are plotted in Fig. 7 at the
normalized times �t� 40 and �t� 120. The error rate enum is estimated
over a volume of 101 
 101 
 101 points, the limit of which are
represented by dashed lines in Fig. 7, extending the formula of
Eq. (36). Note that the pressure contours calculated analytically and
plotted with dotted lines in Fig. 7 cannot be distinguished from the
pressure contours calculated numerically and plottedwith solid lines.
At �t� 120, the reflected wave is about to leave the volume over

Table 4 One-dimensional test case results for the Miki impedance model of a semi-infinite ground layer

(�e � 100 kPa � s �m�2) using the sets of coefficients described in Tables 1 and 3

max�enum� with B� 3�x max�enum� with B� 5�x
Sets of coefficients �x� 0:05 m �x� 0:10 m Sets of coefficients �x� 0:05 m �x� 0:10 m

VF S4 1.2% 1.2% VF S4 0.6% 0.8%
VF S5 1.5% 1.5% VF S5 0.8% 0.8%
VF S6 1.7% 2.0% VF S6 0.9% 1.1%
OF v1 0.9% 1.2% OF v1 0.6% 0.8%
OF v2 —— 0.8% OF v2 —— 0.8%
OT v1 1.0% 1.1% OT v1 0.7% 0.7%
OT v2 1.7% 0.6% OT v2 1.1% 0.4%

Table 5 One-dimensional test case results for the Miki impedance model of a rigidly backed layer

of thickness 0.01 m (�e � 100 kPa � s �m�2) using the sets of coefficients described in Table 2

max�enum� with B� 3�x max�enum� with B� 5�x
Sets of coefficients �x� 0:05 m �x� 0:10 m Sets of coefficients �x� 0:05 m �x� 0:10 m

VF S4T1L 1.0% 1.1% VF S4T1L 0.5% 0.5%
VF S6T1L 1.2% 1.4% VF S6T1L 0.6% 0.5%
VF S8T1L Unstable Unstable VF S8T1L Unstable Unstable
OF v1L 0.8% 1.0% OF v1L 0.4% 0.5%
OF v2L —— 0.8% OF v2L —— 0.3%
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Fig. 7 Pressure contours in the y� 0 plane at �t� 40 (left) and �t� 120
(right) for the perfectly reflecting ground case, using a Gaussian half-
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which the error rate is calculated. This calculation of the error rate is
represented as a solid line in Fig. 8. It requires the analytical solution
to be known over approximately one million points. Over an
impedance ground, the analytical solution in the time domain is
calculated using the method proposed by Zheng and Zhuang [35].
This method uses a decomposition of the broadband spherical wave
into harmonic spherical waves by Fourier transform in a first
step, and a decomposition into harmonic plane waves using Weyl’s
integral [36] in a second step. A high computational effort is required
to compute this analytical solution. Thus, the analytical solution
cannot be obtained in the whole volume in a reasonable amount of
time. To reduce the computational burden, the error rate is calculated
over the 101 
 101 points of the y� 0 plane only, and is noted
enum�y� 0�. Figure 7 shows that the error rates calculated over the
whole volume and over the y� 0 plane are very similar. As a result,
the maximum of the error rate enum�y� 0� over �t � 120 will be the
criterion used to assess the quality of the TDBC derived. Over a
perfectly reflecting ground,

max
�t�120

�enum�y� 0�� �

�

0:6% for B� 5�x;

1:9% for B� 3�x
(38)

The results for theMiki model of a semi-infinite ground layer with
an effective flow resistivity of 100 kPa � s �m�2 are given in Table 6
for the same sets of coefficients as in Sec. IV.B. The trends obtained
with the one-dimensional test case are confirmed. Using the VF

algorithm, the error rate is quite large and increases when the
number of poles goes from four to six due to the increase of the
maximum value of �k�t. The sets of coefficients OF v1 and OT v1
yield the best results using a mesh size of 0.05 m, with error rates
� 1:7% with B� 3�x and � 1:1% with B� 5�x. The sets OF v2
and OT v2 are better suited for the calculations using a mesh size of
0.10 m, with error rates � 1:1% with B� 3�x and � 0:6% with
B� 5�x. Error rates are seen to be generally higher with B� 3�x
than with B� 5�x, which can be attributed to the larger frequency
range covered by the Gaussian distribution of smaller half-
bandwith.

The results for the Miki model of a rigidly backed layer of
thickness 0.01 m and effective flow resistivity 100 kPa � s �m�2 are
given in Table 7 for the same sets of coefficients as in Sec. IV.B. As
seen in the one-dimensional test case, the calculations with the set of
coefficients VF S8T1L are unstable due to the large maximum value
of �l�t. With a mesh size of 0.05 m, the set OF v1L performs the
best, with error rates of 1.4% with B� 3�x and of 1.2% with
B� 5�x. Error rates obtained with a mesh size of 0.10 m are close
for the sets of coefficients VF S4T1L, OF v1L and OF v2L. For this
mesh size, the set OF v2L will be chosen in the following because of
its small maximum value of �k�t.

The numerical solution is now compared with the analytical
solution in the frequency domain; this analytical solution is calcu-
lated using the classical expression for the reflection of a spherical
wave from a locally reacting plane surface that can be found, for

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

e n
u
m

 (
t)−

e n
u
m

 (
t)−

t
−

t
−
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Table 6 Three-dimensional test case results for the Miki impedance model of a semi-infinite ground layer

(�e � 100 kPa � s �m�2) using the sets of coefficients described in Tables 1 and 3

max�enum�y� 0�� with B� 3�x max�enum�y� 0�� with B� 5�x
Sets of coefficients �x� 0:05 m �x� 0:10 m Sets of coefficients �x� 0:05 m �x� 0:10 m

VF S4 2.2% 2.2% VF S4 1.4% 1.3%
VF S5 3.0% 2.7% VF S5 1.8% 1.7%
VF S6 3.3% 3.8% VF S6 2.0% 2.5%
OF v1 1.7% 2.1% OF v1 1.1% 1.3%
OF v2 —— 1.1% OF v2 —— 0.6%
OT v1 1.5% 2.0% OT v1 1.1% 1.2%
OT v2 3.0% 1.0% OT v2 2.1% 0.6%

Table 7 Three-dimensional test case results for the Miki impedance model of a rigidly backed layer

of thickness 0.01 m (�e � 100 kPa � s �m�2) using the sets of coefficients described in Table 2

max�enum�y� 0�� with B� 3�x max�enum�y� 0�� with B� 5�x
Sets of coefficients �x� 0:05 m �x� 0:10 m Sets of coefficients �x� 0:05 m �x� 0:10 m

VF S4T1L 1.7% 2.1% VF S4T1L 1.4% 1.8%
VF S6T1L 2.2% 2.3% VF S6T1L 1.6% 1.8%
VF S8T1L Unstable Unstable VF S8T1L Unstable Unstable
OF v1L 1.4% 1.9% OF v1L 1.2% 1.8%
OF v2L —— 2.1% OF v2L —— 1.7%
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instance, in Chessell [17]. Using a fast Fourier transform, the
spectrum of the sound pressure level relative to the free field, noted
�L, is calculated and compared with the analytical solution in Fig. 9
for the semi-infinite ground layer and for the rigidly backed layer of
thickness 0.01 m. The sets of coefficients OF are used in the TDBC;
these coefficients are given in theAppendix. The receiver is located at
x� 100�x, y� 0, and z� zS and thus at x� 5 m and z� 1 m for a
mesh size of 0.05 m and at x� 10 m and z� 2 m for a mesh size of
0.10 m. For a mesh size of 0.05 m, the numerical solution follows
the analytical solution well up to about 1000 Hz with B� 5�x, and
1300 Hz with B� 3�x. For a mesh size of 0.10 m, these frequency
limits are reduced to about 500 Hz for B� 5�x and 700 Hz for

B� 3�x. These values are in agreement with those obtained in
Sec. IV.A from the spectral shape of the initial Gaussian pulse,
and show the broadband nature of the time-domain simulations
presented.

D. A More Realistic Configuration for Outdoor Sound Propagation

In this section, a three-dimensional configuration with a preferred
direction of propagation x is considered; this is a more realistic
geometry for outdoor sound propagation calculations [37,38].
A mesh size �x of 0.10 m is considered, the Gaussian half-width
is B� 3�x, and the source height is 20�x� 2 m. The sets of
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Fig. 9 Spectra of the sound pressure level relative to the free field �L at x� 100�x, y� 0, and z� zS; analytical solution (thick lines), numerical
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Fig. 10 Pressuremaps on the y� 0 and z� zS planes after 160 iterations (t� 47 ms) and 960 iterations (t� 282 ms). The impedance of the semi-infinite

ground layer is approximated by the set of parameters OF v2.
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coefficients OF v2 and OF v2L are used in the TDBC relative to the
Miki impedance model of a semi-infinite ground layer and of a
rigidly backed layer of thickness 0.01m, respectively. Pressure maps
on the y� 0 and z� zS planes are plotted in Fig. 10 at two different
times considering the semi-infinite ground layer. The calculation is
run over 1300 time iterations, which corresponds to a simulation time
of 382 ms; the computational domain includes over 52 million
points. This calculation is performed on aNECSX-8 vectormachine.

The spectra of the sound pressure level relative to the free field�L
calculated numerically are compared with the spectra calculated
analytically in Fig. 11 for receivers located 50 and 100 m away from
the source in the y� 0 and z� zS planes. The top plots correspond
to the Miki impedance model of a semi-infinite ground layer, and
the bottom plots to the Miki impedance model of a rigidly backed
layer of thickness 0.01 m. The numerical solution is in very good
agreement with the analytical solution between approximately 20
and 600 Hz, with sound pressure level differences smaller than 1 dB.
The sound pressure levels calculated numerically and analytically are
then plotted in Fig. 12 with respect to the propagation distance x for
six frequencies between 100 and 600 Hz; the receivers are still in the
y� 0 and z� zS planes.Good agreement between the numerical and
analytical solutions is found at all frequencies, with sound pressure
level differences smaller than 1 dB.

V. Conclusions

In this paper, a general time-domain boundary condition (TDBC)
has been proposed to include ground impedance models typically
used in outdoor sound propagation applications in a linearized Euler
equations solver. More specifically, the Miki model for a semi-
infinite ground layer and for a rigidly backed layer of thickness dL
has been considered. This impedance model is simple, with one or
two adjustable parameters, and meets the three necessary conditions
for a model to be physically possible. To derive this TDBC, the
impedance has been approximated by a sum of well-chosen template
functions. The forms of these functions enable us to use the recursive
convolution technique, which is very efficient from a numerical
point of view. The impedance approximation can be performed in the
frequency domain or in the time domain, and different methods have
been described to identify the coefficients of the template functions.
For the time-domain approximation, though, the response function
z�t�must be known analytically. The analytical expression of z�t� for
the Miki model of a semi-infinite ground layer has been derived in
this paper.

Test cases in one- and three-dimensional geometries have been
proposed to validate the TDBC. When only real poles �k are
considered in the template functions, the numerical simulations
become inaccurate when �k�t is large with respect to unity. For this
reason, the method of optimization in the frequency domain, cor-
responding to a constrained nonlinear optimization, is preferred to
the vector fitting algorithm to obtain the coefficients because the
values of the poles cannot be easily bounded using vector fitting. The
method of coefficient identification in the time domain also yields
accurate numerical results, but has only been applied to the Miki
model of a semi-infinite ground layer.

When the vector fitting algorithm has been applied to the Miki
model of a rigidly backed layer of thickness 0.01 m, complex
conjugated poles have been obtained. It has been seen that the
calculations are not unconditionally stable in that case; unstable
results occur when the imaginary part of the poles �l is large. Finally,
a configuration with a preferred propagation direction x has been
considered. This is a more realistic geometry in the context of out-
door sound propagation. In these calculations, the frequency-domain
optimization method has been used to obtain the coefficients of the
TDBC. The numerical solution has been comparedwith an analytical
solution in the frequency domain, and good agreement has been
found over a large frequency band for propagation distances up to
100 m.

Based on these results, the method of optimization in the
frequency domain can be recommended to identify the coefficients of
the template functions, because it allows the values of the poles to be

constrained and it can be applied to many impedance models. In the
future, this coefficient identification method could be extended to
consider a combination of real and complex conjugated poles. Real
poles were sufficient to approximate the impedance models used
in this study, but complex conjugated poles might be necessary to
accurately approximate more complicated impedance models.

Appendix: Coefficients of the Time-Domain
Impedance Boundary Conditions

The sets of coefficients obtained by the method of optimization in
the frequency domain described in Sec. III.C are now given. The sets
of coefficients OF v1 and OF v2, which correspond to the Miki
impedance model of a semi-infinite ground layer, are described in
Table A1, and the sets of coefficients OF v1L and OF v2L, which
correspond to theMiki impedance model of a rigidly backed layer of
thickness 0.01 m, are described in Table A2.
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