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Abstract. - Eddy current effects have been included in the model of the 
transformer for the study of electromagnetic transienfs. Existing analyti- 
cal formulas for the calculation of losses in the windings have been 
evaluated. Various equivalent circuits have been fitted to represent in the 
time domain the damping produced by eddy currents in the windings. A 
frequency dependent model has been derived for the iron core, based on 
the physical distribution of losses and magnetization effects. The param- 
eters of this model are obtained by optimal discretization of the lamina- 
tions. Simulations of transients have been presented to show the effects 
of eddy currents in the damping of transients. 
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INTRODUCTION 
The global eddy current problem in a transformer includes the eddy 

currents in the windings, in the core and in the tank. In this paper we deal 
with the first two. In relation to the eddy ciurent effects in transformer 
windings, only frequency domain results [1]-[6] are available at present. 
In the paper we describe methodologies for the synthesis of lumped 
parameter circuits that adequately represent the eddy current effects in 
the windings and iron core of a transformer for the study of electromag- 
nelic transients. These models are derived by fitting electric circuits to 
the analytical expressions for the impedance of windings and lamina- 
tions. The impedance equations for the windings are the complex exten- 
sion of already existing expressions for the eddy current losses, obtained 
by the solution of the electromagnetic field problem (Maxwell's equa- 
tions) with different assumptions about the field geometry. We achieve 
an accurate representation of the effects of eddy currents up to very high 
frequencies with relatively low order models. 

The equivalent circuits derived for the representation of eddy 
currents in the windings and in the iron core are iotended to be used, in 
conjunction with our previous work on transformer modeling [7],[8], in a 
complete transformer model for the study of electromagnetic transients. 
The accurate modeling of eddy current effects is very important for 
predicting the damping during transients since the actual resistance of the 
windings at high frequencies is by several orders of magnihtde larger 
than its low frequency value and the penetration depth into the lamina- 
tions at high frequencies is very small. 

There are two physical phenomena that occur simultaneously in the 
windings of a transformer: 
- skin effect, the non-uniform distribution of the current in a conduc- 

tor (with a corresponding increase in losses) due to the magnetic 
field produced by the current in the conductor itself, and 
proximity effect, the non-uniform distribution of the current in a 
conductor (with a still larger increase in losses) due to the maglletic 

- 
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field produced by the current in neighboring conductors. 
The two phenomena are usually calculated together and the overall 

non-uniform distribution of the current in the conductors of a transformer 
is called eddy current effect in the windings. Both this and the time 
domain modeling of the eddy current effect in the landnations will be 
discussed in the following sections. 

ANALYTICAL FORMULATION O F  EDDY CURRENT EFFECTS 
Traditionally, Maxwell's equations for the study of eddy currents 

are formulated for the quasi-static electromagnetic field. These formula- 
tions yield diffusion equations that can be solved analytically using 
simplified geometries. The resulting expressions are generally acceptable 
for the analysis of the behavior of electric machines. Designers, however, 
are not always satisfied with their accuracy and often rely on numerical 
solutions (for example finite elements) for more realistic geometries. 

Windings 
There exists a number of analytical expressions for the calculation 

of losses in the transformer windings [ l]-[6]. As we are interested not 
only in the losses produced by the eddy currents but also in the magnetic 
effects, we derive in this paper expressions for the impedance. The basic 
assumptions made in the derivations are: 
a) The magnetic field has only an axial component, parallel to the axis 

of the windings. 
b) The conductors have a rectangular cross section. 
c) All conductors carry the same total current. This precludes the con- 

sideration of parallel conductors and sets a limit in the maximum 
frequency of validity for the equations. 
There is no gap between conductors (see Figure 1). However, the 
surface field intensity is assumed to be undisturbed by the eddy 
currents. 

d) 

e- 
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These assumptions imply that the magnetic field at the lateral surfaces of 
the conductors is known and it can be used to specify h e  boundary con- 
ditions. Thus we have a distribution of the magnetic field intensity as 
illustrated in Figure 1. This distribution is different from the well known 
trapezoidal distribution of the magnetic field in that we allow for a non 
uniform field distribution inside the conductors. 

Solution for Infinitely Long Conductors 
If in addition to the basic assumptions we assume that the length of 

the conductors is infinite (or that their curvature is zero), then the eddy 
current problem for each conductor is reduced to a onedimensional dif- 
fusion equation in Cartesian coordinates. A step-by-step solulioo of lhis 
boundary value problem can be found in references [4] and 151 for the 
losses in each layer df the winding. We use a similar approach to obtain 
the impedance as a function of frequency (see Appendix A). The 
impedance for a conductor in layer k is given (in Q/m) by 

Z,(o) = Rw 5 [ (2k2-2k-1) coth(5) - 2k(k-1) cSch(()] (1) 

Solution Considering the Curvature of the Conductors 
In this .case, the problem is reduced to the solution of a field proh- 

leni in one dimension in cylindrical coordimtes. The step-by-step solu- 
tion for the losses can be found in reference [5] and is very similar to the 
derivation of equation (1) when using the asymptotic expansions for 
large arguments in the Bessel (Kelvin) functions (see Appendix B). The 
final expression for the impedance of a conductor in layer k (in a) i s  

Z,(co)=ZnR,f[ ( k * r ~ + ( k - 1 ) 2 r ~ _ , ) c O t h ( ~ )  - %(k-l)*csdi(f)] (2) 

There are a number of other different approaches. For example, in 
reference [2] Stall solves the problem considering that the fieid can vary 
in the' perpendicular direction inside the conductors (two dimensions), 
while keeping the boundary conditions as in the previous cases, when the 
length of the conductors is infinite. This leads to a solution given by an 
infinite series. In reference [3] the problem is solved as in the case of 
reference [2] (two dimensions), but taking into consideration the radius 
of curvature. 

In this paper we selected the axisymmetric approach (equation (2)) 
to be consistent with lhe. way in which we calculated the inductances and 
capacitances in reference [7], where we used axisymmetric gemnew. 
The last two approaches mentioned above were not considered for the 
fitting of circuits because the resulting infinite series have numerical 
problems at high frequencies (see reference [4]). The infinite series con- 
verge very slowly and the accuracy of these approaches is comparable to 
the one obtained with equation (1). Moreover, the simplicity of equa- 
tions (1) and (2) is a very convenient and desirable feature that will be 
exploited for the low frequency fitting of equivalent circuits. 

Analytical approaches may be used for the calculation of the tolal 
loss and the a.c./d.c. resistance ratio. However, these equations do not 
predict properly the location of the hot spots. These cmclusions were 
drawn from comparisons of the results from the analytical equations with 
measurements and numerical solutions (see [4]). In reference [SI, Figure 
2-9, the real part of the equation (1) is compared with measurements. 
This test proves that the real part of equation (1) predicts with reasonable 
accuracy the resistance of a series connected winding. A comparison 
between equations (1) and (2) was also presented. There is no significant 
difference between them for realistic coils but, since the derivation of 
equation (2) uses a more realistic geometry while having the same sim- 
plicity, we selected the latter as our basis for the calculation of the 
impedance of the windings as a function of frequency. 

Iron Core 
The field problem in the iron core has been understood for many 

years and the solutions can be found, for example, in references [6] and 
[U]. The impedance of a lamination is given by: 

&(w) = 4 5 W(5, (3) 
where 

and 
I = length of the lamination 

w = with of the lamination 
2 d = thickness of the lamination 

LUMPED PARAMETER MODELS 
In this section we will derive equivalent circuits with lumped 

parameters from different fitting techniques. We do the fitting to equa- 
tion (2) for the windings and to equation (3) for the iron core. 

Windings 
We use Foster models to describe the frequency dependence of the 

windings (increase of resistance with frequency). Foster models are usu- 
ally referred to as circuits obtained from the expansion of impedance (or 
admittance) equations into partial fractions which are fitted by canonical 
R, L, C circuits [lo]. The Foster models obtained in this way would 
have to be of infinite order to reproduce exactly the impedance at all fre- 
quencies. The terms (or circuit blocks) that have to be omitted for practi- 
cal reasons will produce errors over the whole frequency spectrum. The 
errors increase with the frequency range for a fixed model order. The 
same kind of circuits can however be obtained by fitting only at certain 
pre-atablished frequencies using an iterative method. These circuits 
would have the exact impedance at the selected frequencies, while the 
response will not be perfect at other frequencies. The latter approach 
gives smaller overall errors and will therefore be adopted in this paper. 

We can fit a circuit using any one of the two Foster forms: 
The parallel Foster that, in our case, consists of series R-L blocks 
connected in parallel (see Figure 2); 
The series Foster that consists of parallel R-L blocks, connected in 
series (see Figure 3). 

Figure 2. Parallel Foster 

e...& LN 

Figure 3. Series Foster 

Parallel Foster 

The admittance Ypp at the terminals of the parallel Foster circuit 
shown in Figure 2 is given by 

N 1  
Y w  pp( )= E (4) 

We can evaluate equations (2) and (4) at N frequencies wk ( wk+1 > wk ) 
and derive a system of nonlinear equations which permits the calculation 
of the parameters of the circuit ( R i  and L;). We use a fixed poiut itera- 
tion starting with the highest frequency. Thus, equation (4) yields 

1 N 
Yp~(wt )=  Yi(ok) = - - - U w ( w d  ( k=N,...,2,1 1 (5) 

is1 ZW(w&) 

Extracting the klh term from the sum of equation ( 5 )  gives 
N 

i = l  
;#& 

(6) Yt(wk)=Yw(wt)-x yi(wt) (k=N. . . . ,2 ,1)  
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Consequently, 

] ( k  = N, ..., 2,l ) 1 &=Re[ -  
y&(wk) 

and 

(7) 

We use equations (7) and (8) iteralively to update all Rk and Lk 
until we achieve convergence. 

Series Foster 

The series Foster form has advantages over the parallel Foster at low fre- 
quencies as discussed below. We will present several versions of the 
series Foster that have advantages over the standard Foster. 

Complex Fining 
The impedance at the terminals of the series Foster circuit shown in 

Figure 3 is given by 

(9) 

As in the case of the parallel Foster we evaluate equation (9) at N fre- 
quencies to obtain the parameters of the circuit. Using the kth frequency 
to get the kth inductance and resistance we have 

i& 

The right hand side of equation (10) is evaluated numerically and 
then its real and imaginary parts give Rk and 4 .  We note that, upon 
convergence, both the real and the imaginary parts of the circuit match 
the correspouding parts of the prescribed impedance (2). This model 
will be called series complex to differentiate it from other series forms 
described below. 

Real-Only Fining 
The intemal impedance of the conductors is given by equation (2). 

This is just one of the two components that form the total leakage 
impedance 

(11) 

The impedance for the air path has only imaginary part, and its 
magnitude is niucli larger than the imaginary part of equation (2). There- 
fore, there is no need to fit a circuit to accurately match the imaginary 
pa t  of equation (2) since this component iu the total impedance is only 
of minor importance. Consequently, we propose to fit the parameters of 
the series Foster to twice as many frequencies (as in the complex model 
for the same number of parameters) to match only the real part of the 
impedance, without any fitting for the imaginary part. We could have 
done the same for the parallel Foster but, as we will show later, the series 
circuits have advantages over the parallel ones at Low frequencies. In 
this way, we have a lower order model that matches the real part accu- 
rately at the fitting frequencies and, as we will show below, the induc- 
tance does not have large errors. From equation (9), 

zieak = z w  + zai* 

Extracting the kth block from equation (12) yieids 

where 

i#k 

Evaluating (13) at two frequencies, a'k and d ' k ,  we have, with 
= a ( d k )  and a'; =a(a';), 

and 

Equations (13a) and (13b) form a system of two equations of 
second order with two unknowns (Rk and Lk). There exists closed form 
solution for equations (13) given by 

and 

Equations (14) are used iteratively to update the elements of the 
circuit until convergence is reached. 

Osculatory Fining 
When we want a very accurate response at low frequencies (up to a 

few kHz) we can sacrifice one R-L block to perform an osculatory fitting 
of the real part of the impedance equation. The term "osculatory" 
denotes in differential geometry a contact of two curves having equal 
curvatures in the point of contact. 

The Taylor expansion for the transcendental functions in equation 
(2) are [111,1121 

5 coth(5) = 1 + 7 5' - e+*-c+ 45 945 4725 ... (15a) 

Recall that 6 is a function of and, as we are only interested in 
the real part of the impedance, we keep only the temis with 5'. t4 and 5' 
in the above expressions. The resulting resistance is obtained by substi- 
tuting equations (15) in equation (2) and adding sll the layers: 

(16) R,(w) = a, +a4 wz +ag w4 + . . . 
where 

F ,  7 F  
45 360 a, = [ FI  +Fz ] a 4  = [ -- -1 ] pz o2 d4  

FI 127Fz a,, = [ -- + - 
4725 604800 

n n 

k=I k= l  
F ,  =(2xR,,) k2rk+(k-l)2rk-l F2=-2(2xR,) k(k-1)- 

On the other hand, from equation (9) for the circuit of Figure 2 we 
have the following Taylor series (when w + 0) 

Comparing equations (16) and (17) we have 

Using equations (i8b) and (18c) we can obtain the closed form 
solutions 

c: 
R I =  - L l  =- 

c2 
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where 

10 - 

1- 

R 
[RI - 

0.01 - 

0.001 - 

In this case the first block of the real-only fitting is changed for an 
osculatory one. Thus, we use in the iterative cycle equations (14) for 
k = N ,..., 3.2 and equations (19) fork =l. 

Results and Discussion 
Our first remark pertains to the differences between the two Foster 

forms (series and parallel). The series Foster form is obtained from 
impedance equations and is more suitable for low frequencies. Note, for 
example, the appearance of a zero order block R, at the beginning of the 
circuit. This is the low frequency (or d.c.) resistance. The parallel Foster 
form is derived from admittance equations so that a leading, purely 
resistive branch would represent the resistance at infinite frequency. 
Thus, in order to have a similar response at the lower part of the fre- 
quency spectrum, the parallel Foster has to be of an order higher by one 
than the series Foster. Indeed, in the parallel Foster we will have to 
sacrifice one of the branches to fit at zero (or near zero) frequency, while 
in the series Foster this is naturally taken into account by R,. For a more 
detailed discussion see reference [lo]. 

The convergence of the described iterative fitting methods does not 
present any problem if the fitting frequencies are sufficiently apart from 
each other. In this way, each block is of dominant significance at its 
fitting frequency (or frequencies) and it is almost isolated from the other 
blocks during the iterative process. Based on the experience gained in 
[13] and [14] we start the fitting iteration at the highest frequency. In 
this way we get convergence in just a few iterations, less than 10 in most 
cases. The circuits were 'tested using a real (small) transformer, 
described in Appendix 2 of reference [7]. The selection of the fitting fre- 
quencies was done heuristically; no optimization of the errors for a given 
frequency range was pursued. In Figure 4 we show the errors in the 
resistance as a function of frequency (up to 1 MHz). The three series 
Foster models are compared against the real part of equation (2). Figure 
4a corresponds to models of order thee with fitting frequencies given in 
Table 1, while Figure 4b shows the errors of a circuit of order 4. We can 
see from Figure 4 that the error is zero at the fitting frequencies (as 
expected) while at other frequencies there is an error'which decreases 
considerably for a model of order 4 in comparison with a model of 
order 3. 

10 - 

1- 

R 
[RI - 

0.01 - 

0.001 - 
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0. I I 10 100 1000 ' 

f [&I 
Models of order 3 

-10 

I I I I 
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f LWI 
Models of order 4 

Wgure 4. Variation of resistance with frecluency 
C - Complex, R - Real-only, 0 - Osculiliory 

I MODEL 1) ORDER 3 I ORDER 4 I 
Prequenciw [ICHZJ 

5,10,50,100,500,100 

Table 1. Fitting frequencies 

We also see from Figure 4 that the real-only fitting models are 
superior to the series complex Foster. The real-only and osculatory 
models are almost equivalent. The choice between the two could be 
based on the frequency range in which we are interested. The best low 
frequency response is achieved with the osculatory model, but we 
sacrifice two frequencies. If we are more interested in higher frequen- 
cies, the real-only model would be the choice, since it makes possible to 
fit at higher frequencies. In Figure 5 we show the frequency response of 
the resistance (with R, subtracted) corresponding to the osculatory model 
of order 4. The plot shows (as expected) an almost quadratic response at 
low frequencies and a square root response at high frequencies (both 
given by the slope in the log-log plot). 

0.1 1 10 100 lo00 
f [kHz1 

Figure 5. Variation of resistance with frequency 
R(@ -Re 

In spite of the fact that the imaginary part of the real-only fittings is 
not constrained, and thus it could take any value, we can see from F ip re  
6a that the inductance as a function of frequency is also very accurate. 
The reason for such a good response is that the errors (which may be 
large) are introduced in a small component (the intemal inductance) 
compared with the total leakage inductance. The errors in the calculation 
of the intemal inductance are small at low frequencies, where they could 
be .important since at zero frequency the magnetic field completely 
penetrates the conductors. At high frequencies the errors in the calcula- 
tion of the internal inductance are large (100% or more) but, as this com- 
ponent of the total leakage inductance decreases quickly to almost zero, 
the net effect of those large errors is very small. In Figure 6b, we show 
the frequency response of the total leakage inductance (for the case 
described before) where we can appreciate the size of the two com- 
ponents. 

The criterion we suggest for selecting the order of the model, 
according to the maximum frequency we are interested in, is shown in 
Table 2. This table was obtained heuristically to keep the errors within 
reasonable limits. 

No.ofBIocks (1 0 I 1 I 2 1 3 1 4 
Frequency[kHz] 11 0.1 I 1 I 10 I 100 I lOu0 

Table 2. Selection of the model order 

Iron Core 
There exists a standard Cauer model for laminations, obtained by 

developing equation (3) in continued fractions. The resulting equivalent 
circuit has shunt inductances and series resistances forming a ladder [lo]. 
However, this Cauer niodel cannot be interpreted as a discretization of 
the lamination and it predicts accurately the terminal response only in the 
linear case. Another form of a Cauer model (a more physical approach) 
would have shuht resistances and series inductances [15]; see Figure 7. 
The inductances represent (using duality) the flux paths and the resis- 
tances are in the path of the eddy currents. This a dual of the standard 
Cauer circuit but it cannot be derived directly from equation (3). The 
high frequency response is delined by the blocks near the terminals (as 
the magnetic field in the laminations stays near the surface at high fre- 
quencies), while in (be standard Cauer circuit, the high frequency 
behavior is governed by the inner blocks. The blocks of our model can 



be thought of as being a discretization of the lamination. This model is 
appropriate for the representation of nonlinear effects inside, the lamina- 
tion. 

0.4 

L 
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0.35 
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L 
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0.1. 

0 -  

0.1 I 10 100 loo0 
f 1 k H Z l  

4 
air only I 

0. I 1 10 100 lo00 
f Lml 

Figure 6. Variation of inductance with frequency 
at two veltical scales 

Figure 7. Cauer model for half lamination 

The parameters of this physical Cauer circuit will be calculated 
with an iterative method. The iterative method could be seen as an 
optimization of the discretizing distances for the used fitting frequencies. 
The impedance at the terminal of the circuit shown in Figure 7 is given 
by 

1 
1 ZC(W = 

1 GI + 
j w L l  + 1 (20) 

G z +  ... 

To start the iterative method we estimate initial values for all the param- 
eters and, as hi the previous cases, we start with Uie highest frequency. 
Assume that we are calculating the elements of the kth block. The 
impedance at a = a k  seen at the right of block k is 

1 
1 ZkR = 

1 Gk+l + 
j a k  Lk+l + 1 (21) 

Gk+2 + ' ' * 
1 GN+-  

.io, LN 

The impedance at the left of the block is 
275 

Equation (23) has Gk and Lk as unknowns. It will be modified for com- 
puting the elements (Gk and Lk) of the first N-1 blocks, while for the last 
one (the innermost) we will use the osculalory conditions for GN and LN. 

Rearranging equation (23) we have 

( k  = 1,2, ..., N-1 ) (24) 
1 1 

j a k  Lk + zkR 
Gk+ -= 

ZkL 

Let ZkR = Rw + jak LM.  We can separate the real and imaginary parts 
of (24) as follows: 

=- b ( k  = 1.2. ...,A'- 1 ) (25b) 

From equation (25b) we can write the quadratic equalion for 
a k  Lk + Wk LkR 

b (CO, Lt +mb LM)' - (ak Lt + mb Lkn) + b R k  = 0 ( k = 1.2. ..., A'-1) (26) 
Its solution gives directly Lk (since LM is known), for k = 1,2, ..., N-1, 
and then Gk, using equation (25a). 

The equations for the last (innermost) block are obtained in a way 
that ensures a good (osculatory) behavior at low frequencies. Expanding 
6 tanh(6) in equation (3) into the tnincatedTaylor series [Ill, [12] 

c 2 -  i.!. 
and suhstitoting the values of 6 and RI from equation (3a). gives the 
expression of the impedance at a + 0: 

Z@)  = ja Ldc + a2 L a  Gk (27) 
where 

The definition of Gdc is in agreement with the definition of R k  in 
reference [9]. We note that equation (27) represents the impedance at 
w --f 0 of a parallel Gk -Ldc circuit. Therefore, the last (innermost) 
inductance of the ladder can be obtained from 

N - l  

k=I 
L N = L ~ -  ZLk (29) 

For the calculation of the last conductance GN we consider the voltage 
divider formed by the series inductances at a --f 0 (when the current in 
the shunt conductances is negligible compared with the current in the 
inductances) and move each conductance Gk to the terminals, with the 
equivalent value 

N 

Gfk=$ Gk 
ZLi 

ZLi 
i=I 

Consequently, GN can be calculated from 
N 
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The calculation of the parameters consists of the iterative solution 
of equations (26) for the first N-1 blocks and equations (29) and (30) for 
the last one. 

We have also performed real-only fitting (even though its 
justification is not easy) but the results obtained were not as good as in 
the case of the windings. Therefore, the details of the related methodol- 
ogy are not discussed in this paper. 

Model F 
Order [kHz] 

0 
3 40 

Results and Discussion 
We have compared the frequency response of our model with equa- 

lion (3). Table 3 shows the data and maximum errors for several orders 
of the model up to a frequency of 200 kHz. 

Brror(resistance.) Brror(inductance.) 
[%] [%I 

5.3 6.3 

4 

170 
0 

13 0.88 0.74 
40 

180 

Table 3. Maxiium errors up to 200 kHz 

The frequency response (up to 1 MHz) of a model of order 5 is presented 
in Figure 8. The fitting frequencies in this case are 0, 20, 60, 350 and 
IO00 IcHz. Figure 8a presents the resistance and Figure 8b the induc- 
tance, and we can see that the fitting is excellent. The errors in percent 
are shown in Figure 9. As we can see from Figure 9 the errors at the 
fitting frequencies are zero. The errors in the resistance and inductance 
are smaller than 1 % over the whole frequency range. 

Note that in equation (3) and, consequently, in the parameters of 
our model the variables w and p always appear in the product form w p. 
Therefore, the frequency responses presented here are valid for any 
degree of saturation by simply scaling the frequency axis to keep the pro- 
duct w p constant. 

lo00 
R 

I I I I I 
0.1 I 10 100 1000 

f WI 
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0.1 1 10 100 lo00 
f L&I 

Figure 8. Variation of R and L with frequency 

I 1  0.5 

0. I 1 10 loo lo00 

inductance. f W Z l  

Figure 9. Variation of resistance and inductance wilh frequency 
Model of order 5 

SIMULATION TESTS 

Two tests were designed to show the damping effect of the eddy 
currents during transient conditions. The data used for both tests 
corresponds to the small transformer devcribed in Appendix 2 of refer- 
ence 171. The first test consists of the interruption of the short circuit 
current following a short circuit test. The primary voltage is, therefore, 
small and the magnetizing current negligible. This test is deemed to 
assure appropriate conditions where the effect of eddy currents in the 
windings is of paramount importance in determining the attenuation of 
fast transients. In the simulation we used the series Foster model of Fig- 
ure 3 together with a series capacitance. An oscillating vollage is 
obtained due to the leakage inductance and the stray capacitances. Fig- 
ure 10 shows the results of the simulation. We note that, as expected, 
there is considerably greater damping when the eddy current effects in 
the windings are included. The time constant (2 Lied / R,) when the 
eddy current effects are neglected is 19.25 ms (LleOk = 4.3 x IO4 H, 
R, = 0.0447 Q). From Figure 10 we can see that the time constant when 
the eddy current effects are considered is = 120 p. The frequency of 
oscillation (f = 1 / ( 2 x $ 5 3 )  ) with C = 1 x lo-’’ F is f= 767 kHz. 
Test results on a 450 MVA, 339/138 kV, 3-phase autotransformer given 
in Figure 8 of reference [16] show that the measured attenuation is of the 
same order of magnitude as the one we have obtained in Figure 10 in the 
simulation of eddy current effects. 

The second lest is the simulation of chopping a magnetizing 
current. In this case the oscillation is between the stray capacitances and 
the magnetizing inductance. This test provides conditions for demon- 
strating the dominant effect of the modeling of eddy currents in lamina- 
lions on the nature and attenuation of a transient response. For this simu- 
lation we have used the Cauer model of Figure 7 with a shunt capaci- 
tance at its terminals. Figure l l a  corresponds to an overdamped 
response and steep front, for the case of a small capacitmce. We require 
a model of order 5 or 6 to properly predict the eddy cwent effects in the 
laminations. The underdamped response is shown in Figure l lb .  It 
corresponds to a larger capacitance. For this case a model of order 4 
would be adequate. The order of the model is obviously dependenton 
the speed of the transient we are interested in. 

The complete analytical solution for both tests was obtained using 
eigenanalysis. In the case of the windings we found only one pair of 
complex conjugate eigenvalues with the attenuation and frequency of 
oscillation in agreement with the results obtained in the simulation of 
Figure 10. The remaining eigenvalues are real and the corresponding 
modes attenuate faster than for the complex pair. Moreover, from the iai- 
tial conditions we found that these modes are practically not excited. 
This C O ~ J ~ ~ S  the absence of d.c. components in the simulated transients. 
Similarly, in the case of the iron core the analytical solutions corroborate 
the simulated results of Figure 11. 

The tests have demonstrated the significance of eddy current 
modeling in both the windings and the laminations €or obtaining more 
realistic results, especially in terms of damping, in the simulation of 
transformer transients. 
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Models orders 1 to 6 

CONCLUSIONS 

eddy current effects of transformers in the windings and in the iron core. 
For the windings we have the following remarks 

Time domain models have been derived for the representation of 

Existing (and well tested) equations for the calculation of eddy 
current losses in transformer windings were used in their 
impedance form to fit  different lumped parameter models. These 
models have a series Foster fomi and their order has been reduced 
by fitting to the real part only. The low frequency response is 
optimized by osculatory filting. 

A dual Cauer model has been derived with optimal discretization of 
the laminations thickness. This model predicts very accurately the 
variation of the resistance and inductance as a function of fre- 
quency. 

Tests performed with the new models for eddy current representation 
have shown that they provide appropriate damping effects in the simula- 
tion of tr.msienls as determined by the underlying physical phenomena. 

The lumped parameter models presented in lhis paper can be incor- 
porated in a complete transformer model for the calculation of transients. 

For the iron core we note the following: 
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APPENDICES 

Appendix A. Solution for InAnitelg Long Conductors 
As shown in reference [SI, it is possible to Gnd the solution of the boun- 

dary value problem of equation (A-1) for the calrxllatiou of the losses. Our pur- 
pose is, however, to derive tlle expression (1) of the complex impedance &(o). 
We start with the diffusion equation in one dimension (see Figure 1 for the 
geometry) given by 

where 

a' = j wp o 
with boundaty conditions 

d k(- -1 2 = ( k - 1 ) H, h,(d) 2 = f i  11, (A-2) 
and 

I{* = !I 
4 

The general solution is 

/r , (y)=K,  ea? + K 2  e - a y  (A-3) 
The constants are evaluated from the boundary conditions which yields 

ad - ad -- 
(k-l)H,e -W?r,e (A-4a) K, = 

e4 - ead 

ad ad 

(A-4b) 

Substituting equations (A-4) into (A-3), we get after some algebraic steps 

From 

we have 

(A-6) 

We will compute the surface impedance from the Poynting vector which is 
detined (in VA/m2) as 

~ = L E ~ H *  2 (A-8) 

Developing the vector product gives 

2 nxcv) =-e,@) I h c v )  (A-9) 
The complex power consumed (in VA) is given by the closed surface integral 

S =  J II.dS (A-IO) 
In our one dimensional geometry the Poynting vector penetrates perpendicularly 
into the windings so that the surface integral is calculated in a straightforward 
fashion. This is in contrast with the volume integrals (for losses) used in refer- 
ences [4] and [5 ]  which are awkward. Equation (A-IO) (VA/m) yields 

s = ( 4" - L, ) k (A-11) 

Where 

~ o , = ~ s ( - ) = - ~ [ k 2 t a n h ( ~ )  d H 2 a  + kcsch(ad)]  (A-13) 
2 2 0  2 2 

Substituting equations (A-12) and (A-13) into (A-1 1) and reducing terms we get 
I, H: a 

S=- [ (2k2-2k+l) coth(ad) - X(k-1) csch(ad)] (A-14) 

Substituting H, and realizing that I is the crest value of the c m n t  (this gives a 
factor of 2), we can obtain the impedance by dividing S by Ik. This yields 
equation (1) of the paper for n=l. 

Appendix B. Solution Considering the Curvature of the Conductors 
We follow very similar steps to the previous case. In reference [SI the 

problem is solved for the losses. In this case the diffusion equation to be solved 
is, in cylindrical coordinates, 

d2 /r,(r) d /tz(r) 
r2  - d r 2  +r-----jP' d r  r kW=O 

Where 

PZ=COpU 

with boundary conditions 

&(rk-,) = ( k - I ) H ,  /r,(rk) = k H, (B-2) 

Equation (B-I) is a form of the modified Bessel equation of zero order. Its 
solution is 

hi@) = C, [ ber,(gr) +j bei,(Pr) ] + C2 [ ker,(pr) + j kei,>(gr) ] (B-3) 
where ber,, beb. ker,, kei, are the Kelvin functions of zero oder. 

The coilstants C1 and C2 can be evaluated f" the boundary conditions 
following a similar procedure as in Appendix A. We use the asynipotic expan- 
sions for large arguments of Kelvin functions, ay r, k much larger than d for a 
realistic transformer. The used substitutions (for x ~ l )  are 

berp(x) = c o s ( 4 )  beip(x) = e x @  s i n ( 6 )  (B-4a) m Jzlu 

where 

Then we can obtain e,(,.) by an equation similar to (A-6). taking the derivative 
of / iz(r).  The reinclining steps are the same as in the previous case and equation 
(2) is obtained. 
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form of the Cauer network permits a physical interpretation for 
laminations based on duality. As such, iron non-linearities can be 
introduced in this representation on a physical basis/[a]/, a facility 
not readily available with Foster realizations. While we accept that 
such interpretation is not needed for the winding model, nor necessar- 
ily meaningful at least for multi-layered windings, do the authors 
envisage numerical or conceptual advantages in the Foster realization 
for winding effects? 

3. The model for eddy current effects in winding neglects displace- 
ment currents, assuming the same total current in each turn. As such, 
it ought to be valid at frequencies below the first winding resonance 
(quarter-wave resonance), typically up to perhaps lo's of kHz for 
power transformers. Is it therefore correct that a model of order 2 or 
perhaps 3 would be adequate for practical studies? For the example 
depicted in Figure 10, does clearing a terminal fault produce winding 
transients at a frequency exceeding the first resonance? If so, the 
foregoing assumption is no longer valid, and it is not clear whether 
losses/damping would be over- or under-estimated. Have the authors 
compared their simulated results with measurements on the cited 
transformer. How does the simulated 767 kHz transient compare with 
the winding natural frequency? 

Reference 

[a] E. J. Tarasiewicz, A. S. Morched, A. Narang, E. P. Dick, 
"Frequency Dependent Eddy Current Models for NonLinear 
Iron Cores," Paper No. 92 WM 177-6 PWRS presented at the 
1992 IEEE/PES Winter Meeting. 

Manuscript received February 26, 1992 

Discuaaion 

Cesare M. Arturi (Politecnico di Milano, 
Italy). I wish to congratulate Professor 
Semlyen and Dr. de Leon for their very 
interesting paper on the circuital model of 
eddy current effects in the windings and the 
core of transformers. 

The subject faced by the authors is very 
important for the time domain simulation of 
transients in non sinusoidal operation. The 
model of eddy current losses in the time 
domain, due to the load current of 
transformers, has been studied in the past, 
particularly for the actual load losses in 
HVDC transformers windings [l]. An 
improvement of the series element (actual 
winding resistances and leakage inductance) 
of the equivalent network of transformers has 
also been considered [2]. 

Thus, the contribution given by the Authors 
to the mathematical procedure for the 
iterative determination of the parameters of 
time domain models suitable for transients 
with a wide frequency range is highly 
appreciated. 

With reference to the iron core and the 
physical Cauer model , the parameters of which 
are obtained by an iterative method with 
eq.(3), the authors stated that this model is 
appropriate for the representation of non 
linear effects inside the laminations. I 
wonder how the magnetizing characteristics 
can be assigned to the inductances of the 
model. 

Further, it is not clear to the discusser 
what the authors intend by the word lldualll 
when they refer to the relationships between 
the standard and the physical Cauer model. 

I should appreciate it if the authors could 
comment on these points. 

[l] C.M.Arturi, A.Bossi, G.Caprio, A.Babare, 
S.Calabr&, F. Coppadoro, S.Crepaz, 
I1Conventional and Actual Losses in HVDC 
Transf ormersll , CigrQ , Session 1986 , Aug. 
27-4 Sept., Paris. 

[2] S. Crepaz, M. Ubaldini, llEquivalent 
networks of transformers and static 
machines. . . I1 , Symposium on Power and 
Measurement Transformers - Positano 
(Italy) , 11-13 Sept. 1979 - p.161-169. 

Manuscript rece ived  February 20, 1992. 

A. Narang, E. P. Dick, (Ontario Hydro, Canada): We wish to congratu- 
late the authors for their work and for a thought-provoking presenta- 
tion of their results. The paper makes a notable contribution with 
regard to fitting reduced order models, in this case to classic closed- 
form solutions describing eddy current effects in windings and in 
laminations. We would welcome their comments on the following: 

1. Equation (1) appears to have a typographical error, as it predicts 
negative impedance for conductors in the first layer (i.e. for k = 1). 

2. Even though expressions (1) and (3) appear dissimilar, incorporat- 
ing as they do diverse hyperbolic functions, the authors' results con- 
firm that they exhibit similar impedance variation with frequency 
(compare Figure 5 to 8a, and 7a to 8b). Analytically, this is confirmed 
by examining the behaviour of the functions over the full range of the 
argument 6. This is gratifying as the underlying principle is the same 
in both instances, whether associated with eddy currents in lamina- 
tions or in windings. This being the case, it is not clear why different 
network topologies have been chosen for modeling essentially the 
same mechanism. The authors correctly point out that the adopted 

F. de Leon and A. Semlyen (University of Toronto): We would like to 
thank the discussers for their interest in our paper. 

To Professor Amui we offer the following remarks regarding the 
physical Cauer model for the laminations. The inductances in the Cauer 
circuit for the iron-core are derived by discretizing the laminations. 
Therefore, each inductance corresponds to a subsection of the lamination 
width. Consequently, the same magnetization characteristic of the 
material can be used directly in all inductances of the Cauer circuit. The 
word "dual" was used for the physical Cauer model to indicate that this 
circuit has series inductances and shunt resistances (Figure 7) as opposed 
to the standard (non-physical) Cauer model which has shunt inductances 
and series resistances. 

To Messn. Narang and Dick we offer the following answers to 
their questions. 
1. We thank the discussers for pointing out the typographical error in 

equation (1). The correct expression, consistent with the derivation 
in Appendix A, follows from equation (A-14) and should be 

Z w ( a ) = R w  6 [ (2k2-2k+l)coth(€,) - 2k(k-l)csch(e)] (1) 

We take this oppommity to list below typographical errors in the 
two related references, [7] and [8]. In reference [7], Appendix 2, 
Figure 8, the thickness of the windings should be 0.7cm in both 
primary and secondary. 
The following are errors in reference [8].  Below equation (12) we 
should have 

v.=[vr,ey, 1 '=[vI rv2 ,  . . .  . vM,ey , lT  

Equation (21b) should be 
N 

k I 
C w ~ i c , - i , - i g , + i , , = O  

Below equation (28), matrix W should read 
W 

1 -1 
W 

1 1 -1 W =  

W 

1 1  

The second equation in Appendix 1 of reference [8] should be 

vi*' = v:ld - w, + R~~ i:'d 
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2. There are four commodly used circuits that can be fitted for the 
time domain repmentation of eddy currents in laminations and UI 
windings. Namely, 
a) Parallel Foster (Figure 2)  
b) SwieS Foster (Figure 3) 
c) Standard Cauer (shunt inductances and series resistances; see 

Figure 5 of the discussers’ reference [a]) 
d) Dual C a m  (series inductances and shunt resistances; see 

Figure 7). 
From a physical point of view, model d is the most suitable 
alternative for the modeling of eddy currents in laminations. 
For the time domain representation of eddy current effects in the 
windings, alternatives b and c offer practical advantages over 
alternative8 (I and d. The former two allow for leading series 
resistances which can represent the ds .  resistance of the winding 
and thenfore the order of the models is reduced by one. 
Alternative b was selected in the paper over alternative c due to 
computational advantages, since Foster models lead to simpler 
state equations than Cauer circuits. 

3. We would like to emphasize that, as pointed out by the discussers, 
the eddy current model should be wed with caution. The model 
can only be used as it is for windinga or sections where the current 
is close to uniform. For a fast transient, such as the one presented 
in Figure 10, only the order of magnitude of the damping can be 
predicted as the frequency of the oscillations is above the b t  
resonance frequency of the transformer. 
For the modeling of eddy currents in the windings we have adopted 
two different approaches. The first one uses several series Foster 
circuits to include the capacitive effects. In the second approach 
we use a siugle series Foster circuit per winding and compute an 
average current to obtain the correct losses. This latter approach 
leads to an eddy current representation that can be easily 
incorporated into any existing transformer model which does not 
include the damping due to eddy currents. We intend tQ publish 
the details of the above two solutions in the near future. 

Manuscript received A p r i l  9 ,  1992. 


