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Time-Domain Orthogonal Finite-Element
Reduction-Recovery Method for

Electromagnetics-Based Analysis of Large-Scale
Integrated Circuit and Package Problems

Duo Chen and Dan Jiao, Senior Member, IEEE

Abstract—A time-domain orthogonal finite-element reduction-
recovery method is developed to overcome the large problem sizes
encountered in the simulation of large-scale integrated-circuit and
package problems. In this method, a set of orthogonal prism vector
basis functions is developed. Based on this set of bases, an arbi-
trary 3-D multilayered system such as a combined package and die
is reduced to a single-layer system with negligible computational
cost. More importantly, the reduced single-layer system is diagonal
and, hence, can be solved readily. From the solution of the reduced
system, the solution of the other unknowns is recovered in linear
complexity. The method entails no theoretical approximation. It
applies to any arbitrarily shaped multilayer structure involving
inhomogeneous materials or any structure that can be geometri-
cally modeled by triangular prism elements. In addition, it permits
nonlinear device modeling and broadband simulation within one
run. Numerical and experimental results have demonstrated its
accuracy and high capacity in simulating on-chip, package, and
die–package interface problems.

Index Terms—Die–package cosimulation, electromagnetic sim-
ulation, finite-element methods, large scale, on-chip, package, time
domain.

I. INTRODUCTION

T
HE SCALING of supply voltages and the increased level

of integration have conspired to make the analysis and

design of microelectronic systems increasingly challenging.

The impact of noise due to signal switching, die–package

interaction, power management techniques, substrate coupling,

etc., can be seen at all levels of a power delivery network,

from chip to package to motherboard to the voltage regulator

module. Prevailing circuit-based signal-integrity paradigms are

reaching their limits of predictive accuracy when applied to

the combined die–package problem. Thus, there is a critical
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need for the electromagnetics-based cosimulation of the die and

package to control the global electrical interaction and optimize

performance as an integrated system.

The cosimulation of the die and package results in

numerical problems of ultra-large scale, requiring billions of

parameters to describe them accurately. In order to address

the large problem size, electromagnetic solutions have to scale

favorably. In recent years, researchers have been developing

electromagnetics-based computer-aided-design technologies

amenable for integrated-circuit (IC) and packaging problems

as can be seen from [1]–[19].

In [11] and [12], a time-domain layered finite-element

reduction-recovery (LAFE-RR) method was developed for

solving large-scale IC problems. This method can reduce the

system matrix of size O(N) rigorously to that of size O(M)
for any multilayered structure, with N being the number of

unknowns in the entire 3-D structure and M being the number

of unknowns in a single layer. Furthermore, the reduction from

O(N) to O(M) is achieved without any computational cost via

analytical means, and hence, the CPU and memory overheads

are minimal. Moreover, the reduction preserves the sparsity

of the original matrix, thus enabling an efficient computation

of the reduced matrix. The solution of the O(M) parameters

generated by this method is the same as that of the O(M)
parameters in the original O(N) equation. The method has been

successfully applied to solve large-scale IC problems.

The remaining computational task in the LAFE-RR method

is the solution of the reduced system. Although the sparsity

is preserved in the reduction process, if the reduced system is

large, solving it could be still challenging.

In this paper, an orthogonal finite-element reduction-

recovery (OrFE-RR) method was developed to advance the

LAFE-RR method to the level of simulating a combined die–

package system. In this method, a set of orthogonal prism vec-

tor basis functions is developed. These basis functions are com-

plete. In addition, they enforce the tangential continuity of the

electric field and the normal continuity of the electric flux

across material interfaces. The advantage of this set of bases is

three-fold. First, an arbitrary 3-D multilayered system such as a

combined package and die can be reduced to a single-layer

system with negligible computational cost. Second, the reduced

single-layer system is diagonal and, hence, can be solved

readily. Third, the solution of the unknowns in other layers
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Fig. 1. Illustration of the orthogonal prism vector basis functions.

can be recovered in linear complexity. The method entails no

approximation. It is applicable to arbitrarily shaped 3-D multi-

layer structures embedded in inhomogeneous media.

The remaining of this paper is organized as follows. In

Section II, the orthogonal prism vector basis functions devel-

oped in this work are presented. In Section III, the time-domain

OrFE-RR method is detailed. In Section IV, numerical and

experimental results are given to demonstrate the accuracy and

high capacity of the proposed method, and Section V relates to

our conclusions.

II. ORTHOGONAL PRISM VECTOR BASIS FUNCTIONS

Based on our knowledge in 2-D orthogonal vector bases in

a triangular element [20] and 3-D orthogonal vector bases in a

tetrahedral element [21], the 3-D orthogonal vector bases in a

prism element are developed as follows.

In each prism element, we construct fifteen vector bases

from N1 to N15 as shown in Fig. 1. The degrees of freedom

associated with bases Ni(i = 1, 2, 3, . . . , 6) are assigned on the

upper and lower planes. Each of these bases is purely tangential

to edge i at the midpoint of edge i. They ensure the tangential

field continuity across the element interface. They are given by

Ni = ζZi, i = 1, 2, 3

Ni = (1 − ζ)Zi−3, i = 4, 5, 6 (1)

in which ζ is 0 on the lower plane and 1 on the upper plane, and

vector bases Zi are

Zi =

[

We
i −

3
∑

m=1

〈We
i ,B

e
m〉

〈Be
m,Be

m〉
Be

m

]

, i = 1, 2, 3 (2)

where We
i (i = 1, 2, 3) are the normalized edge basis functions

in element e given by [22, pp. 276–279]

We
1 = le1(ξ1∇ξ2 − ξ2∇ξ1)

We
2 = le2(ξ2∇ξ3 − ξ3∇ξ2)

We
3 = le3(ξ3∇ξ1 − ξ1∇ξ3) (3)

in which lei (i = 1, 2, 3) is the length of edge i in element e,

ξi (i = 1, 2, 3) are the area coordinates [22, pp. 95–97], and

Be
i (i = 1, 2, 3) are the supplemental vector basis functions

given by

Be
1 = ξ1ξ2n̂1 Be

2 = ξ2ξ3n̂2 Be
3 = ξ3ξ1n̂3 (4)

in which n̂i denotes the unit vector that is normal to edge i.
The degrees of freedom associated with bases Ni(i =

7, 8, 9) are assigned along the vertical edges of a prism element.

They also guarantee the tangential field continuity across the

element interface. These bases are given by

N7 = ξ1∇ζ N8 = ξ2∇ζ N9 = ξ3∇ζ. (5)

From (1) and (2), it can be seen that the normal components

of bases Ni(i = 1, 2, 3, . . . , 6) vanish at the midpoints of the el-

ement edges on the upper and lower triangular elements shown

in Fig. 1. Hence, they form an incomplete set of bases, i.e.,

they cannot be used to represent fields that have nonvanishing

normal components at the midpoints of the element edges. To

make them complete, bases Ni(i = 10, 11, 12, . . . , 15) are con-

structed to be complementary to bases Ni(i = 1, 2, 3, . . . , 6).
They supplement the normal components of the electric fields.

In addition, they are associated with each individual element,

i.e., not shared by elements, hence allowing for the normal

discontinuity of E and thereby ensuring the normal continuity

of the electric flux across element interfaces in the variational

process of a finite-element procedure. These bases are given by

Ni = ζBe
i−9, i = 10, 11, 12

Ni = (1 − ζ)Be
i−12, i = 13, 14, 15. (6)

Defining a numerical integration on the upper and lower

planes as

〈

Ne
i ,N

e
j

〉

S
=

3
∑

l=1

αlN
e
i (ml) · N

e
j(ml) (7)

where ml denotes the midpoint of edge l and αl is the coef-

ficient chosen such that the numerical integration is at least

second-order accurate (generally chosen as 1/3 in our imple-

mentation), we obtain
〈

N
e
i ,N

e
j

〉

V
=0, i=1, 2, 3, 10, 11, 12; j=1, 2, 3, 10, 11, 12; i �=j

〈

N
e
i ,N

e
j

〉

V
=0, i=4, 5, 6, 13, 14, 15; j=4, 5, 6, 13, 14, 15; i �=j

〈

N
e
i ,N

e
j

〉

V
=0, i=1, 2, 3, 10, 11, 12; j=4, 5, 6, 13, 14, 15; j �= i+3

(8)

i.e., basis functions Ni(i = 1, 2, 3, 10, 11, 12) are orthogonal

to each other, Ni(i = 4, 5, 6, 13, 14, 15) are orthogonal to each

other, and these two sets are also mutually orthogonal to each

other. In addition, because the bases on the lower and upper

planes are perpendicular to the vector bases along the vertical

edges, we have

〈

Ne
i ,N

e
j

〉

V
= 0, i = 1, 2, 3, 10, 11, 12; j = 7−9

〈

Ne
i ,N

e
j

〉

V
= 0, i = 4, 5, 6, 13, 14, 15; j = 7−9 (9)

i.e., basis functions Ni(i = 1, 2, 3, 10, 11, 12) and Ni(i =
4, 5, 6, 13, 14, 15) are orthogonal to basis functions Ni(i =
7, 8, 9).
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III. TIME-DOMAIN OrFE-RR METHOD

In this section, first, a time-domain finite-element framework

is outlined. The proposed OrFE-RR method is then detailed,

which includes the reduction from a 3-D layered system to a

single-layer one that is diagonal in negligible computational

cost, the recovery of other unknowns in linear complexity, and

the performance analysis.

A. Time-Domain Finite-Element Framework

Compared with other time-domain computational electro-

magnetic methods such as finite-difference time-domain-based

methods and time-domain integral-equation-based methods, a

time-domain finite-element method (TDFEM) [23] deals with

sparse matrices as well as possessing increased capability in

handling irregular geometries and arbitrary inhomogeneity. In

this section, we outline the basic numerical scheme of the

TDFEM.

The electric field E inside an IC and package problem

satisfies the second-order vector wave equation

∇×
[

µ−1
r ∇× E(r, t)

]

+ µ0ε∂
2
t E(r, t)

+ µ0σ∂tE(r, t) = −µ0∂tJ(r, t) (10)

subject to certain boundary conditions. In (10), µr is the relative

permeability, µ0 is the free-space permeability, ε is the permit-

tivity, and σ is the conductivity. The time-domain finite-element

solution of (10) results in the following system of ordinary

differential equations:

T
d2u

dt2
+ (R + Q)

du

dt
+ Su + f = 0 (11)

in which T, R, Q, and S are square matrices, u is the unknown

field vector, and f is the excitation vector. The elements of the

matrices T, R, and S are given by

Tij = µ0ε〈Ni,Nj〉V
Rij = µ0σ〈Ni,Nj〉V
Sij = µ−1

r 〈∇ × Ni,∇× Nj〉V (12)

in which Ni and Nj are the vector basis functions used to

expand unknown fields, and 〈·, ·〉V denotes volume integration.

Matrix Q is related to the absorbing boundary condition. If the

first-order absorbing boundary condition is used to truncate the

computational domain, the elements of Q are given by

Qij =
1

c
〈n̂ × Ni, n̂ × Nj〉S (13)

where c is the speed of light, n̂ represents a unit vector normal

to the truncation boundary S and pointing outward, and 〈·, ·〉S
denotes surface integration.

Adopting a central difference scheme to approximate the

first- and second-order time derivatives in (11), we obtain

T̃un+1 = (2T − ∆t2S)un

+ [0.5∆t(R + Q) − T]un−1 − ∆t2fn (14)

in which

T̃ = T + 0.5∆t(R + Q) (15)

Fig. 2. (a) Prism-element-based discretization and unknown ordering scheme.
(b) Three-dimensional layered system matrix.

and ∆t represents the time step. Obviously, un+1 (the field

value at the (n + 1)th time step) can be solved in a time

marching fashion from the solution of u at previous time steps.

Matrix T̃ can be very large for realistic on-chip and pack-

age problems, which constitutes a computational challenge.

This challenge can be overcome by the time-domain OrFE-RR

method described in the following section.

B. OrFE-RR Method

We discretize the computational domain into layers of prism

elements as shown in Fig. 2(a). Conductors are also discretized

in order to capture the internal fields accurately. In each ele-

ment, the electric field is expanded into orthogonal vector basis

functions described in Section II. The unknowns are ordered

layer by layer. In each layer, the unknowns are divided into

surface and volume ones. As shown in Fig. 2(a), the unknowns

associated with the horizontal edges are surface unknowns, and

the unknowns associated with the vertical edges are volume

unknowns. The unknowns are then ordered from S1 to V1 to S2

to V2 and so on, resulting in a 3-D layered system matrix shown

in Fig. 2(b). In this matrix, all the Dl and Λl(l = 1, 2, . . . , L)
matrices are diagonal due to the orthogonality of the vector

basis functions as shown in (8). Since the surface vector bases

Ni(i = 1 − 6, 10 − 15) are perpendicular to volume vector

bases Ni(i = 7 − 9), as can be seen from Fig. 1, and T̃ in (15)

solely comprises matrices formed by the inner product of Ni

and Nj , all the Q matrices in Fig. 2(b) vanish.

1) Reduction From a 3-D Layered System to a Single-

Layer One That Is Diagonal in Negligible Computational Cost:

Since all the Q matrices vanish, the 3-D layered system is

naturally decomposed into a 2-D layered system formed by

surface unknowns only, as shown in Fig. 3(a), and L decoupled

matrices formed by volume unknowns in each layer only, as

shown in Fig. 3(b). This step certainly is free of any CPU and

memory cost. As a result, the matrix equation (14) is naturally

decomposed into

PSxS = bS

PV lxV l = bV l, l = 1, 2, . . . , L (16)

in which PS is the 2-D layered system shown in Fig. 3(a),

PV l is the volume-unknown-based system in layer l shown

in Fig. 3(b), and xS and xV represent the surface and volume

unknowns, respectively.
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Fig. 3. (a) Two-dimensional layered system matrix formed by surface un-
knowns only. (b) L decoupled matrices formed by volume unknowns in each
layer only.

Fig. 4. Reduced single-layer system.

The 2-D layered system is then reduced to a single-layer

system matrix shown in Fig. 4, in which matrix D′
id carries

the contribution of all the layers above layer i to layer i, while

matrix D′
iu carries the contribution of all the layers below layer

i to layer i. These two matrices can be obtained recursively from

D′
2 =D1 + D2 − Λ1D

−1
1 Λ1

D′
3 =D2 + D3 − Λ2D

′−1
2 Λ2

...

D′
id =Di−1 + Di − Λi−1D

′−1
i−1Λi−1 (17)

D′
L−1 =DL−1 + DL − ΛLD−1

L ΛL

D′
L−2 =DL−2 + DL−1 − ΛL−1D

′−1
L−1ΛL−1

...

D′
iu =Di + Di+1 − Λi+1D

′−1
i+1Λi+1. (18)

Since all the Dl and Λl(l = 1, 2, . . . , L) are diagonal, D′
id

and D′
iu are obtained in negligible cost. In addition, D′

id and

D′
iu are diagonal.

The right-hand side in the reduced single-layer system shown

in Fig. 4 can also be obtained recursively from the right-hand

side of the original system [11], [12]. Again, in this process,

there is no need to perform matrix factorization and matrix-

vector multiplication since Dl and Λl are diagonal.

The single-layer system can be further reduced to a single-

interface system shown in Fig. 5, where

D′′
id =D′

i,d − ΛiD
′−1
iu Λi (19)

b′′S,i = b′S,i − ΛiD
′−1
iu b′S,i+1. (20)

Fig. 5. Reduced single-interface system.

Again, the operations in (19) and (20) only involve diagonal

matrices, the cost of which is negligible. In addition, the re-

duced single-interface system is also diagonal and, hence, can

be solved readily.

2) Recovery of Other Unknowns in Linear Complexity:

Once the unknowns in the reduced system shown in Fig. 5

is known, the surface unknowns in other layers can be recov-

ered from

xS,l =D
′−1
l

[

b′S,l − ΛlxS,l+1

]

, l = i − 1, i − 2, . . . , 1

xS,l+1 =D
′−1
l

[

b′S,l+1 − ΛlxS,l

]

, l = i + 1, . . . , L − 1

xS,l+1 =D−1
l [bS,l+1 − ΛlxS,l], l = L. (21)

Clearly, the aforementioned operations have linear complex-

ity due to diagonal matrices Dl and Λl.

The volume unknowns are recovered layer by layer from

xV l = P−1
V lbV l, l = 1, 2, . . . , L (22)

in which PV l is assembled from

Pe
V l,ij = hl (µ0ε

e
l + 0.5∆tµ0σ

e
l ) 〈ξi, ξj〉Ωe ,

l = 1, 2, . . . , L. (23)

PV l is a sparse matrix, the dimension of which is approx-

imately half of the number of unknowns in a single layer. If

the size of the single-layer system is small, PV l can be readily

solved. However, if the size of the single-layer system is large,

solving PV l can be a numerical challenge. In the following, we

present an algorithm of solving PV l in linear complexity.

Without loss of generality, assuming that the volume un-

knowns are assigned along the z-direction, Fig. 6(a) shows

an x–y cross-sectional view of these volume unknowns, in

which each dot denotes a volume unknown. If the unknowns

are ordered from line 1 to line 2 to line 3, and to line Nx, a PV l

matrix having the pattern shown in Fig. 6(b) will be generated.

It is a block tridiagonal matrix. More importantly, each diagonal

block is a tridiagonal matrix. The off-diagonal blocks are very

sparse. For example, for the mesh shown in Fig. 6(a), each

row has only two nonzero elements (or even less); one is the

diagonal one, and the other is the super- or subdiagonal one.

To fully explore the structure of PV l to expedite its solution,

we split PV l as the following:

PV l = P − L − U (24)

where P is the block diagonal matrix, −L is the strict lower

triangular part, and −U is the strict upper triangular part. The

matrix patterns of P, L, and U are shown in Fig. 6(c). L and U

are sparse matrices. For the mesh shown in Fig. 6(a), L and U

are bidiagonal matrices.

The matrix P serves as an effective preconditioner of PV l. It

was shown by numerical experiments that, with P, the iterative

process of solving (22) converges in a few iterations for the

realistic on-chip and package examples we have tested.
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Fig. 6. (a) Top view of the volume unknowns in a single layer. (b) Matrix
pattern of PV l. (c) Splitting of PV l

By using P as the preconditioner, (22) is solved iteratively as

Px(k+1) = (L + U)x(k) + bV l, k ≥ 0 (25)

with k being the iteration number. When (25) converges,

x(k+1) =x(k), and hence, (P−L−U)x(k+1) =bV l. From (24),

it can be seen that x(k+1) is the solution of (22). In the

Appendix, we give a proof to show that the iteration in (25) con-

verges for any right-hand side bV l and any initial vector x(0).

Since PV l is a block tridiagonal matrix, (25) can be simpli-

fied to

Piix
(k+1)
i = Li,i−1x

(k)
i−1 + Ui,i+1x

(k)
i+1 + di, 1 ≤ i ≤ Nx

(26)

in which i denotes the line index and Pii denotes the ith
diagonal block of P, which is formed by volume unknowns

on line i. Since Pii is a tridiagonal matrix, as shown in [15],

its inverse can be stored efficiently in two sequences {uj} and

{vj}, j = 1, 2, . . . , m, with m being the dimension of Pii.

Meanwhile, P−1
ii b can be performed in linear complexity [15].

3) Performance Analysis: The numerical procedure of the

proposed OrFE-RR method can be summarized as follows.

Step 1) Reduce the original 3-D layered system matrix to

a single-interface system (shown in Fig. 5) that is

diagonal.

Step 2) Precalculate the inverse of Pii in (26).

Beginning of the time marching.

Step 3) Solve the reduced system shown in Fig. 5 and obtain

the solution of a single surface.

Step 4) Recover solutions of surface unknowns in all other

layers using (21) and recover solutions of volume

unknowns in all layers using (22).

Step 5) Construct the new right-hand side of (14) for the

next time step. Go back to Step 3).

End of the time marching.

The computational cost of each step is analyzed as follows.

Step 1) The cost is negligible due to orthogonal prism

vector basis functions that render Dl and Λl(l =
1, 2, . . . , L) diagonal.

Step 2) Both memory and CPU costs are linear because Pii

is a tridiagonal matrix. Assuming that the number

of unknowns along a single line in Fig. 6(a) is m,

the memory and CPU cost of calculating and storing

P−1
ii is O(m).

Step 3) The cost is negligible since the reduced system is

diagonal.

Step 4) Both memory and CPU costs are linear.

Step 5) The cost is a few sparse matrix-vector multiplica-

tions, which has a linear complexity.

Overall, in the proposed OrFE-RR method, the reduction

from a 3-D layered system to a single-layer one costs negli-

gible computational resources; the reduced system is diagonal,

and hence, its solution time is minimized; the complexity

of recovery scales linearly with the number of unknowns to

be recovered. The method applies to any arbitrarily shaped

multilayer structure embedded in inhomogeneous media. The

time step permitted by this method is the same as that permitted

by the conventional TDFEM schemes.

IV. NUMERICAL RESULTS

To validate the accuracy of the proposed time-domain OrFE-

RR method, we first simulated a parallel-plate waveguide, the

analytical solution of which is known. According to typical

geometrical dimensions of on-chip problems, the waveguide

width (along the y-direction) was set as 1 µm, the waveguide

height (along the x-direction) was set as 0.1 µm, and the

waveguide length (along the z-direction) was set as 3.5 µm.

The structure was divided into 35 layers along the length. An

incident transverse electric magnetic plane wave was launched

at the near end of the waveguide (at z = 0). An exact ab-

sorbing boundary condition is placed at both the near and

far ends of the waveguide to absorb the outgoing wave. The

excitation was a time derivative of a Gaussian pulse Êinc(t) =
x̂2t exp(−t2/τ2), in which τ = 3.0 × 10−13 s. The structure

was discretized into triangular prism elements, resulting in

8067 unknowns. The time step was chosen as 0.7 × 10−16 s.

In total, 20 000 time steps were simulated. The electric field at

1.7 µm was sampled. As can be seen from Fig. 7(a), the result

obtained from the proposed OrFE-RR method shows an excel-

lent agreement with the analytical solution. Fig. 7(b) and (c)

shows the electric fields sampled at z = 0.1, 1.7, and 3.5 µm.
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Fig. 7. Simulation of a parallel-plate waveguide. (a) Electric field at 1.7 µm.
(b) Electric fields at z = 0.1, 1.7, and 3.5 µm simulated by the proposed
method and those obtained from a conventional TDFEM solver. (c) Magnified
plot showing the time delay.

The waveforms and time delay obtained by the proposed

method were compared with those simulated by a conventional

TDFEM solver. The results are on top of each other.

Fig. 8. Time-domain waveform of the input current and voltages sampled at
the near and far ends of a test-chip interconnect structure of 100-µm length.

With the accuracy validated, a test-chip interconnect struc-

ture with a length of 100 µm was simulated. The test-chip

interconnect structure was fabricated using conventional silicon

processing technology [14]. It comprised three metal layers and

thirteen inhomogeneous dielectric stacks. The structure was

divided into ten layers along its length, resulting in 30 973

unknowns. A current source was placed at the near end. The

far end was left open. The time step used in this simulation

is 1.2 × 10−16 s. Fig. 8 shows the time-domain waveforms of

the voltages sampled at the near and far ends of one wire in

the interconnect structure. Fig. 9 shows the frequency-domain

S-parameters obtained from the proposed method in compari-

son with the measured data. Excellent agreement is observed.

Next, a test-chip interconnect structure of 2000-µm length

was simulated. The structure was discretized into 127 093

unknowns. The time step was chosen as 1.2 × 10−16 s. The

input current and the voltage waveforms sampled at the near

and far ends of one wire in the interconnect structure are shown

in Fig. 10, which demonstrates a clear inductance effect. The

simulated S-parameters in comparison with the measured data

are shown in Fig. 11. Again, excellent agreement is observed.

After demonstrating the accuracy of the proposed method,

we tested its performance in comparison with the conventional

TDFEM that employs a state-of-the-art multifrontal-based

sparse matrix solver, UMFPACK [24]. The on-chip intercon-

nect structure of 2000-µm length was chosen as the testing

example. The meshing on the xy plane was fixed while the

number of layers along the length (z-direction) was varied to

generate approximately 20 000 to 30 million unknowns. Fig. 12

shows the CPU and memory cost as a function of the number

of unknowns. Obviously, the proposed method outperforms the

conventional method in both CPU time and memory consump-

tion. More importantly, the proposed method scales favorably

with the number of unknowns. Since the cost of the reduction

in the proposed method is negligible, the computation is solely

spent on recovering N unknowns of interest, which clearly

shows a linear complexity as can be seen from Fig. 12. To be

specific, Fig. 12(a) and (b) shows the CPU cost and memory
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Fig. 9. S-parameters of a 100-µm-long test-chip interconnect simulated by the proposed OrFE-RR method.

Fig. 10. Simulation of a test-chip interconnect of 2000-µm length. (a) Input current. (b) Voltages sampled at the near and far ends of one wire in the interconnect
structure.
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Fig. 11. S-parameters of a 2000-µm-long test-chip interconnect simulated by
the proposed OrFE-RR method.

consumption in factorization, respectively. The conventional

method has to factorize the entire system matrix T̃ in (15),

whereas the proposed method only needs to invert Pii in (26),

which has a 1-D size and is tridiagonal. Fig. 12(c) shows the

matrix solving time. The conventional method has to perform

backward–forward substitutions of a matrix that has a 3-D size,

whereas the proposed method deals with the multiplication of

P−1
ii with a vector, which has a 1-D size, and, moreover, can be

done in linear complexity.

In Fig. 12, the complexity curve of the conventional TDFEM

solver was not drawn to the end because, when the number of

layers exceeded 100, yielding more than 1.5 × 105 unknowns,

the conventional solver based on [24] failed to factorize the

system matrix. In addition, from Fig. 12, it can be seen that,

even if the number of unknowns is in the range that the

conventional solver is applicable, the complexity is not linear.

The convergence performance of the iterative solution of (22)

is shown in Fig. 13. Clearly, the proposed method only requires

a few iterations to achieve good accuracy when recovering

volume unknowns.

Next, we tested the capability of the OrFE-RR method in

modeling irregular geometry. A real package structure (pro-

vided by Intel Corporation) was simulated. The structure in-

volved a bottom ground plane with via holes, a center via layer

consisting of both power and ground vias, and a top power plane

with via holes, occupying an area of 2500 × 2500 µm. A bot-

tom negative supply voltage (VSS) via was excited by a current

source. An unstructured mesh was used to capture the irregular

geometry of the vias and holes. The voltage maps of the positive

supply voltage (VCC) and VSS package planes were shown in

Fig. 14(a) and (b). Although it was the VSS via that was excited,

the coupling to the VCC plane can be clearly seen.

We then simulated a 2500 × 2500 µm combined die–

package power delivery system. An illustration of this example

is shown in Fig. 15. The package structure was kept the same.

Three on-chip layers were added. VCC and VSS vias traversed

via holes and contacted package planes. The on-chip power

rails were connected through on-chip vias. A current source

Fig. 12. (a) Time complexity of the matrix factorization. (b) Memory com-
plexity of the matrix factorization. (c) CPU cost at each time step as a function
of N .

was launched at a VSS via from the silicon. In Fig. 16, the

dynamic voltage maps of the package and on-chip layers were

plotted at the 6000th time step. In this simulation, a time step

of 2.5 × 10−15 s was used. The CPU cost at each time step was

0.51846 s.
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Fig. 13. Relative error versus the number of iterations in solving PV l.

Fig. 14. Simulation of a package power delivery structure. (a) Voltage map of
a VCC plane sampled at the 1000th time step. (b) Voltage map of a VSS plane
sampled at the 1000th time step.

V. CONCLUSION

In this paper, a set of orthogonal prism vector basis functions

have been developed. These bases are complete in representing

fields. In addition, they enforce the tangential continuity of

the electric field and the normal continuity of the electric flux

across material interfaces. Based on this set of bases, a time-

domain OrFE-RR method was developed to solve large-scale

IC and package problems. This method is capable of reducing a

3-D layered system matrix to a single-layer system matrix with

negligible cost, irrespective of the original problem size. In ad-

dition, the reduced single-layer system matrix is diagonal and,

hence, can be solved readily. From the solution of the reduced

system, the solutions of other unknowns are recovered in linear

complexity. The method applies to any arbitrarily shaped multi-

layer structure involving inhomogeneous materials. It entails no

theoretical approximation. Numerical and experimental results

have demonstrated its superior performance in simulating on-

chip, package, and combined die–package problems.

APPENDIX

Define a sequence of iterations of the form

x(k+1) = Gx(k) + f (A.1)

in which G is a square matrix. It is known that, if the spectral

radius of G, denoted by ρ(G), is less than 1, then I − G is

nonsingular, and the iteration in (A.1) converges for any f and

x(0) [25].

From (25), it can be seen that G in our iteration scheme is

G = P−1(L + U). (A.2)

Denoting the eigenvalues of G by λ, we have

Gv = λv (A.3)

in which v denotes the eigenvector. From (A.2) and (A.3), we

obtain

(L + U)v = λPv. (A.4)

Taking a norm on both sides of (A.4), we obtain

|λ| =
‖(L + U)v‖

‖Pv‖
(A.5)

in which ‖(·)‖ denotes the norm of (·). Without loss of gener-

ality, the 1-norm of a vector is used, which is

‖g‖1 =
m

∑

i=1

|gi| (A.6)

where m is the length of vector g. If ‖(L + U)v‖ is less than

‖Pv‖, then the modulus of λ is less than 1, then ρ(G) < 1, and

then the convergence of (25) is proved.

Matrices L and U are the off-diagonal blocks of PV l, and P

is the diagonal block. From (23), the matrix elements of PV l

can be written as

Pe
V l,mn = hl (µ0ε

e
l + 0.5∆tµ0σ

e
l ) 〈ξm, ξn〉Ωe (A.7)
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Fig. 15. Illustration of the die–package power delivery example. (a) Top view from the package side (Big circles are holes; small circles are sampled via contacts).
(b) Bottom view from the on-chip side.

Fig. 16. Simulation of a 2500× 2500-µm combined die–package system. (a) Voltage map of an on-chip layer (both VSS and VCC wires are shown). (b) Voltage
map of the second on-chip layer (both VSS and VCC wires are shown). (c) Voltage map of a package VCC plane. (d) Voltage map of a package VSS plane.
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Fig. 17. Illustration of an arbitrary node m and its connection with other
nodes.

where

〈ξm, ξn〉Ω =

{

∆
6 , m = n
∆
12 , m �= n

(A.8)

in which ∆ is the area of a triangular element e. Hence, Pe
V l,mn

can be denoted by

Pe
V l,mn ∼

{

t, m = n
t/2, m �= n

(A.9)

in which

t = hl (µ0ε
e
l + 0.5∆tµ0σ

e
l )

∆

6
. (A.10)

With the matrix elements of PV l known, ‖(L + U)v‖ and

‖Pv‖ can be derived. Since P is tridiagonal and symmetric,

‖Pv‖ can be written as

‖Pv‖ =

M
∑

m=1

|PV l,m,m−1vm−1 + PV l,m,mvm

+ PV l,m,m+1vm+1|. (A.11)

Considering an arbitrary volume unknown denoted by node

m in Fig. 17, assuming that the mesh is reasonably good, and

hence, the sizes of all the elements are similar, we obtain

PV l,m,m ∼ net (A.12)

in which ne is the number of triangular elements that own node

m as one of their vertices. In (A.12), PV l,m,m is obtained by

assembling the contribution from ne elements. Based on our

unknown ordering scheme, nodes m − 1, m, and m + 1 all

reside on the same line, as shown in Fig. 17. Since nodes m
and m − 1 can only be simultaneously shared by two elements

and so are nodes m and m + 1, PV l,m,m−1 and PV l,m,m+1 are

assembled from two elemental contributions as

PV l,m,m−1 ∼ t

PV l,m,m+1 ∼ t. (A.13)

Therefore, (A.11) can be written as

‖Pv‖ =

M
∑

m=1

|(t)vm−1 + (net)vm + (t)vm+1| . (A.14)

Since nodes m − 1 and m + 1 are adjacent to node m, the

eigenfield v at these two nodes can be estimated by v at node m.

Hence

‖Pv‖ ∼

M
∑

m=1

|(ne + 2)t| |vm|. (A.15)

As shown in Fig. 17, node m not only interacts with the

adjacent two nodes residing on the same line but also interacts

with nodes residing on the line left to it and the line right to

it. The interaction with the nodes residing on the left line is

characterized by L and that with the nodes residing on the right

line is characterized by U. Therefore, L and U consist of matrix

elements PV l,m,n in which node n resides on the adjacent lines

and connects directly to node m through one edge. Assuming

that the number of nodes n is np, ‖(L + U)v‖ can be evalu-

ated by

‖(L + U)v‖ =

M
∑

m=1

∣

∣

∣

∣

∣

np
∑

n=1

PV l,mnvn

∣

∣

∣

∣

∣

=

M
∑

m=1

∣

∣

∣

∣

∣

np
∑

n=1

(t)vn

∣

∣

∣

∣

∣

.

(A.16)

Since the np nodes are adjacent to node m, (A.16) can be

estimated as

‖(L + U)v‖ ∼
M
∑

m=1

np|t||vm|. (A.17)

Take the mesh shown in Fig. 17 as an example. np = 4 (the

number of circled nodes), and ne = 6; hence, from (A.15) and

(A.17), ‖(L + U)v‖ < ‖Pv‖.

There exists a general relationship between np and ne

ne = 2
(np

2
+ 1

)

= np + 2. (A.18)

Hence, from (A.15) and (A.17), the following inequality

always holds true:

‖(L + U)v‖ < ‖Pv‖. (A.19)

Therefore, from (A.5), ρ(G) < 1. Hence, the iteration in (25)

converges for any bV l and any initial vector x(0).
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