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Time-Domain Reconstruction for Thermoacoustic
Tomography in a Spherical Geometry

Minghua Xu and Lihong V. Wang*

Abstract—Reconstruction-based microwave-induced thermoa-
coustic tomography in a spherical configuration is presented.
Thermoacoustic waves from biological tissue samples excited
by microwave pulses are measured by a wide-band unfocused
ultrasonic transducer, which is set on a spherical surface enclosing
the sample. Sufficient data are acquired from different directions
to reconstruct the microwave absorption distribution. An exact
reconstruction solution is derived and approximated to a modified
backprojection algorithm. Experiments demonstrate that the
reconstructed images agree well with the original samples. The
spatial resolution of the system reaches 0.5 mm.

Index Terms—Microwave, reconstruction, thermoacoustic,
tomography.

I. INTRODUCTION

PULSED-MICROWAVE-INDUCED thermoacoustic to-
mography in biological tissues combines the advantages

of pure microwave imaging [1]–[3] and pure ultrasound
imaging [4], [5]. The wide range of microwave absorption
coefficients found in different kinds of tissue leads to a high
imaging contrast for biological tissues. However, it is difficult
to achieve good spatial resolution in biological tissues using
pure microwave imaging because of the long wavelength of
microwaves. This problem can be overcome by the use of mi-
crowave-induced thermoacoustic waves. Because the velocity
of acoustic waves in soft tissue is1.5 mm/ s, thermoacoustic
signals at megahertz can provide millimeter or better spatial
resolution.

In thermoacoustic tomography, a short-pulsed microwave
source is used to irradiate the tissue. The relatively long
wavelength of the microwave, e.g.,3 cm at 3 GHz in tissues,
serves to illuminate the tissue homogeneously. A wide-band
ultrasonic transducer can then be employed to acquire the
thermoacoustic signals excited by thermoelastic expansion,
which carries the microwave absorption property of the tissue.
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The ultrasonic transducer is very sensitive in detecting small
thermoacoustic vibrations from an object.

The key problem with this technique is how to determine
the microwave absorption distribution from the measured
data, i.e., how to map the inhomogeneity of the tissue. One
approach is to use focused ultrasonic transducers to localize
the thermoacoustic sources in linear or sector scans and then
construct the images directly from the data as is often done in
pulse-echo ultrasonography [6], [7]. An alternative method is
to use wide-band point detectors to acquire thermoacoustic data
and then reconstruct the microwave absorption distribution.
To date, we have not seen an exact inverse solution for this
specific problem, although some researchers have arrived at
approximate reconstruction algorithms, such as the weighted
delay-and-sum method [8], the optimal statistical approach [9],
and other approach [10].

Based on spherical harmonic functions, in this paper we first
deduce an exact solution to the problem in three-dimensional
spherical geometry, which can be carried out in the frequency
domain [11]–[14]. The exact reconstruction algorithms in planar
and cylindrical geometries are reported in the companion pa-
pers [15], [16]. Spherical measurement geometry may be more
suitable for investigation of external organs such as the breast.
We assume that the wide-band unfocused ultrasonic transducer
is set on a spherical surface, which encloses the sample under
investigation. The data acquired from different directions are
sufficient to allow us to reconstruct the microwave absorption
distribution.

In many cases, the diameter of the sphere of detection is much
larger than theultrasonicwavelength. Asa result, anapproximate
algorithm can be deduced, which is a modified backprojection of
a quantity related to the thermoacoustic pressure. This approxi-
mate algorithm can be carried out in the time domain and is much
faster thantheexactsolution. Inour initial investigations,wehave
also tested tissue samples in a circular measurement configura-
tion. These experiments demonstrate that the images calculated
by the modified backprojection method agree well with the orig-
inal samples. Moreover, the images have both the high contrast
associated with pure microwave imaging and the 0.5-mm spatial
resolution associated with pure ultrasonic imaging.

II. THEORY

A. Fundamental of Thermoacoustics

Thermoacoustic theory has been discussed in many literature
reviews such as [13]. Here, we briefly review only the funda-
mental equations. If the microwave pumping pulse duration is
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much shorter than the thermal diffusion time, thermal diffusion
can be neglected; consequently, the thermal equation becomes

(1)

where is the density; is the specific heat; is the
temperature rise due to the energy pumping pulse; and
is the heating function defined as the thermal energy per time
and volume deposited by the energy source. We are initially
interested in tissue with inhomogeneous microwave absorption
but a relatively homogeneous acoustic property. The two basic
acoustic generation equations in an acoustically homogeneous
medium are the linear inviscid force equation

(2)

and the expansion equation

(3)

where is the isobaric volume expansion coefficient;is the
sound speed; is the acoustic displacement; and
is the acoustic pressure.

Combining (1)–(3), the pressure produced by the heat
source obeys the following equation:

(4)

The solution based on Green’s function can be found in the lit-
erature of physics or mathematics [12], [14]. A general form can
be expressed as

(5)

The heating function can be written as the product of a spatial
absorption function and a temporal illumination function

(6)

Thus, can be expressed as

(7)

where .

B. Exact Reconstruction Theory

We first solve the problem where the pulse pumping is a Dirac
delta function

(8)

Suppose the detection point on the spherical surface ,
which encloses the sample (Fig. 1). By dropping the primes, (7)
may be rewritten as

(9)

where . The inverse problem is to reconstruct the ab-
sorption distribution from a set of data measured
at positions . Taking the Fourier transform on variableof (9),
and denoting , we get

(10)

Fig. 1. Acoustic detection scheme. The ultrasonic transducer at positionr

records the thermoacoustic signals on a spherical surface with radiusjr� r j.

where the following Fourier transform pair exists:

(11a)

(11b)

We next derive the exact solution using the spherical har-
monic function basis. In the derivation, we referred to the
mathematical techniques for ultrasonic reflectivity imaging
[11]. The mathematics utilized can also be found routinely
in the mathematical literature, such as [12]. Here, we list the
identities (12a)–(12f) used in the subsequent deduction:

1) The complete orthogonal integral of spherical harmonics

(12a)

where and denotes the complex
conjugate.

2) The Legendre polynomial

(12b)

where the unit vectors and point in the directions
and , respectively.

3) The orthogonal integral of Legendre polynomials, derived
from (12a) and (12b)

(12c)

where the unit vector points in the direction
.

4) The expansion identity

(12d)

where , , and are the
spherical Bessel and Hankel functions, respectively.
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5) The complete orthogonal integral of Bessel functions

(12e)

6) The summation identity of Legendre polynomials

(12f)

First, substituting (12d) into (10), we obtain

(13)

Then, multiplying both sides of (13) by , and inte-
grating with respect to over the surface of the sphere, and
considering the identity (12c), we obtain

i.e.,

(14)

Further, multiplying both sides of (14) by , integrating
them with respect to from zero to , and then multiplying
both sides of (14) again by and summing from zero
to , and considering the identity (12e) and (12f), we get

Finally, dropping the primes, we can rewrite the equation as

(15)

This is the exact inverse solution of (9). It involves summation
of a series and may take much time to compute. Therefore, it is
desirable to further simplify the solution.

C. Modified Backprojection

In experiments, the detection radiusis usually much larger
than the wavelengths of the thermoacoustic waves that are useful
for imaging. Because the low-frequency component of the ther-
moacoustic signal does not significantly contribute to the spatial
resolution, it can be removed by a filter. Therefore, we can as-
sume and use the asymptotic form of the Hankel
function to simplify (15). The following two identities are in-
volved [12]:

1) The expansion identity similar to (12d)

(16a)

2) The approximation when

(16b)

where is the spherical Hankel function of the
second kind.

Substituting (16b) into (15), we get

(17)

Considering the form of (16a), the above equation can be
rewritten as

Because is a real function, . Taking
the summation of the above equation with its complex conjugate
and then dividing it by two, we get
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Recalling the inverse Fourier transform (11b), we get

(18)

i.e.,

(19)

Equation (19) shows that the absorption distribution can be
calculated in the time domain by the means of backprojection
and coherent summation over spherical surfaces of the quantity

instead of the acoustic pressure itself.
This approximate algorithm requires less computing time than
the exact solution (15).

For initial investigations, we measure the samples in a circular
configuration. In these cases, the backprojection is carried out
in a circle around the slices, and (19) can be simplified to

(20)

III. EXPERIMENTAL METHOD

A. Diagram of Setup

Fig. 2 shows the experimental setup for the circular measure-
ment configuration, which is modified from our previous paper
[7]. For the convenience of the reader, the system is briefly de-
scribed here. The unfocused transducer (V323, Panametrics) has
a central frequency of 2.25 MHz and a diameter of 6 mm. It is
fixed and it points horizontally to the center of the rotation stage,
which is used to hold the samples. For good coupling of acoustic
waves, both the transducer and the sample are immersed in min-
eral oil in a container.

The microwave pulses are transmitted from a 3-GHz mi-
crowave generator with a pulse energy of 10 mJ and a width
of 0.5 s, and then delivered to the sample from the bottom
by a rectangular waveguide with a cross section of 72 mm
34 mm. A function generator (Protek, B-180) is used to trigger
the microwave generator, control its pulse repetition frequency,
and synchronize the oscilloscope sampling. The signal from
the transducer is first amplified through a pulse amplifier,
then recorded and averaged 200 times by an oscilloscope
(TDS640A, Tektronix). A personal conputer is used to control
the step motor for rotating the sample and transferring the data.

Last, we want to point out that, in our experiments, the
smallest distance between the rotation center and the
surface of the transducer is 4.3 cm. In the frequency domain
(100 KHz– 1.8 MHz), with 1.5 mm/ s, we get

. Therefore, the required condition
for the modified backprojection algorithm is satisfied.

B. Technical Consideration

During measurement, we find that the piezoelectric signal
detected by the transducer includes the thermal

acoustic signal as well as some noise. The noise
comes from two contributors. One is the background random
noise of the measurement system, which can be suppressed by
averaging the measured data. The other part, , results
from the microwave pumping via electromagnetic induction.

Fig. 2. The experimental setup.

Fig. 3. (a) The temporal profile of the microwave pulse; (b) the temporal
profile of the impulse response of the transducer; (c) compare the normalized
amplitudes of the spectrumI(f)R(f),G(f) andfG(f).
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Fig. 4. (a) An example of temporal piezoelectric signal; (b) an example of
temporal noise; (c) an example of filtered signal; and (d) an example of filtered
thermoacoustic signals detected at different angular positions from 0to 360 .

The pumping component of the noise can be measured without
a sample, and can be subtracted from the measured data

(21)

In fact, the transducer is not a real point detector. For sim-
plicity, we can ignore its size if we put it far away from the
sample. However, we still have to consider the impulse response

of the transducer and the pumping duration of the mi-
crowave pulse. In general, the measured thermoacoustic signal
can be written as a convolution

(22)

where is the thermoacoustic signal with delta-pulse mi-
crowave pumping. In the frequency domain, (22) can be written
as

(23)

where

(24a)

(24b)

Because of the presence of noise and the finite bandwidth of
and , an appropriate deconvolution algorithm should

be used to calculate . In the reconstruction, only the
high-frequency component of the thermoacoustic signal is re-
quired. Therefore, we compute instead, where

is a high-frequency bandpass filter such as a Gaussian
filter

and and are two parameters of the filter, and
.

In our experiments, is approximately a rectangular func-
tion with duration s and its temporal profile is shown
in Fig. 3(a). Its spectrum covers the range from 0 to 2 MHz.
The transducer that we used is of the videoscan type with a cen-
tral frequency of MHz, and the temporal profile of
the impulse response is shown in Fig. 3(b). It is observed that
the generated thermoacoustic signal under microwave pumping
with duration s exists primarily in a frequency range
below 1.8 MHz. We chose the parameters and

MHz in the Gaussian filter

to eliminate the noise at high as well as low frequencies. The
spectrum is shown as the dash-dot line in Fig. 3(c).
We compared the normalized spectrum [solid line
in Fig. 3(c)] with [dash line in Fig. 3(c)], and found

when MHz. Of course, this
approximated equality is a special case for our measurement
system only. Therefore, the filtered can be simply
calculated by an inverse fast Fourier transform (IFFT)

(25)
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Fig. 5. (a) Cross section of a tissue sample; (b) reconstructed image; and
(c) a line profile of the reconstructed image aty = 31:5 mm.

where is a wide bandpass filter, which is used to further
eliminate noise at high and low frequencies in order to guarantee

the condition for the modified backprojection. A
simple filter is

MHz MHz

otherwise.
(26)

IV. RESULTS AND DISCUSSION

Finally, we use the above modified backprojection algorithm
and the experimental method to investigate some tissue samples.

A. Experimental Data Preprocessing

The measured piezoelectric data include the useful thermoa-
coustic signal as well as some noise data as illustrated by the fol-
lowing example. Fig. 4(a) is a typical measured temporal piezo-
electric signal, which is from the sample shown in Fig. 5(a).
One portion of the noise resulting from the microwave pumping
looks like the curve in Fig. 4(b), which is acquired at the same
sampling rate and the same delay time with the transducer in
the same position as the curve in Fig. 4(a). Because the slice is
very thin, the thermoacoustic signal is not much higher than the
noise resulting from the microwave pumping. Next, we subtract
the noise from the raw thermoacoustic signal and use a wide
bandpass filter to eliminate some of the useless low-frequency
and high-frequency components. This processed data is shown
in Fig. 4(c); it is much cleaner than the raw data in Fig. 4(a). The
filtered thermoacoustic signals detected at different angular po-
sitions from 0 to 360 are shown in Fig. 4(d).

B. Image Contrast

Image contrast is an important index for biological imaging.
Fig. 5(a) shows a tested sample, which was photographed after
the experiment. The sample was made according to the fol-
lowing procedure. First, we cut a thin piece of homogeneous
pork fat tissue and shaped it arbitrarily to form a base. Its thick-
ness is 5 mm and its maximum diameter is 4 cm. Then we used
different screwdrivers to carefully make two pairs of holes that
were approximately 4 and 6 mm in diameter, respectively. Fi-
nally, one big and one small hole on the left side were filled
with pork muscle, while the two holes on the right side were
filled with pork fat of the same type as that which made up the
base.

In the experiment, the transducer rotationally scanned the
sample from 0 to 360 with a step size of 2.25. The detec-
tion radius was 4.3 mm. We used the 160 series of data as
shown in Fig. 4(d) to calculate the image by our modified back-
projection method.

The reconstructed image is shown in Fig. 5(b). The outline
and size of the fat base as well as the sizes and locations of
the two muscle pieces are in good agreement with the original
sample in Fig. 5(a). Fig. 5(c) shows a line profile for the small
piece of muscle in the image. It indicates that the contrast be-
tween the fat and the muscle is very high. This high contrast
is due to the low microwave absorption capacity of fat and the
high absorption capacity of muscle: at 3 GHz, the penetration
depth for muscle and fat are 1.2 and 9 cm, respectively. How-
ever, the two pieces of fat are not visible in the image [Fig. 5(b)],
which means the minute mechanical discontinuity between the
boundaries of muscle and fat does not contribute much to the
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thermoacoustic signal. On the contrary, discontinuity improves
the strength of the echo sounds in pure ultrasound imaging.

C. Spatial Resolution

Spatial resolution is another important index for biological
imaging. We used samples with a set of small thermoacoustic
sources to test the resolution. One tested sample is shown in
Fig. 6(a), which was also photographed after the experiment was
completed.

The sample was made according to the following procedure.
First, we cut a thin piece of homogeneous pork fat tissue and
made it into an arbitrary shape. Its thickness was 5 mm with a
maximum diameter of 4 cm. Then we used a small screwdriver
to carefully make a set of small holes about 2 mm in diameter. In
the meantime, we prepared a hot solution with 5% gelatin, 0.8%
salt, and a drop of dark ink (to improve the photographic prop-
erties of the sample). Next, we used an injector to inject a drop
of the gelatin solution into each small hole and subsequently
blew out the air to make good coupling between the gelatin so-
lution and the fat tissue. After being cooled in room temperature
for about 15 min, the gelatin solution was solidified. During the
experiment, the transducer also rotationally scanned the sample
from 0 to 360 with a step size of 2.25. The detection radius

was 4.3 mm.
The reconstructed image produced by our modified backpro-

jection method is shown in Fig. 6(b); it also agrees with the orig-
inal sample well. In particular, the relative locations and sizes of
those small thermoacoustic sources are clearly resolved and per-
fectly match the original ones. Fig. 6(c) shows a reconstructed
profile (solid curve) at position mm of the image
Fig. 6(b), which includes two gelatin sources with a distance
of about 3 mm. Each gelatin source has a distinct profile in the
image. The boundaries between them are clearly imaged. More-
over, the reconstructed profile is in good agreement with the
original profile (dashed curve), which was a grayscale profile
of the image Fig. 6(b). The half-amplitude line cuts across the
reconstructed profile at points B, A , A , and B , respectively.
The distances mm and mm
in the image are close to the original values of about 1.80 and
1.60 mm, respectively, which were measured in the original ob-
jects. Therefore, the width of the profile at the half-amplitude
closely measures its physical size.

We here define a resolving criterion to estimate the spatial
resolution. The quarter-amplitude line cuts across the profiles at
points C and C , respectively, as shown in Fig. 6(c). If the right
source moves to the position of the left one, the reconstructed
profile is equal to the spatial summation of the profiles of the two
sources, because of the linear superposition property of acoustic
waves. When point Cencounters C, the new amplitude at C
or C would reach the half amplitude, and the two sources could
still be differentiated. If the right one moves more to the left, the
new amplitude between their overlap regions would elevate to
more than the half amplitude. When we use a half-amplitude
line to cut across the profiles, we get only two points on the far
side of each profile, which means that these two sources can no
longer be clearly distinguished. Further, when point Atouches
A , these two sources join as a single object in the image.

Fig. 6. (a) Cross section of a tissue sample; (b) reconstructed image; and
(c) comparison between a line profile (solid curve) of the reconstructed image
(b) atx = 27:45 mm and the corresponding grayscale profile (dashed curve)
of the original image (a).
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Fig. 7. (a) Diagram of the sample structure and the measurement; (b) cross
section of the tissue sample; and (c) reconstructed image.

Therefore, the minimum distance that can be differentiated is
approximately equal to the summation of the horizontal distance
between point A and C and the horizontal distance between

point A and C . We have checked additional pairs of sources
resembling those in the image of Fig. 6(b), and found that this
minimum distance is less than 0.5 mm. We can, therefore, claim
that the spatial resolution in our system reaches less than 0.5
mm, which agrees with the theoretical spatial resolution limit
for 1.8-MHz signals whose half wavelength is0.5 mm with
the sound speed of 1.5 mm/s.

Of course, the detecting transducer has a finite physical size.
If it is close to the thermoacoustic sources, it cannot be approx-
imated as a point detector. Its size will blur the images and
decrease the spatial resolution. Therefore, in experiments, the
transducer must be placed some distance away from the tissue
samples. In general, due to the finite size of the transducer, the
farther away the transducer is from the detection center, the
better the resolution at the expense of the signal strength.

Other limiting factors of spatial resolution include the
duration of the microwave pulse and the impulse response of
the transducer. In general, using a shorter microwave pulse
will produce more high-frequency components in the thermoa-
coustic signals. The disadvantages resulting from employing a
shorter pulse, however, are insufficient energy delivery and a
decrease in the signal-to-noise ratio. Selection of the duration
of the pulse is dependent on the experimental conditions
and measurement systems. In biological tissues, microwaves
at 300 MHz 3 GHz with 0.1 1 s pulse width are often
adopted. Therefore, the high-frequency of the thermoacoustic
signals reaches several MHz. Such a wide-band transducer for
measuring acoustic waves atMHz is widely available.

D. Thick Sample

The advantage of using microwave is its long penetration
depth in soft tissue. A microwave can reach a tumor buried in-
side tissue and heat it to generate thermoacoustic waves. One
tested sample is shown in Fig. 7(a). The experiment was con-
ducted according to a procedure similar to the one above. Three
small absorbers were buried inside a big fat base. The big pork
fat tissue had a maximum diameter of 7 cm. Screwdrivers were
used to carefully make three holes about 5 mm in diameter with
a depth of 2.5 cm. Next, an injector was used to inject a drop of
the same gelatin solution as above into each small hole, and, sub-
sequently, air was blown out to improve the coupling between
the gelatin solution and the fat tissue. These gelatin sources were
about 5 mm in diameter. After being cooled at room tempera-
ture for about 15 min, the gelatin solutions solidified. The pho-
tograph of the sample at this stage is shown in Fig. 7(b). Finally,
the holes were filled with fat, and the gelatin sources were buried
in the fat tissue.

During the experiment, a microwave was transmitted out to
the sample from below. The transducer rotationally scanned the
sample, including the gelatin sources, from 0to 360 in a plane
as Fig. 7(a) shows. The distance between the transducer and the
rotation center was 7 cm. The reconstructed image produced by
our modified backprojection method, which agrees well with
the original sample, is shown in Fig. 7(c).

The above experiments verified the principle of the modi-
fied backprojection algorithm, which implies back projection
and coherent summation over spherical surfaces. In particular, a
set of circular measurement data would be sufficient to yield a
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satisfactory cross-sectional image for a sample with only small
absorption sources in the same horizontal plane and a lower
absorption background. Of course, for a complicated sample,
data from only a circular measurement would be insufficient
for 3-D reconstruction unless cylindrical focusing is employed.
This limited view problem will be addressed in our future work.

Finally, we must point out that an inhomogeneous acoustic
property, such as the speed of sound variation, might result in re-
construction errors. Fortunately, the speed of sound in most soft
tissue is relatively constant at1.5 mm/ s. The above experi-
ments demonstrated that the small speed variations between fat
and muscle or gelatin did not result in significant reconstruction
artifacts. The reason is that thermoacoustic waves are produced
internally by microwave absorption and are propagated one-way
to the detectors. Thus, a small speed variation does not affect the
travel time of the sound very much in a finite-length path, for ex-
ample, 10 cm, which is comparable to a typical breast diameter.
Therefore, in thermoacoustic tomography, satisfactory contrast
and resolution are obtainable even in tissue with a small degree
of acoustic inhomogeneity.

V. CONCLUSION

Pulsed-microwave-induced thermoacoustic tomography of
inhomogeneous tissues has been studied. Both an exact inverse
solution and a modified backprojection algorithm have been
derived, which are based on the data acquired by wide-band
point detectors on a spherical surface that encloses the sample
under study. A set of experiments on tissue samples has been
investigated under a circular measurement configuration. The
reconstructed images calculated by the modified backprojec-
tion method agree well with the original ones. Results indicate
that this technique using reconstruction theory is a powerful
imaging method that results in good contrast and good spatial
resolution (0.5 mm), which can be used for the investigation of
tissues with inhomogeneous microwave absorptions.
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