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Abstract 

This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key 

idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elabo-

rated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet de-

composition the implementation of one dimensional wavelet packet transform and their usefulness in time 

signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter 

families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set 

of scaled and translated versions of the mother wavelet also known as time and frequency parameters. 

Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted 

to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the 

comparison of the signal at each decomposition level. The physical changes that are occurred during each 

decomposition level can be observed from the results. The results show that wavelet filter with WPA are use-

ful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and 

synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of 

the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels. 
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1. Introduction 
 
Over the last decade much work has been done in apply-

ing time frequency transforms to the problem of signal 

representation and classification. Signals possessing 

non-stationary character are not well suited for detection 

and classification by traditional Fourier methods. It has 

been shown that wavelets can approximate time varying 

non-stationary signals in a better way than the Fourier 

transform representing the signal on both time and fre-

quency domains [1]. Hence they can easily detect local 

features in a signal. Furthermore, wavelet decomposition 

allows analyzing a signal at different resolution levels. 

The discrete wavelet transform (DWT) provides a very 

efficient representation for a broad range of real-world 

signals. This property has been exploited to develop 

powerful signal de-noising and estimation methods [2] 

and extremely low-bit-rate compression algorithms [3].The 

discrete wavelet transform (DWT) is usually imple-

mented using an octave-band tree structure. This is ac-

complished by dividing each sequence into a component 

containing its approximated version (low-frequency part) 

and a component with the residual details (high-frequ- 

ency part) and then iterating this procedure at each stage 

only on the low-pass branch of the tree [4,5]. The main 

drawback of the octave-band tree structure is that it does 

not provide a good approximation of the critical subband 

decomposition [6]. An alternate means of analysis is 

sought, so that valuable time-frequency information is 

not lost. The Wavelet Packet Transform (WPT) is one 

such time frequency analysis tools. It is a transform that 

brings the signal into a domain that contains both time and 

frequency information (Wickerhauser, 1991). Thus, analy-

sis of the signal can be done simultaneously in frequency 

and time. The most basic way to do time frequency 

analysis is by making FFT analysis in short windows. 

That has the drawback that the window needs to be short 

to find out fast changes in the signal and long to determine 

low frequency components. The wavelet packet trans-

form (WPT) offers a great deal of freedom in dealing 
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with different types of transient signals. Indeed the de-

velopment of the wavelet transform (WT) [7–9] and 

wavelet packets [10–12] has sparked considerable activ-

ity in signal representation and in transient and non sta-

tionary signal analysis.[13–15]. 

Wavelet packet decomposition (WPD) (sometimes 

known as just wavelet packets) is a wavelet transform 

where the signal is passed through more filters than the 

DWT. Wavelet packets are the particular linear combina-

tion of wavelets. They form bases which retain many of 

the orthogonality, smoothness, and localization proper-

ties of their parent wavelets. The coefficients in the lin-

ear combinations are computed by a recursive algorithm 

making each newly computed wavelet packet coefficient 

with the result that expansions in wavelet packet bases 

have low computational complexity. In the DWT, each 

level is calculated by passing the previous approximation 

coefficients through high and low pass filters. However, 

in the WPD, both the detail and approximation coeffi-

cients are decomposed. For n levels of decomposition the 

WPD produces different sets of coefficients (or nodes) 

as opposed to (n+1) sets for the DWT. However, due to 

the down sampling process the overall number of coeffi-

cients is still the same and there is no redundancy. 

2n

The work presented in this paper contributes a new era 

in wavelet packet analysis and synthesis of time domain 

signals. Wavelet packet transform techniques have been 

used to extract feature from time domain signals. Feature 

extraction involves information retrieval from the time 

signal [16]. The wavelet packet transform has more im-

portant benefits than the discrete wavelet transform. 

Wavelet packet functions comprise a rich family of 

building block functions. Wavelet packet functions are 

still localized in time, but offer more flexibility than 

wavelets in representing different types of signals. In 

particular, wavelet packets are better at representing sig-

nals that exhibit oscillatory or periodic behavior. Wave-

let packets are organized naturally into collections, and 

each collection is an orthogonal basis for  2L R . It is a 

simple, but very powerful extension of wavelets and 

multiresolution analysis (MRA). The wavelet packets 

allow more flexibility in adapting the basis to the fre-

quency contents of a signal and it is easy to develop a 

fast wavelet packet transform. The power of wavelet 

packet lies in the fact that we have much more freedom 

in deciding which basis function is to be used to repre-

sent the given function. It can be computed very fast, it 

demands only O (M log M) time, where M is the number 

of data points which is important in particular in real time 

applications. It also has compact support in time as well as 

in frequency domain and adapts its support locally to the 

signal which is important in time varying signals. With 

wavelet packets we have a much finer resolution of the 

signal and a greater variety of options for decomposing 

it. 

The paper is organized as follows. In Section 2, brief 

background information on Discrete Wavelet transform 

and wavelet packet decomposition is discussed. In Sec-

tion 3 the present work is explained. The results are 

given in Section 4 and Section 5 gives the conclusions. 

 

2. Background 

 
2.1. Discrete Wavelet Transform 

 
The DWT, which is based on subband coding, is found 

to yield a fast computation of Wavelet Transform. It is 

easy to implement and reduces the computation time and 

resources required. In continuous wavelet transform 

(CWT), the signals are analyzed using a set of basis 

functions which relate to each other by simple scaling 

and translation. In the case of DWT, a time scale repre-

sentation of the digital signal is obtained using digital 

filtering techniques. The signal to be analyzed is passed 

through filters with different cutoff frequencies at dif-

ferent scales. In the discrete wavelet transform, a signal 

can be analyzed by passing it through an analysis filter 

bank followed by a decimation operation. When a signal 

passes through these filters, it is split into two bands. The 

low pass filter, which corresponds to an averaging opera-

tion, extracts the coarse information of the signal. The 

high pass filter, which corresponds to a differencing op-

eration, extracts the detail information of the signal. The 

output of the filtering operations is then decimated by 

two. Filters are one of the most widely used signal proc-

essing functions. Wavelets can be realized by iteration of 

filters with rescaling. The DWT is computed by succes-

sive low pass and high pass filtering of the discrete 

time-domain signal as shown in Figure 1. This is called 

the Mallat algorithm or Mallat-tree decomposition. 

At each decomposition level, the half band filters 

produce signals spanning only half the frequency band. 

This doubles the frequency resolution as the uncertainty 

in frequency is reduced by half. In accordance with Ny-

quist’s rule if the original signal has a highest frequency 

of ω, which requires a sampling frequency of 2ω radians, 

then it now has a highest frequency of ω/2 radians. It can 

now be sampled at a frequency of ω radians thus dis-

carding half the samples with no loss of information. 

This decimation by 2 halves the time resolution as the 

entire signal is now represented by only half the number 

of samples. Thus, while the half band low pass filtering 

removes half of the frequencies and thus halves the 

resolution, the decimation by 2 doubles the scale. The 

filtering and decimation process is continued until the 

desired level is reached. The maximum number of levels 

depends on the length of the signal. The DWT of the 

original signal is then obtained by concatenating all the  
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Figure 1. Level 3 decomposition using wavelet transform. 
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where the function   is usually referred to as a mother 

wavelet and  stands for the complex conjugation. The 

orthonormal wavelet basis 
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The interest in the QMF filters lies in the efficient 
computation of the orthogonal wavelet decomposition 
via a two channel filter bank structure. The decomposi-
tion which is useful in emphasizing the local features of 
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2.3. Wavelet Packet Decomposition 

 
The wavelet packet method is a generalization of wavelet 
decomposition that offers a richer range of possibilities 

for signal analysis and which allows the best matched 
analysis to a signal. It provides level by level transforma-
tion of a signal from the time domain into the frequency 
domain. It is calculated using a recursion of filter-decim- 
ation operations leading to the decrease in time resolu-
tion and increase in frequency resolution. The frequency 
bins, unlike in wavelet transform, are of equal width, 
since the WPT divides not only the low, but also the high 
frequency subband. In wavelet analysis, a signal is split 
into an approximation and a detail coefficient. The ap-
proximation coefficient is then itself split into a sec-
ond-level approximation coefficients and detail coeffi-
cients, and the process is repeated. In wavelet packet 

where the function   is the scaling function. The 

mother wavelet and the scaling function then satisfy the 

so called two-scale equations: 
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Where  and   are respectively the im-

pulse response of lowpass and highpass paraunitary 

Quadrature mirror filters (QMF) [17]. If we denote the 

vector spaces 
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analysis, the details as well as the approximations can be 

split. This yields more than  different ways to en-
code the signal. When the WT is generalized to the WPT, 
not only can the lowpass filter output be iterated through 
further filtering, but the highpass filter can be iterated as 
well. This ability to iterate the highpass filter outputs 

means that the WPT allows for more than one basis 
function (or wavelet packet) at a given scale, versus the 
WT which has one basis function at each scale other than 
the deepest level, where it has two. The set of wavelet 
packets collectively make up the complete family of pos-
sible bases, and many potential bases can be constructed 
from them. If only the lowpass filter is iterated, the result 
is the wavelet basis. If all lowpass and highpass filters 
are iterated, the complete tree basis results. The top level 
of the WPD tree is the time representation of the signal. 
As each level of the tree is traversed there is an increase 
in the trade off between time and frequency resolution. 
The bottom level of a fully decomposed tree is the fre-
quency representation of the signal. Figure 2 shows the 
level 3 decomposition using wavelet packet transform. 

122
n

Based on the above analysis, Figure 1 and Figure 2 
give the comparison of a three-level wavelet decomposi-
tion and wavelet packet decomposition. It can be seen in 

Figure 1 that in wavelet analysis only the approximations 
(represented by capital A in the figure) at each resolution 
level are decomposed to yield approximation and detail 
information (represented by capital D in the figure) at a 
higher level. However, in the wavelet packet analysis 
[Figure 2], both the approximation and details at a certain 
level are further decomposed into the next level, which 
means the wavelet packet analysis can provide a more 
precise frequency resolution than the wavelet analysis. 
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Such a basis is called a wavelet packet. The coefficients 

resulting from the decomposition of a signal  x t in this 

basis are 
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By varying the partition P, different choices of wavelet 

packets are possible. While a fixed and dyadic  parti-

tioning of time frequency domain is imposed in the case 

of the wavelet transform, the idea of wavelet packets is 

to introduce more flexibility making this partitioning 

adaptive to spectral content of the signal. 
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Figure 2. Level 3 decomposition using wavelet packet transform. 
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In wavelet packet analysis, an entropy-based criterion 
is used to select the most suitable decomposition of a 
given signal. This means we look at each node of de-
composition tree and quantify the information to be 
gained by performing each split [19]. The wavelets have 
several families. The most important wavelets families 
are Haar, Daubechies, Symlets, Coiflets, and biorthogo-
nal. 

 

3. Proposed Work 

 
The block diagram shown in Figure 3 gives the actual 
implementation of the method proposed in this paper. 

1) Input time domain signal 
The system described above was simulated on a com-

puter with floating point numbering system. The input 
time domain wave is pre-emphasized, low pass filtered 
with sampling frequency 8 K to 44.1 KHz range and 1– 
10 sec duration samples. The time domain is digitized to 
16 bits. 

Preprocessing: 
In this block unwanted noise is removed when the 

signal gets recorded with the help of various digital filter 
such as Low pass filter (LPF) with 3.4 KHz, Notch filter 
to remove the line frequency effect i.e. 50 Hz. 

Wavelet transforms: 
In this block we applied the wavelet filter coefficients 

as low and high band and filter the input signal to en-
hance the band energies. 

Decimation: 
As deals with the multi-rate analysis system the deci-

mation factor helps to enhance the band level informa-
tion from wavelet transform. We consider decimation by 
2, 4 etc for our experiments. 

Analysis Subband Feature Vectors: 
From the filtering results obtained with the 2 band 

system, we have extracted the various features from low 
pass and high pass band and then re-arranged with the 
desired format for further analysis part. 

Interpolation: 

Interpolation deals with up sampling the inverse wave-
let filtering to reconstruct the original input signal.  

Inverse Wavelet transforms: 
Analysis of interpolated features is reordered with re-

spect to the 2 bands system to extract the original con-
tents from the feature vector for input signal synthesis 
purpose.  

Noise Removal: 
Input noisy signal is filtered with band stop filter with 

desired cut off frequency. Filtered output is further ap-
plied to post processing. 

Post Processing: 
Final tuning is done in the post processing block. 

2) Testing Setup 
Matlab programs were written to implement the struc-

ture shown in Figure 3. Time domain signals in a *.wav 
format sampled at 8 KHz were used for all simulations. 
Results for different setups are given in the next section. 
Several examples of time domain signals of different 
sampling frequencies, with five wavelet filter families 
are given below. 

3) Performance Evaluation 
Performance evaluation tests can be done by subjec-

tive quality measures and objective quality measures. 
Objective measures provide a measure that can be easily 
implemented and reliably reproduced. Objective meas-
ures are based on mathematical comparison of the origi-
nal and processed time domain signals. The majority of 
objective quality measures quantify time domain quality 
of the signal in terms of a numerical distance measure. 
The signal to noise ratio is the most widely used method 
to measure time domain signal quality. It is calculated as 
the ratio of the signal to noise power in decibels. 
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where s(n) is the clean time domain signal and ŝ(n) is the 

processed time domain signal. 
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Figure 3. Block diagram of time domain signal using wavelet packet transform. 
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4. Results 

 
We have tested the 10 input samples with sampling fre-
quency of 8 K on various wavelet filtering bank i.e. Haar, 
Db4, Symlet, dmey, etc. as shown in Tables 1, 3, 4, 7. 
We observe that SNR for wavelet packet analysis and 
synthesis after filtering is around 120 dB to 320 dB for 
level 1 decomposition, level 2 decomposition 120 dB to 
310 dB, level 3 decomposition 115 dB to 310 dB and 
level 4 decomposition 115 dB to 305 dB. 

From Tables 2, 4, 6, 8 as per timing consideration the 
total time for analysis and synthesis is tabulated. We 
observe that total time for analysis and synthesis using 
wavelet filtering is around 8 sec to 25 sec. 

 
Table 1. SNR calculation for various mother wavelet level 1 

decomposition. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 315.64 244.16 247.86 122.32 165.94 

T2 315.58 244.16 247.86 122.28 165.95 

T3 315.53 244.16 247.86 122.35 165.94 

T4 315.55 244.16 247.86 122.34 165.94 

T5 315.55 244.16 247.86 122.34 165.94 

T6 315.53 244.16 247.86 122.35 165.94 

T7 315.53 244.16 247.86 122.30 165.95 

T8 315.53 244.16 247.86 122.35 165.94 

T9 315.55 244.17 247.87 122.25 165.95 

T10 315.54 244.16 247.86 122.32 165.95 

 

 

Figure 4. Graphical presentation of SNR for various mo- 

ther wavelets. 

 

Table 2. Total time calculation (in seconds) for analysis and 

synthesis using wavelet filtering for level 1. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 8.10 8.31 9.15 9.40 8.96 

T2 8.90 10.56 9.17 11.01 9.28 

T3 8.53 9.43 9.32 13.45 10.40 

T4 8.85 9.34 9.06 12.31 10.20 

T5 8.39 9.01 8.59 11.90 9.29 

T6 10.73 11.37 12.45 13.10 11.90 

T7 11.48 12.03 13.07 13.28 13.18 

T8 8.65 9.23 10.46 12.57 9.62 

T9 9.59 10.65 10.20 11.40 11.26 

T10 9.32 9.64 9.67 13.29 10.11 

Table 3. SNR calculation of various mother wavelets for  
level 2 decomposition. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 310.41 232.64 247.31 121.37 165.81 

T2 310.41 232.64 247.31 121.34 165.82 

T3 310.40 232.64 247.31 121.36 165.81 

T4 310.41 232.64 247.31 121.39 165.81 

T5 310.38 232.64 247.31 121.36 165.81 

T6 310.40 232.64 247.31 121.42 165.81 

T7 310.40 232.64 247.31 121.33 165.82 

T8 310.39 232.64 247.31 121.42 165.81 

T9 310.40 232.65 247.31 121.25 165.82 

T10 310.41 232.64 247.31 121.34 165.82 

 

 

Figure 5. Graphical presentation of SNR for various mo- 
ther wavelets. 

 
Table 4. Total time calculation (in seconds) for analysis and 
synthesis using wavelet filtering for level 2. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 8.29 8.73 10.11 12.85 9.20 

T2 10.10 11.06 11.57 14.64 11.21 

T3 9.60 9.56 10.06 12.51 10.43 

T4 8.93 10.43 9.48 13.95 11.67 

T5 8.42 10.18 8.89 11.92 10.85 

T6 11.82 13.51 12.48 15.62 13.00 

T7 10.70 12.64 13.11 16.84 13.40 

T8 9.45 10.53 9.82 13.28 10.56 

T9 9.21 10.09 9.81 12.18 11.04 

T10 10.75 10.98 11.09 14.25 10.71 

 
Table 5. SNR calculation of various mother wavelets for 
level 3 decomposition. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 307.15 230.59 241.56 115.85 159.86 

T2 307.15 230.60 241.56 115.84 159.86 

T3 307.13 230.59 241.56 115.84 159.86 

T4 307.12 230.59 241.56 115.86 159.86 

T5 307.14 230.59 241.56 115.85 159.86 

T6 307.14 230.59 241.56 115.88 159.86 

T7 307.16 230.60 241.56 115.83 159.87 

T8 307.15 230.59 241.56 115.87 159.87 

T9 307.15 230.60 241.57 115.77 159.87 

T10 307.14 230.60 241.56 115.83 159.86 
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Figure 6. Graphical presentation of SNR for various Mot- 

her wavelets. 

 

Table 6. Total time calculation (in seconds) for analysis and 

synthesis using wavelet filtering for level 3. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 9.45 9.42 9.76 12.46 9.40 

T2 10.35 11.70 10.57 15.64 11.01 

T3 10.17 11.53 13.28 14.98 12.07 

T4 10.11 11.48 12.21 16.54 12.40 

T5 10.00 10.89 10.04 12.89 11.57 

T6 11.84 13.73 13.21 18.04 14.68 

T7 12.65 12.12 12.76 20.37 13.60 

T8 10.53 11.20 10.87 15.43 11.86 

T9 9.56 10.00 11.59 14.32 11.96 

T10 10.32 10.48 11.96 16.68 13.42 

 
Table 7. SNR calculation of various mother wavelets for 

level 4 decomposition. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 304.74 226.62 241.29 115.31 159.79 

T2 304.74 226.62 241.29 115.29 159.79 

T3 304.74 226.62 241.29 115.33 159.79 

T4 304.73 226.62 241.29 115.37 159.79 

T5 304.73 226.62 241.29 115.32 159.79 

T6 304.73 226.62 241.29 115.37 159.79 

T7 304.74 226.62 241.29 115.27 159.80 

T8 304.75 226.62 241.29 115.36 159.79 

T9 304.74 226.62 241.29 115.21 159.80 

T10 304.74 226.62 241.29 115.30 159.80 

 

 

Figure 7. Graphical presentation of SNR for various Mot- 

her wavelets. 

Table 8. Total time calculation (in seconds) for analysis and 

synthesis using wavelet filtering for level 4. 

Sample Haar Db4 Sym5 dmey Coif5 

T1 9.95 10.90 10.76 14.92 12.26 

T2 12.01 12.59 13.48 19.46 14.84 

T3 12.12 12.81 14.79 22.09 12.53 

T4 11.03 12.79 11.98 20.34 14.73 

T5 11.34 12.37 12.54 16.79 13.09 

T6 13.25 15.59 16.37 25.25 19.20 

T7 14.51 15.40 17.39 25.89 17.98 

T8 11.90 13.14 11.96 19.57 13.15 

T9 12.09 13.17 12.51 20.01 15.48 

T10 13.09 13.28 14.57 21.75 15.35 

 

From Table 9, entropy which is a common measure of 

the efficiency of a signal transform is calculated using 

wavelet packet analysis is matched before decomposition 

and reconstruction. 

In Table 10, Band stop filtered signal is tabulated which 

removes the line frequency noise from the signal, it 

shows a reasonable SNR of 40–46 dB. 

Figure 8 shows the tree diagram associated with a 

depth-3 WPT. It reflects the structure of its correspond-

ing hierarchical filter bank, such as the structure shown 

in Figure 2. Moving from top to bottom in the diagram 

 
Table 9. Entropy for 4 levels. 

Sample Haar/Db4/Sym5/dmey/Coif5 

T1 21937 

T2 32511 

T3 29809 

T4 34655 

T5 29145 

T6 49058 

T7 51218 

T8 32971 

T9 34857 

T10 37040 

 
Table 10. SNR after removing noise. 

Sample Haar/Db4/Sym5/dmey/Coif5 

T1 44.16 

T2 44.41 

T3 41.29 

T4 44.52 

T5 44.47 

T6 44.85 

T7 44.58 

T8 40.39 

T9 46.36 

T10 41.89 
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of Figure 8, frequency is divided into ever smaller seg-
ments. Each line that emanates down and to the left of a 
node represents a lowpass filtering operation (h0), and 
each line emanating down and to the right a highpass 
filtering operation (h1). The nodes that have no further 
nodes emanating down from them are referred to as ter-
minal nodes, leaves, or subbands. We refer to the other 
nodes as non-terminal, or internal nodes. As such, the 
tree node labeling scheme provides a simple mechanism 
for indicating the nodes in the tree that we can work with 
when imparting modifications on the signal. 

For the node (j,k), j denotes the depth within the 
transform (tree) and k the position. For example, at node 
(0,0) no filtering has taken place, and we simply have the 
original sequence of time samples. Lowpass filtering this 
will produce node (1,0) and highpass filtering with pro-
duces (1,1). These filtering operations are equivalent to 
finding the correlation of the signal with the scaling 
function for node (1,0) and the correlation of the signal 
with the wavelet function for node (1,1). Going down the 
tree to the next depth, we see that (2,0) and (2,1) emanate 
from (1,0). From the filter perspective, the samples at 
(1,0) are applied to the filters and. Multiresolution is ach- 
ieved because the coefficients at (1,0) have been down 
sampled by two to achieve critical sampling. From the 
wavelet and scaling function perspective, the correlations 
between both and the samples of (1,0) are determined 
through this operation. 

Figure 9 shows how the block diagram wise analysis 

and synthesis is carried out. 

 

 

Figure 8. Wavelet packet tree for level 3 of decomposition. 

 

 

(a) 

 
(b) 

 

(c) 

 

(d) 

 
(e) 

 

(f) 

Figure 9. Input sample: (a) t7.wav; (b) For Haar wavelet; (c) 

For Db4 wavelet; (d) For Sym5 wavelet; (e) For dmey wave- 

let; (f) line freq filter. 
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5. Conclusions 

 
We have presented a method for analysis and synthesis 

of time signals using wavelet packet filtering techniques. 

From this study we could understand and experience the 

effectiveness of wavelet packet transform in time signal 

analysis and synthesis. The performance of wavelet 

packet is appreciable while comparing with the discrete 

wavelet transform decomposition technique since wave-

let packet analysis can provide a more precise frequency 

resolution than the wavelet analysis. It also has compact 

support in time as well as in frequency domain and adapts 

its support locally to the signal which is important in time 

varying signal. With wavelet packets we have a greater 

variety of options for decomposing the signal. The 

method presented is used for time as well as frequency 

analysis of time varying signals. From the results we 

conclude that the wavelet filtering find applications in 

the time domain analysis and synthesis era. In terms of 

signal quality, Haar wavelet has been seen to be the best 

mother wavelet. This is taken from the analysis of the 

signal to noise ratio (SNR) value around which is quite 

satisfactory for time varying signals. The system has 

been tested with various sampling frequencies for time 

domain samples which gave satisfactory output. Taking 

into consideration the signal quality and the time for 

analysis and synthesis it can be concluded that Haar 

wavelet is the best mother wavelet. Hence we conclude 

that the system will behave stable with wavelet packet 

filter and can be used for time signal analysis and syn-

thesis purpose. 
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