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Time Domain Structures (TDS) (electrostatic or electromagnetic electron 

holes, solitary waves, double layers, etc.) are ≥1 msec pulses having 

significant parallel (to the background magnetic field) electric fields.  They 

are abundant through space and occur in packets of hundreds in the outer 

Van Allen radiation belts where they produce magnetic-field-aligned 

electron pitch angle distributions at energies up to a hundred keV.  TDS can 

provide the seed electrons that are later accelerated to relativistic energies 

by whistlers and they also produce field-aligned electrons that may be 

responsible for some types of auroras.  These field-aligned electron 

distributions result from at least three processes.  The first process is 

parallel acceleration by Landau trapping in the TDS parallel electric field.  

The second process is Fermi acceleration due to reflection of electrons by 

the TDS.  The third process is an effective and rapid pitch angle scattering 

resulting from electron interactions with the perpendicular and parallel 

electric and magnetic fields of many TDS.  TDS are created by current-

driven and beam-related instabilities and by whistler-related processes such 

as parametric decay of whistlers and non-linear evolution from oblique 

whistlers.  New results on the temporal relationship of TDS and particle 

injections, types of field-aligned electron pitch angle distributions produced 

by TDS, the mechanisms for generation of field-aligned distributions by 

TDS, the maximum energies of field-aligned electrons created by TDS in 

the absence of whistler mode waves, TDS generation by oblique whistlers 

and three-wave-parametric decay, and the correlation between TDS and 

auroral particle precipitation, are presented. 
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1. INTRODUCTION 

     The name “Time domain structures” (TDS) was initially given to packets of ≥1 msec 

duration intense electric field spikes detected by the Van Allen Probes in the Earth’s outer 

radiation belts.  These electric field spikes had significant components parallel to the local 

magnetic field and each packet contained as many as hundreds of such spikes [Mozer et al, 

2013]. The velocity of propagation of these TDS along magnetic field lines was found to be 

close to the thermal speed of 100-200 eV electrons and they were identified as electron 

acoustic-like perturbations of the plasma density and electric field.  Van Allen Probe 

observations have shown that at least five different types of intense electric field spikes exist 

and they were united by the common title “TDS.”  These types include electrostatic and 

electromagnetic double layers, electrostatic and electromagnetic electron holes, and non-

linear whistlers, all of which were known and studied earlier.  Because these TDS are 

abundant in the observations, it has been suggested that they are an important factor in the 

macroscopic dynamics of the radiation belts, providing the mechanism of acceleration of low 

energy electrons up to keV energies after which they are further acceleration by whistler 

waves to relativistic energies in the radiation belts [Mozer et al, 2014].  They may also be 

responsible for producing field-aligned electron fluxes that make auroras. 

2. TYPES OF TDS 

 Figure 1 illustrates examples of different types of TDS found on the Van Allen Probes 

in the Earth’s outer radiation belt by the EFW [Wygant et al, 2013] and EMFISIS [Kletzing 

et al, 2013] instruments.  In each of the four sections of this figure, the top three panels give 

the electric field perturbations in magnetic-field-aligned coordinates and the bottom three 

panels give the magnetic field perturbations in the same frame, with the parallel components 

located in panels (c) and (f) of each section.  Observationally, it is not clear which, if any, of 

these structures contain a net parallel electric potential.  It is noted that whistlers were present 
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in only one of the four examples (in the upper left section), which is typical of the overall 

data observed in the Van Allen radiation belts.  Instead, in each of the three other sections, 

there is low frequency (a few tens of Hz) noise in the magnetic field, which may result from 

Doppler shifted kinetic Alfven waves [Chaston et al, 2014].  This low frequency magnetic 

noise is typical of TDS observations in the radiation belts.  It is also noted that the TDS in 

this figure are three dimensional objects because they produce spiky signatures in the 

perpendicular as well as the parallel electric field. 

 

3.  TDS APPEARANCE FOLLOWING PLASMA INJECTIONS 

     Figure 2 presents an example of a plasma injection into the outer radiation belt followed, a 

few minutes later, by electromagnetic energy injection, TDS, and electrons that were field-

aligned to energies of 100 keV.  In this and all examples discussed in this paper, events were 

selected on the basis of the presence of TDS in the absence of whistlers, in order to study the 

effects caused by TDS alone.  Panel 2a presents the three components of ΔB=(Bmeasured–

Bmodel) in GSE coordinates during the 10 minute interval covered in the figure, where Bmodel 

is obtained from a Tsyganenko model [1995].  Panel 2b gives the electric field frequency 

spectrum and Panel 2c gives nine HOPE detector electron number fluxes from 26 eV to 41 

keV [Spence et al, 2013].  Panels 2d through 2g provide pitch angle distributions of the 

HOPE and magEIS detected electrons at the four times illustrated by the long, vertical, 

dashed lines in panel 2c.  These data were collected at a 20 second cadence.  Shortly after 

0510 UT, the electron fluxes in panel 2c increased at all energies due to the injection of 

electrons from further down the tail.  At this time, the low frequency electric field amplitude 

of panel 2b increased due to electromagnetic noise that was also observed in the magnetic 

field (not shown) and in a burst of high time resolution electric and magnetic field waveforms 

(not shown) at about 0511:20, the time of the first short vertical dashed line in panel 2c.  The 
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electron pitch angle distribution of panel 2d, obtained during the flux increase, at the position 

of the first long vertical dashed line in panel 2c, showed that electrons of all energies were 

approximately isotropic during the injection.  After the injection was complete, at 0514:21, 

the pitch angle distribution of panel 2e remained isotropic and the electrons were apparently 

not influenced by the low frequency noise.  Forty seconds later, ΔBZ, (the red curve in panel 

2a) indicated a current associated with dipolarization of the magnetic field.  Along with this 

current, the pitch angle distribution of panel 2f began to show field-aligned distributions of 

0.1-1 keV electrons (the green curves) at the same time that TDS, intermixed with the low 

frequency noise, first appeared (not shown).  During the next 45 seconds, the TDS intensity 

increased and the pitch angle distributions became magnetic-field-aligned at all energies from 

0.1 to 100 keV in panel 2g.   At energies of 20-50 keV, the HOPE and MagEIS data overlap 

with the HOPE data covering a wider pitch angle range and magEIS providing better 

counting statistics.  The thick red curve in panel 2g gives the HOPE pitch angle distribution 

at 37 keV and the two thick black curves give the MagEIS distributions at 55 and 75 keV. 

Thus, both the HOPE and the MagEIS data are required to make the case that the electrons 

were field-aligned to energies as high as 100 keV.  It is noted that the field-aligned electron 

flux exceeded the 90
 

 

degree flux by an order-of-magnitude at most energies.  Examples of the 

TDS observed shortly after this interval are given in the lower left (electrostatic electron 

holes with amplitudes ~15 mV/m) and upper right sections of Figure 1 (electromagnetic 

electron holes with amplitudes ~50 mV/m). 

     A second example of the same temporal behavior of plasma injection followed a few 

minutes later by TDS and pitch angle deformation is given in Figure 3.  Panel 3a gives ΔB 

during a five minute interval and panel 3b gives nine HOPE electron fluxes from 26 eV to 41 

keV.  Because there were many short duration bursts of high time resolution data collected 
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during this time, a summary of the bursts rather than the spectrum of the electric field signal 

is given in Figure 3c.  At times when the curve of panel 3c is at the lower level (labeled LF), 

low frequency noise was detected in the time domain bursts of wave data.  (While the low 

frequency noise is not relevant to the present paper, its presence is included for 

completeness.)  When the curve is at the middle level (labeled TDS), TDS alone were 

observed and when the curve is at the top of the panel, both TDS and low frequency noise 

were observed.  These TDS were three-dimensional electromagnetic holes, similar to the 

example in the upper right section of Figure 1. This is determined by the presence of the 

perpendicular electric field components in the TDS that were comparable with the parallel 

components and the presence of parallel magnetic fields that in these TDS were significant.  

The electric field amplitudes varied between about 15 and 40 mV/m.  Between 0550 and 

0551 UT, injected electrons appeared at the spacecraft with low frequency noise and no TDS.  

At 0551:23 (the time of the first vertical dashed line in panel 3c), panel 3d shows that the 

pitch angle distributions resulting from the injection were peaked at 90 degrees.  By 0551:45 

(the second vertical dashed line in panel 3c), 20 seconds later, the pitch angle distribution of 

0.1-1 keV electrons started to have a peak at a pitch angle of 180 degrees, as seen in panel 3e.  

Just before 0552 and throughout the remaining interval, TDS, sometimes with low frequency 

noise, were observed, while the pitch angle distributions of panels 2f, and 2g, showed an 

increasing anisotropy with the flux at 180 degrees of 100 eV to 1 keV electrons exceeding 

that at smaller angles by an order-of-magnitude.  This flux constituted a beam in the given 

energy range.  Thus, in this example also, the plasma injection preceded the TDS and field-

aligned electron distribution by about one minute. 

4.  TDS THEORIES AND OBSERVATIONS 

     As a plasma physics process, electron hole TDS were first studied in numerical models of 

the instability of two electron beams [Roberts and Berk, 1967; Morse and Nielson, 1969a, 
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1969b].  Their generation was first observed in the lab in a Q-machine by Saeki et.al [1979].  

Generation by spontaneous reconnection in a toroidal device was studied [Fox et.al, 2008], 

and laboratory observations of electron holes in a plasma device have been presented 

[Lefebvre et.al, 2011]. 

     Double layer type TDS were first discussed in connection with magnetospheric physics 

and astrophysics by the Stockholm group under Hannes Alfven [Alfven and Carlquist, 1978, 

and references therein; Raadu, 1989].  TDS were first observed in the magnetosphere along 

auroral zone magnetic field lines on the S3-3 satellite [Mozer et al, 1977; Temerin et al, 

1982] and they were more thoroughly studied on the FAST mission [Ergun et al, 1998; 

2001].  They have been seen in the tail [Matsumoto et al, 1994; Franz, 1998; Streed et al, 

2001], the plasma sheet [Ergun et al, 2009; Deng et al, 2010], the plasma sheet boundary 

layer [Lakhina et al, 2011], at shocks [Bale et al, 1998; Cattell et al, 2003], at magnetic field 

reconnection sites [Cattell et al, 2002; Mozer et al, 2009a; Mozer et al, 2009b; Khotyaintsev 

et al, 2010: Li et al, 2014], in the solar wind [Bale et al, 1996; Malaspina et al, 2013; 

Williams et al, 2005], and at Saturn [Williams et al, 2006].  However, the huge numbers of 

TDS in a single event [Mozer et al, 2013] and the large occurrence frequency of such events 

[Malaspina et al, 2014] were very new and unusual statistical properties of TDS.  In the 

radiation belts they are often the major and dominant element of the wave activity.  This 

raised an important question on their role in processes of particle acceleration and losses. 

Indeed, it was shown that they play an important role providing seed electrons that are further 

accelerated by whistler waves to relativistic energies in the outer radiation belts. This was 

described and unambiguously evidenced by [Mozer et al, 2014].  They also are a possible 

mechanism for precipitating electrons that may be important for certain types of auroras.  
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5.  TDS AND AURORAL PARTICLE PRECIPITATION 

     Because, as shown, TDS produce field-aligned electrons that can be lost in several 

bounces, it is interesting to correlate such events with auroral emissions measured in the 

Canadian and Alaskan all-sky camera network [Donovan et al, 2006; Mende et al, 2008] in 

order to understand the role of TDS in producing auroras.  The ratio between the HOPE 

electron flux near the loss cone (the average of the 18, 36, 144 and 162
 
degree fluxes) and the 

90 degree flux was computed (as shown for one case in Figure 4b) to identify time intervals 

of field-aligned electron distributions and possible precipitation.  Of 81 events during which a 

Van Allen Probe was in conjunction with an all-sky imager recording auroral activity, five 

cases presented concurrent variations of wave activity, pitch angle ratios greater than one and 

variations of the light intensity around the conjugate footprint.  TDS were present in all five 

cases and no other wave modes were present at times of auroral precipitation in any of the 

five events.  The event on April 26, 2013, when Van Allen Probe A was in magnetic 

conjunction with the all-sky imager at Le Pas, Canada, is presented in Figure 4.  Because the 

mapping of the spacecraft footprint is not precise, primarily in the latitudinal direction, the 

white light intensity averaged over a +/- one degree
 
latitude window around the footprint 

location was computed, as shown in Figure 4a.  Because of moonlight, the background light 

intensity measured by the all-sky imager was not spatially uniform. To correct for this, the 

one-hour-averaged light background was subtracted from each individual measurement.  

Clouds were present around the spacecraft footprint at the two time intervals, from 06:15 to 

06:30, and from 06:58 to 07:03; these time intervals are reported in blue along the abscissa of 

panel 4a.  Panel 4b gives the ratios of the field-aligned to 90
 
degree electron flux for 5 energy 

ranges centered at 300eV, 1keV, 3keV, 10keV and 30 keV.  A ratio of one indicates an 

isotropic pitch angle distribution while a ratio greater than one indicates a predominately 

field-aligned pitch angle distribution.  Panel 4c gives the amplitude of the electric field 
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spectra at about 75 Hz, which is the BEN indicator of the presence of TDS, and panel 4d 

gives the amplitude of the electric field spectra in the chorus frequency range.  The presence 

of TDS was confirmed in the high time resolution waveform data bursts that occurred several 

times during the interval of interest.  The TDS occurrence rate (panel 4c) increased as the 

ratio between field-aligned and equatorial particles increased for all five energy ranges (panel 

4b) while auroral emission appeared (panel 4a).  Thus, this example suggests that TDS 

produced the field-aligned pitch angle distributions that filled the loss cone with electrons of 

energy such that auroral light was emitted.  It is noted that the electric field wave power due 

to TDS exceeded the wave power in the chorus range by a factor greater than 10,000 during 

the correlated time intervals, and the one burst of chorus emission (panel 4d at 0630) did not 

produce field-aligned electrons or bright auroral light.   

6.  TDS GENERATION IN A PARTICLE-IN-CELL SIMULATION 

     TDS generation from whistlers [Karpman et al, 1982; Shapiro et al, 1994; Kellogg et al 

2010, Agapitov et al, 2014] and by electric currents or beams [Roberts and Berk, 1967; 

Morse and Nielson, 1969a, 1969b; Lashmore-Davies, 1973; Joyce and Hubbard, 1978; 

Hubbard and Joyce, 1979; Yamamoto and Kan, 1985; Omura et al, 1996, 2008; Berthomier et 

al, 1998; Miyake et al, 1998; Goldman et al, 1999; Newman et al, 2001; Oppenheim et al, 

2001; Singh 2003; Wu et al, 2011] have been studied theoretically.  Earlier work [Roth et al, 

1999], more recent work [Artemyev et al, 2012, 2013, 2014a, 2014c: Osmane et al, [2012a, 

2012b] and recent particle-in-cell simulations [Drake et al, 2015] illuminate the relationship 

between oblique whistlers and TDS generation.  The simulation that is illustrated in Figure 5 

[Drake et al, 2015], was initialized by a temperature anisotropy in the center of the simulation 

box that is to the right of the data shown.  Thus, the waves and TDS move to the left in panels 

5a and 5b.  The fronts of the perpendicular whistler magnetic field at a fixed time are 

illustrated in panel 5a.  At the same time, the parallel electric field is plotted across the box in 
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panel 4b with the lighter regions indicating the locations of large parallel electric fields in the 

TDS.  The signals as a function of time (the vertical axis) are given of the perpendicular 

magnetic field (panel 5c) and parallel electric field (panel 5d), as measured along the dashed 

lines in panels 5a and 5b.  From these data it is clear that the TDS parallel electric field spikes 

moved at the phase velocity of the whistler.  The red regions in panels 5a and 5b cover 

locations where the wave normal angle (the angle between its k-vector and the background 

magnetic field) was greater than15
o

7.  TDS GENERATION BY A PARAMETRIC INSTABILITY 

; i.e., regions where the wave was oblique.  It is seen that 

the TDS of panel 5b were made in these red locations where the whistler was oblique.  Field-

aligned electron beams, produced as whistlers grew because of the initial electron 

temperature anisotropy, amplify the parallel electric field of the oblique whistler to produce 

the TDS structures [Drake et al, 2015].   Panel 5e gives the wave perpendicular magnetic 

field and 5f gives the parallel electric field from the simulation as functions of time at the 

location of the small white boxes in panels 5a and 5b.  Panels 5g and 5h provide an example 

of the same measured quantities on the Van Allen probes.  The striking similarity of the TDS 

waveforms in experiment and simulation provide further evidence that one generation 

mechanism for TDS in the outer radiation belt is from oblique whistlers.  The comparison of 

the simulation and measured electric fields is further discussed in Drake et al [2015].   

     Another TDS generation mechanism observed in space and modeled analytically is TDS 

formation from a parametric instability in which a whistler at frequency ωo and k-vector ko 

decays into a second whistler at ω1, k1, and an electron acoustic wave at ω2, k2, with ωo=(ω1 

+ ω2) and k0=(k1 + k2).  It is worth noting that these whistler waves are in the chorus 

frequency range, the higher frequency in the upper band, and the lower frequency in the 

lower band whistlers.  Because the two whistlers travel in opposite directions, the magnitude 

of k2 is the sum of the magnitudes of k0 and k1, so the low frequency, (ωo - ω1), wave has a 



©2015 American Geophysical Union. All rights reserved. 

very short wavelength and is an electron acoustic signal that quickly evolves into TDS. The 

possibility of the decay of a whistler wave into an electron acoustic wave that decays into 

TDS has not been considered before because of the supposed, but incorrect, large linear 

damping rate of the electron acoustic wave.  Figure 6 illustrates this parametric instability in 

experimental data collected on the Van Allen Probes.  Panel 6a presents the perpendicular 

magnetic field over a 0.5 second time interval and panel 6b gives the parallel electric field 

during the same interval.  The low frequency beats of the envelope in panel 6a result from the 

presence of two whistlers with slightly different frequencies, and the spikes in 6b signify the 

presence of large numbers of TDS.  The black curve of figure 6c is the spectrum of the 

magnetic field, which was comprised of two nearly monochromatic waves at frequencies 

labeled fo and f1.  The blue and red bars at the bottom of the figure indicate the direction of 

(ExB)/B
2
, which shows that the two waves traveled in opposite directions, as required for the 

parametric instability.  The red curve of panel 6c is the spectrum of the parallel electric field 

TDS.  This spectrum peaked at (fo - f1

8.  STATISTICS OF FIELD-ALIGNED ELECTRON DISTRIBUTIONS 

) as is required by the instability, but it spread into 

harmonics as the electron acoustic wave decayed into the observed TDS.  Thus, figure 6 

illustrates another way that TDS can be formed from whistlers.  (It is noted that most of the 

TDS in the 200 examples surveyed in this paper were probably generated by currents or 

beams because none of them were observed in the presence of whistlers.)   

     During the first 11 months of Van Allen Probe operations, 200 events on the night side 

having TDS in the absence of chorus frequency range whistlers were studied in order to 

determine the effects of TDS alone.  (The absence of whistlers was determined by the electric 

and magnetic field spectra not having energy in the range of 3200-6500 Hz.)  Their typical 

durations, as judged by low frequency broad band noise in the electric field spectra in the 

absence of whistlers, ranged from a few minutes to a few hours.  For each TDS event, the 
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maximum field-aligned energy was estimated within an uncertainty of about 50 percent.  

These results produced the bar chart of Figure 7, which has an energy resolution of a factor of 

three.  Field-aligned distributions having maximum energies from a few tens of eV to 100 

keV were found, with the average energy being 7.6 keV and the number of events having 

field-aligned distributions at energies greater than 30 keV being about 10% of the total.  A 

most significant result is that all of the selected 200 events having TDS also contained field-

aligned electron distributions at times.  This is strong evidence that the parallel electric fields 

in the TDS and the field-aligned electron pitch angle distributions are related.  (Field-aligned 

electrons were observed previously [Abel et al, 2002a, 2002b] and no statistical evidence of a 

correlation between such electrons and chorus or ECH waves was found.)   

9. DISCUSSION 

     Figures 2 and 3 illustrate two examples in which plasma injected from further down the 

tail to the satellite location had initial pitch angle distributions that were isotropic or peaked 

at 90
 

     Because the field-aligned electron distributions of Figures 2 and 3 are very different from 

each other and because several different types of TDS exist (Figure 1), it is important to 

consider which types of TDS produce which types of accelerated electron pitch angle 

distributions and to understand the mechanisms for such production.  It has been shown that 

degrees. Following these injections by a few minutes, TDS and field-aligned electrons 

appeared together and, in one of the two cases, at the time of a current system that produced 

dipolarization of the magnetic field.  Approximately 10 such cases have been studied in detail 

and the initial pitch angle distributions of the injected electrons in all cases were isotropic or 

peaked at 90 degrees.  In all cases, field-aligned-pitch angle distributions and TDS appeared a 

few minutes following the injections and, in the majority (but not all) of the cases, these 

distributions and TDS occurred at the time of currents, as observed by the changing 

background magnetic field. 
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field-aligned electron distributions to energies of several keV can be produced by Landau 

interaction in a single electrostatic TDS having no net potential [Artemyev et al, 2014b; 

Osmane et al, 2014].  A second mechanism involves electron interactions with many 

electrostatic TDS, as illustrated in Figure 8, in which panels 8a and 8b present the before and 

after pitch angle distributions in a test particle simulation and panels 8c and 8d illustrate 

before and after observations in space during an event involving electrostatic TDS of the type 

shown in the lower left section of Figure 1 and assumed in the simulation.  In both the 

simulation and the space data, electrons with energies of 50-500 eV become field-aligned 

while both lower and higher energy electrons were relatively unaffected.  Particle trajectories 

in the simulation show that electrons were accelerated parallel to the magnetic field by 

reflection from the TDS when the electron and TDS phase velocities were similar.  Electron 

scattering by the perpendicular electric field in the TDS was not considered.  In the 

simulation, TDS were generated near the equator at L=6 in packets of typically 50 individual 

TDS having a maximum amplitude of 20 mV/m and a velocity of 4000 km/sec.  They 

propagated in a dipole magnetic field to a latitude of 40 degrees where they were lost and a 

new packet was created at the equator.  The initial particle distribution was the sum of three 

isotropic Maxwellians with temperatures of 10, 100, and 2000 eV and with the hotter 

densities being 0.025 and 0.001 of the cold density.  The simulation lasted about one bounce 

period of the cold electrons, during which about 8 packets of TDS were generated.  About 

135,000 particles were included in the simulation.  It produced field alignment such that the 

flux at 0 or 180 degrees is several orders-of-magnitude larger than the flux at 90 degrees 

(Figure 8).  In the space data, this flux enhancement is something less than a factor of 10.  

Similar pitch angle distributions are seen early in Figure 2f and Figure 3 (except that 

reflecting electrons are lost in this case).  
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     In Figure 2 and in the event described in Figure 4, the pitch angle distributions became 

field aligned to energies as great as 100 keV (the Figure 4 pitch angle distributions are not 

shown).  Looking across the four pitch angle distribution panels in Figure 2, it is seen that 

electrons below about 100 eV did not become field-aligned and their fluxes were roughly 

constant with time.  At any higher energy, the omnidirectional flux varied little during the 

time interval of interest, as can be seen in panel 2c where the omnidirectional fluxes from 

0514 to 0516 UT varied by less than a factor of two.  Thus, the parallel electrons at any 

energy in figure 2g likely came largely from the deficit of 90
 

     The TDS that produced the 100 keV field-aligned distribution in Figure 2 were the 

electromagnetic TDS illustrated in the upper right section of Figure 1.  The same type of TDS 

was associated with the field-aligned distributions that produced the aurora of Figure 4.  

Thus, it seems likely that the electromagnetic nature of the TDS (spikes in the parallel 

magnetic field component) is important in making energetic field-aligned distributions 

because such spikes are associated with an induced electric field that is not included in 

simpler discussions. 

degree electrons.  The parallel 

electric field in TDS cannot produce this result because the first invariant of the electron 

motion is conserved in the presence of only a parallel field.  However, the perpendicular 

electric field in three-dimensional TDS, such as those in Figure 1, can cause the first invariant 

to become non-conserved if the electron crosses the TDS in a time that is short or comparable 

to its gyro-period.  In this case the electron energy can be redistributed between the 

perpendicular and parallel components and original 90 degree electrons might become field-

aligned.  Preliminary estimates and simulations suggest that a process like this may be 

happening. 

 

     In figure 3, the 100 eV-1 keV, 150-180 degree pitch angle flux remained large for many 
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electron bounce periods while an order-of-magnitude fewer electrons returned at pitch angles 

of 0-30 degrees.  Thus, the large pitch angle electrons must have been lost in one or a few 

bounce periods.  This requires continuous acceleration of 150-180 degree electrons.  This 

electron beam was moving tailward in a tail-like magnetic field that was within the GSE-XY 

plane to less than 5 degrees.   

 

     The data set of two hundred events was produced by selecting time intervals during which 

TDS were present in the absence of any other wave activity (other than low frequency noise).  

Field-aligned electron pitch angle distributions were present, at least part of the time, in every 

event in this data set.  An alternative approach is to form a data set from events having field-

aligned distributions and to inquire about TDS and other waves that are present at such times.  

In this data set, TDS were present in a clear majority of the cases and at least half of these 

cases had only TDS.  These statistics suggest that TDS are often responsible for producing 

the field-aligned, accelerated electrons that are the seed population for relativistic 

acceleration and for precipitation that makes auroras.  Thus, inclusion of TDS in radiation 

belt and auroral dynamics and theories seems to be required.   
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Figure 1.  Examples of different types of time domain structures found by the Van 

Allen Probes.  The upper left section illustrates a non-linear whistler whose parallel 

electric field is distorted by electron trapping that produces spin-periodic 

unidirectional spikes [Kellogg et al, 2010].  The bottom left section describes 

structures that are called electrostatic electron holes because the parallel electric 

field signature is largely bipolar and there is no comparable magnetic field signature.  

The top right section illustrates electron holes that are magnetized because the 

electric field spikes are frequently accompanied by structures in the parallel 

magnetic field component [Andersson et al, 2009; Tao et al, 2011; Vasko et al, 

2015].  The bottom right section illustrates bipolar electron holes that evolve into 

single-sided electric field structures called double layers.  
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Figure 2.  Fields and plasma measured at a magnetic local time of 2210, magnetic 

latitude of 14.5
o

  

, and an L value of 5.9.  In panel 2a, the X-component is black, the 

Y-component is green, and the Z-component is red.  The remaining quantities are 

defined and described in the main text.  The energy units at the rights of the plots are 

eV. 
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Figure 3.  Fields and plasma measured at a magnetic local time of 2310, magnetic latitude of 

18.7
o

  

, and an L value of 11.  In panel 3a, the X-component is black, the Y-component is 

green, and the Z-component is red.  The remaining quantities are defined and described in the 

main text. 
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Figure 4.  Correlation between Van Allen Probe A electric fields and plasma with auroral 

light intensity observed at Le Pas, Canada on April 26, 2013. 
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Figure 5.  Electric and magnetic fields observed in a particle-in-cell simulation in which 

oblique whistlers produced time domain structures.  Panels 5a and 5b give the perpendicular 

magnetic field and parallel electric field inside a region of the box that is to the left of the 

source.  Panels 5c and 5d give the position as a function of time (the vertical axis) of the 

perpendicular magnetic field and parallel electric field, from which it is seen that both 

parameters move together at the same speed.  Panels 5e and 5f give the simulation magnetic 

and electric fields at a fixed point as a function of time.  Panels 5g and 5h present the same 

quantities, as measured in space. 
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 Figure 6. Electric and magnetic fields observed in space during the parametric instability of a 

whistler wave into a second whistler and an electron acoustic wave that decays into TDS. 
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Figure 7.  The distribution of the maximum field-aligned electron energies observed 

in 200 TDS events without whistlers. 
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Figure 8.  Comparison of Van Allen Probe data with a field-aligned electron pitch 

angle distribution produced in a simulation of electron interactions with 20 mV/m 

packets of electrostatic, TDS. 

 




