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Time dynamics of COVID‑19
Cody Carroll1, Satarupa Bhattacharjee1,3, Yaqing Chen1,3, Paromita Dubey2,3, Jianing Fan1,3, 
Álvaro Gajardo1,3, Xiner Zhou1,3, Hans‑Georg Müller1* & Jane‑Ling Wang1

We apply tools from functional data analysis to model cumulative trajectories of COVID‑19 cases 
across countries, establishing a framework for quantifying and comparing cases and deaths across 
countries longitudinally. It emerges that a country’s trajectory during an initial first month “priming 
period” largely determines how the situation unfolds subsequently. We also propose a method for 
forecasting case counts, which takes advantage of the common, latent information in the entire 
sample of curves, instead of just the history of a single country. Our framework facilitates to quantify 
the effects of demographic covariates and social mobility on doubling rates and case fatality rates 
through a time‑varying regression model. Decreased workplace mobility is associated with lower 
doubling rates with a roughly 2 week delay, and case fatality rates exhibit a positive feedback pattern.

As of May 1, 2020, more than 3 million cases of COVID-19 had been reported worldwide, leading to more 
than 200,000 coronavirus related  deaths1. �e World Health Organization declared the situation a pandemic on 
March 11, 2020, and nearly all countries have been exposed to SARS-CoV-2, the betacoronavirus which causes 
the  disease2. Despite the far reach of the virus, the pattern and rate of its spread within a population is not uni-
form. Some countries like the US have seen marked increases in case and death counts per capita, even a�er 
implementing distancing measures, while others like Japan have been able to keep the spread of disease low for 
long durations despite comparatively lax social restrictions. Measures that mitigate spread in one case may not 
work uniformly across countries due to e�ects of demographics and timing, among other factors. Data-driven 
analyses of the time-dynamics of cases and deaths are of central importance to characterize underlying forces 
and unexplained variation.

Global e�orts to “�atten the curve” of COVID-19 cases translate quantitatively to decreasing epidemiological 
statistics like doubling rates via social distancing campaigns, improved hygiene and case tracking. Early statistical 
inquiries have focused on estimation of doubling rates, and case fatality rates with SIRD and SEIM  models3,4, 
which are compartmental epidemiological models. Such models have been useful in determining whether or not 
disease-free equilibrium, that is, eradication, is stable and attainable in the context of other contagious diseases 
like  cholera5. Other quantitative approaches have included forecasting the number of cases worldwide using time 
series analysis  modeling6 or quantifying the e�ects of prevention e�orts like social  distancing7,8, public gathering, 
and travel  restrictions9,10 for single countries.

Processes that grow exponentially, such as the case load of unmitigated COVID-19 transmissions are char-
acterized by a �xed doubling time. In reality, however, the doubling time is a dynamic quantity, which changes 
continuously due to mitigation e�orts and the inherently changing nature of virus-spreading mechanisms. It 
is then vital that policymakers and researchers have access to frequent and up-to-date estimates of doubling 
 time11. For example, Du et al.12 provided early, �xed-in-time estimates of epidemic parameters of COVID-19 
(e.g. growth rate, doubling time, basic reproduction number, case detection rate) during the �rst 50 days of onset 
in China. In recent  work13,14 the basic reproduction number and doubling time have been studied in a dynamic 
manner by considering a varying coe�cient model with daily new cases as the response and time as a predictor. 
A related approach focused on the real-time estimation of case fatality rates using Poisson mixture  models15. Our 
analysis complements these studies and introduces an alternative way of obtaining relevant dynamic quantities, 
associating metrics of disease progression with baseline covariates across many countries. Recent research has 
queried the e�ects of population age, temperature,  humidity16,17, lockdown  interventions9,10, community mobility 
 patterns18,19, and other factors on the spread of the virus. Modeling the transmission dynamics of COVID-19 
based on predictors is key to understanding the impact of distancing practices and other policies on spread 
mitigation and prevention. We refer  to20 for a more thorough review of recent epidemiological analyses.

It should be noted that COVID-19 analyses based on published case and death counts, including those 
conducted here, are subject to the same biases which a�ect the accuracy of the data, primarily due to under-
reporting21, the degree of which varies by  country22. �e reasons for such under-reporting are many, including 
insu�cient testing materials, political incentives, and administrative delays. With this caveat in mind, the study 
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of available data may nevertheless provide useful insights and stimulate further research, aided by the statistical 
methodology that we present in this paper.

Speci�cally, we propose functional data analysis as a tool for analyzing the time-dynamics of COVID-19 
as quanti�ed by case and death numbers across countries. Functional data analysis (FDA)23–25 aims to detect 
structures and patterns in samples of random trajectories through functional principal component  analysis26,27, 
empirical  dynamics28 and other methods, where entire curves are viewed as data atoms. �is methodology is 
uniquely suited for the analysis of COVID-19 data since the cumulative case counts across countries amount to 
a sample of random curves observed over time.

FDA based approaches enjoy an added strength in that they leverage the latent information shared between 
countries to boost the e�ciency of predictions and facilitate comparisons of the trajectories across countries. We 
use FDA methodology to study patterns of growth for case counts and to quantify the performance of various 
countries as the pandemic progresses. We also showcase an approach for predicting future case counts which 
may be used to understand whether a country is doing better or worse than expected. Finally, we explore the 
e�ect of variables like population density, demographic age structure, and mobility reduction e�orts on total 
case trajectories as they vary over time. �roughout, our focus is on associations which may suggest but do not 
establish causality.

Results
COVID‑19 dynamics across countries. Main patterns of disease propagation. �e cumulative COV-
ID-19 case and death count trajectories per million people (in log scale) for 64 countries are displayed in Fig. 1 
(see “Methods”). �e trajectories are shown for a 67-day interval a�er the �rst time a country reports at least 
20 con�rmed cases, which is taken as the origin of the time domain and thus corresponds to di�erent calendar 
times (see “Data”).

For the 64 countries in the study, case counts per million generally follow one of four paths over time. �ey 
are either (1) consistently higher than average (e.g., Switzerland), (2) consistently lower than average (e.g., 
India), (3) initially lower but then experience a dramatic increase over time (e.g., the US), or (4) initially higher 
before entering a period of control (e.g. Slovenia). �ese archetypes are derived from the extreme ends of the 
two main modes of  variation29,30 observed for the sample, which emerge from functional principal component 
analysis (FPCA, Fig. 2). FPCA is similar to ordinary principal component analysis in the sense that it projects 
high dimensional curve data into a low dimensional space, representing them as a random vector of functional 
principal component (FPC) scores, as seen in Fig. 2a (see “Methods”). �ese scores are matched with smooth 
eigen functions, displayed in Fig. 2b, which reveal the primary patterns of variation in the sample of functional 
objects. For the case load trajectories, a 2-dimensional representation was found to adequately represent the 
sample of curves.

An inspection of the eigenfunctions and their corresponding FPC scores reveals which of the four patterns a 
country generally follows (Fig. 2). FPC scores of countries with consistently higher case trajectories are located 
in the right half-plane, and those with uniformly lower rates in the le�. Analogously, countries which experi-
ence a dramatic increase in cases per million lie in the upper half of the plane, and those which successfully 
slow their spread in the lower half. Countries which follow similar trajectories are clustered together in FPC 
space, with outliers located on the outskirts of the point cloud. While some outliers are apparent from a simple 

Figure 1.  Trajectories of a total case count and b total death count per million individuals on log scale. �e 
time window spans the 67 days since at least 20 con�rmed cases were reported. Smoothed mean curves are 
marked by bold black lines. �e orange ribbons represent pointwise 95% bootstrap con�dence bands for the 
overall mean functions.
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visual inspection of the original curves (e.g. Luxembourg, �ailand, India and Japan), other atypically-shaped 
trajectories are initially obscured in the crowd of curves until revealed in FPC space (e.g. the US).

�e concept of modes of variation is useful for visualizing the range of FPC scores as a spectrum of curves 
(Fig. 3). For example, India’s deviation from the mean curve is largely explained by just the �rst mode of variation. 

Figure 2.  Visualizing (a) the Functional Principal Component (FPC)-space representation of case trajectories, 
where coordinates represent the amount of deviation from the mean curve in the direction of (b) the �rst 
(red) and second (blue) eigenfunctions. �e two-dimensional representation in FPC space captures 97% of the 
variation in the sample of case load trajectories across countries. Points are colored according to their Tukey 
depth, where higher depths indicate trajectories closer to the mean curve.

Figure 3.  �e (a) �rst and (b) second modes of variation (solid lines) based on mean function µ and �rst and 
second eigenfunctions φ1,φ2 , respectively, for the total cases process. �e sample standard deviations of the 
�rst and second FPC scores are σ1 = 5.77 and σ2 = 1.96 respectively. �e dashed lines depict �tted trajectories 
for select countries which are extreme in either mode and Poland which exhibits a trajectory close to the mean 
function.
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Its very negative �rst FPC score places it far below the mean throughout the entire interval. In this sense the 
�rst FPC score is similar to a random intercept in a linear mixed model, since the �rst eigenfunction is roughly 
constant over time. Incidentally, the slight curvature exhibited in this eigenfunction allows for �exible modeling 
of the “curve bending” phenomenon as demonstrated by Switzerland, which has a very positive �rst FPC score.

�e US departs from the typical mean trajectory in a di�erent way: Its case count per capita has increased 
dramatically by the end of the time interval, which is seen by its very positive second FPC score. �e second 
mode of variation captures a subtle curvature that would be missed in parametric modeling. In this sense the 
second FPC score modulates the shape of the curve rather than its magnitude. Nearly all cumulative case tra-
jectories begin to level o� a�er roughly t = 25 days, a trend which is illustrated neatly by the in�ection point in 
the second mode of variation. One may then interpret the �rst month of exposure as a sort of “priming period,” 
a�er which (non-outlier) trajectories exhibit more stable trends. �is interpretation echoes the �ndings  of31, who 
also identify the �rst few weeks of exposure as a critical time for disease management.

Countries which are clustered together in FPC space may also share other underlying structures such as 
geographic proximity, exempli�ed by the Western European countries in the upper-right quadrant of Fig. 2. In 
some cases, far-�ung places may act as if they are part of a distinct geographic cluster, such as Panama and Qatar 
with trajectories that are very similar to those in the Scandinavian block.

Countries’ performances in the two main modes of variation can be evaluated by comparing their respective 
FPC scores. Higher scores indicate higher rates of spread for both modes of variation. For example, Switzerland 
has a much higher �rst FPC score than India, re�ecting that the case count per capita is higher for Switzerland 
throughout the time period that we study here. Similarly, the case trajectory in the US is seen to have risen much 
more over time than that of Slovenia, say, since the second FPC score of the US is very large and positive while 
it is negative for Slovenia.

Comparisons via rank dynamics. While FPC scores are useful for comparing and classifying country trajec-
tories, they require multivariate comparisons, since each country is represented by two scores. It is useful to 
complement these comparisons by ranking each country by cumulative case counts per million, where higher 
percentile ranks correspond to increased infection rates and a generally worse situation. Ranking can be done 
at each �xed time and then analyzed with rank  dynamics32. �e percentile ranks and their time-evolution are 
illustrated in Fig.  4 with a few notable curves highlighted. Higher percentiles signify more cases per capita. 
Switzerland’s transmission rates have been among the most severe, while India has performed well consistently 
throughout the time period considered here. Both countries’ integrated ranks are among the highest and lowest, 
respectively, where integrated rank is the average rank over time. Both display low rank volatility (see Section S.6 
in the Supplement), which is a measure of how ranks change over time, as their overall positions remain rela-
tively stable throughout the time period.

In terms of ranks, the situations in Spain and the US have substantially worsened over time, which is in line 
with the FPCA results, where Spain and the US were found to have dramatically increasing case counts. �ese 
large shi�s are re�ected in their rank volatility, in which Spain and especially the US visibly stand out (Section S.6 
in the Supplement). On the other hand, the epidemic situations in Norway and Singapore have improved over 
time relative to other countries, especially during the �rst 40 days for the latter. However, Norway still has a 
somewhat severe situation overall, and Singapore’s percentile rank starts to rise in the last third of the period. 
In contrast to these extremes, Poland exhibits a relatively stable rank over time and also a moderate epidemic 
situation when compared to other countries. Overall the percentile trajectories are more volatile during the �rst 
25 days. By the end of the interval however, the ranks have become relatively stable, as seen by the fewer number 
of intersections between paths.

Figure 4.  Rank trajectories during the �rst 67 days since exposure. Countries which appear higher in rank 
percentiles for a given time point have more cases per capita. Many intersections of rank trajectories correspond 
to periods of high volatility; fewer intersections indicate an more stability in performance across countries.
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Time evolution and forecasting of case trajectories. Frequently‑updating forecasts for viral transmis‑
sion. Since the virus reaches countries at staggered times, countries with earlier exposure times hold valuable 
information for predicting those which were more recently exposed. �is makes it possible to employ a dynamic 
FPCA approach to make short-term predictions of trajectories by borrowing “future” information from coun-
tries for which a trajectory over a longer time interval is available, due to their earlier exposure in calendar time. 
Like FPCA, this is based on the assumption that there are common shape features that explain a majority of 
curve variation. Borrowing information from trajectories observed over a longer time stretch to inform trajecto-
ry prediction for those observed over a shorter time period is the key to the dynamic FPCA (dynFPCA) method.

Motivated by the rapidly updating nature of the COVID-19 case trajectories, dynFPCA harnesses the evolv-
ing trajectory data to predict case counts in the near future. We illustrate this for 10-day-ahead predictions that 
are constructed on repeating intervals. �en, a�er the 10-day forecast has passed, one can compare predictions 
with the observed trajectories. An observed case count which exceeds the prediction corresponds to worse than 
expected performance during that time window. Similarly an overestimate in prediction signi�es better than 
expected containment of the virus.

Since FPCA summarizes an observed curve as a �nite vector of FPC scores, it is enough to predict just the 
FPC scores for the curve we wish to forecast. �e scores may then be translated back into a curve on the entire 
interval, even if the scores are only estimated using a partially observed trajectory (see “Methods”: dynFPCA). 
�e FPC scores are estimated using the conditional expectation  approach33, and the number of scores to estimate 
was chosen by an AIC criterion. �e expression for conditional expectation depends on quantities which are 
estimated from the entire sample of curves and thus predictions gain strength by pooling all countries’ available 
information; see the discussion in “Methods” for technical details.

�e predictions can be viewed in conjunction with the reduction in workplace mobility per country as 
reported by Google COVID-19 Community Mobility  Reports34 to quantify the magnitude of voluntary or man-
dated lockdowns (see “Methods”: “Data”). Early studies of the e�ects of lockdowns have quanti�ed the delay 
until case numbers are a�ected to be roughly 2 weeks7,35. Japan is a visible outlier in both measures (Fig. 5), in 
the sense that it has a very low and �at cumulative case curve, while mobility levels do not decrease much, as the 
Japanese government did not issue lockdown orders and employers by and large continued to require physical 
presence at the workplace. Other countries with relatively �at curves include India and the Philippines. �ese 
countries had major declines in workplace mobility early in the trajectory when the total caseload was still low.

Another group of countries with early declines in mobility includes Argentina, Chile, and other South Ameri-
can countries. For countries that reduced mobility early, our forecasts reach much lower heights than those 
which waited to restrict social gatherings. �is latter group consists of mostly European countries (including 
Germany, the UK, the Netherlands, France, Italy, Spain and Switzerland), where reduced mobility occurred only 
a�er a sizeable number of cases had accumulated. At this point, the intervention e�orts may have come too late 
to slow the momentum of infectious spread. As a consequence, the trajectories of cases for these countries not 
only increase more rapidly but also reach higher overall levels than predicted. A�er the �rst two 10-day periods, 
which is characterized by high volatility as seen in the rank analysis, the dynFPCA method tends to predict the 
trajectories quite accurately.

Time‑dynamics for correlates of doubling rates and case fatalities. To quantify the e�ect of mobility reduction on 
dynamic FPCA predictions, we studied its e�ect on doubling rate, in addition to the e�ects of other demographic 
predictors that might play a role in shaping the trajectories. Understanding the factors which correlate with 
increased or decreased rates of infection is critically important for policymakers and societies. As local situations 
evolve and the pressure to reopen mounts, an equally important aspect is understanding how these associations 
might change over time, and when predictors are particularly relevant, as it is likely that the e�ect of predictors 
is not stationary but rather varies over the course of the pandemic.

To investigate the time-varying relationship between a country’s demographics, mobility reduction, and out-
come measures such as doubling and case fatality rates, we applied a functional concurrent regression model and 
empirical dynamics (“Methods”). Doubling rate, γ (t) , and case fatality rate, CFR(t), as time-varying responses 
have been traditionally used in epidemiological  modeling20,31,36,37 (see “Methods” for computational details). 
Low doubling rates indicate successful containment of viral transmissions, while low case fatality rates indicate 
better outcomes in terms of the mortality of infected populations. Mean doubling rates and case fatality rates 
over time are depicted in Fig. 6. We caution that estimates of the case fatality rate contain additional uncertainty, 
since reported cases are an undercount and not all deaths caused by COVID-19 may be correctly attributed to 
the infection.

We adopt the functional concurrent regression (FCR) models,

where the predictors consist of population density P, the proportion of the population over age 65 A, the log-
cumulative case counts per million C(t), and the lagged decrease in workplace mobility W(t − �) . �e former 
two predictors are baseline covariates while the latter two are time-varying. �e error term Z(t) denotes a mean-
zero stochastic dri� process. �e optimal lag � is chosen data-adaptively and was found to maximize predictive 
power at � = 13 days (“Methods”: “Empirical dynamics”). Concurrent e�ect functions for each regressor are 
displayed alongside their 95% con�dence bands in Fig. 7. A stretch of time where the con�dence band does not 
touch 0 suggests that the e�ect of that predictor is locally signi�cant during that time interval.

(1)γ (t) = β0(t) + β1(t)P + β2(t)A + β3(t)C(t) + β4(t)W(t − �) + Z(t)

(2)
d

dt
CFR(t) = β0(t) + β1(t)P + β2(t)A + β3(t)CFR(t) + Z(t),
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Doubling rates. Higher doubling rates re�ect faster spread of infection and our analysis does not provide evi-
dence that they are associated with higher population density. �e fraction of population over age 65 has a signif-
icant but complex e�ect on doubling rates. During the priming period, the doubling rate is positively correlated 
with demographically older populations, but this e�ect goes into reverse from day 25 on, perhaps as the presence 
of older members of society promotes additional self-isolation; however it is quite possible that this association 
is due to the potential confounding e�ect that many later mobility-reducing countries have older populations.

�e additional e�ect of total cases per capita is signi�cantly positive at the very start, but the concurrent 
regression slope estimate tends to be negative in the following period, which portends a dynamic regression 
to the mean  e�ect28, i.e., countries with doubling rates away from the mean tend to gravitate back to the mean 
during the early time period, re�ecting declining variation across countries. �e mean curve in Fig. 6 indicates 

Figure 5.  Forecasts of case counts for countries with early (top 8) and late (bottom 8) mobility reduction 
responses. �e black curve represents the observed cumulative case counts, and the red piece-wise curves 
represent predictions for the 10 following days, made at 10, 20, 30, 40, and 50 days, respectively. �e blue curve 
displays percent decrease in workplace mobility as measured by Google relative to a baseline index of mobility 
for a typical day before the onset of COVID-19 (“Methods”:“Data”). A day in which all mobility has stopped 
corresponds to −1 or a 100% reduction.
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monotone declining doubling rates, so countries which did not have many cases in this period tend to catch 
up to the mean behaviour. Doubling rates are for the most part positively correlated with change in workplace 
mobility a�er a lag of 13 days, which suggests that reduced mobility, which corresponds to a negative change, may 
signi�cantly slow the growth rate of con�rmed cases, though this bene�t is only seen approximately 2 weeks later.

Figure 8 shows the predicted doubling rate for sixteen countries according to the historical functional linear 
model (see Section S.4 in the Supplement). In the case of Japan, predictions are only possible a�er day 15 as 
mobility information prior to this date is not available. Periods where the observed doubling rate is higher than 
predicted re�ect worse performance than expected based on history and mobility. Predictions of doubling rates 
are poor in the initial priming period for most countries, but improve later on, which may be a consequence of 
the dynamic regression to the mean e�ect as visualized in Fig. 6a. Countries with di�cult to predict trajectories 
include Japan, India, Egypt, and the US. �is may be due to low testing rates, as these countries initially report 
much fewer tests administered in comparison to others. �e US reported an exceedingly low doubling rate in �rst 
week, potentially re�ecting low levels of testing. Observed doubling rates were in line with predictions only a�er 
day 35, likely a�er more testing e�orts were implemented. Poland also performed worse than expected at �rst, 
but its doubling rate dropped to the predicted rate at day 10. Most countries saw improvements in the doubling 
rate about 1.5–2 weeks a�er workplace mobility began to drop. �is corroborates the idea that lockdown policies 
are e�ective at reducing spread a�er a short period of delay.

Case fatality rates. Case fatality rates exhibit dynamic explosive behavior as seen in the e�ect curve of CFR(t) 
in the third panel of Fig. 9, which is positive a�er day 15. �is means that case fatality rates either above or below 
the mean fatality rate curve in Fig. 6 tend to move even further away from the mean as time progresses, as seen 
in Italy’s curve, for example. A possible explanation for this could be that an already overwhelmed healthcare 
system is predestined for future worse outcomes as the disease continues to spread and resources become more 
and more scarce. Higher case fatality rates generally do not correlate strongly with population density, but are 
positively associated with demographically older countries, which is not surprising.

Discussion
In this study, we have explored a battery of time-varying approaches for modeling the cumulative COVID-19 
case trajectories by pooling data across countries, which is facilitated by the curve-based methodology of func-
tional data analysis. �ese techniques provide a natural and intuitive framework for comparing case trajectories, 
constructing principled forecasts for future case counts, and quantifying the time-varying e�ects of covariates. 
A major strength of the functional data approach is the borrowing of information across countries, i.e., models 
and predictions for case counts carry knowledge gained from the entire sample of countries and not just that of 
a single country’s data. �is approach enables the modeling of time-varying associations and results in dynamic 
e�ects which are re�ective of the changing nature of the infectivity cycles and their dependence on covariates. 
It also o�ers a �exible and non-parametric alternative to the more rigidly-structured and less data-oriented 
epidemiological models.

�e advantages a�orded by this functional approach are not immune to limitations imposed by data quality, 
however. �e bias in COVID-19 case counts is di�cult to control for, as there are manifold causes of under-
reporting (e.g., the delay between infection and con�rmation, confounding through testing availability, preva-
lence of asymptomatic carriers, etc.). Findings regarding individual countries must be evaluated in light of the 
their unique set of biases. Indeed, this issue does not have a clear solution and warrants continued attention. A 

Figure 6.  Time-varying (a) doubling rates and (b) case fatality rates for all countries. �e mean function is 
depicted in black and the orange ribbon represents a pointwise 95% bootstrap con�dence band.
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feature of our analysis that is favorable is that while absolute case counts may be subject to reporting error, the 
trends in time-dynamics on which we focus here are likely more robust, in the sense that biases for a given coun-
try may a�ect the entire trajectory, although to a di�erent degree over time as for example testing is ramped up.

Applying functional PCA led to the discovery of four main patterns of disease progression since initial expo-
sure and to identify the countries that represent these archetypes. A complementary analysis of percentlle rank 
dynamics allows for comparison of relative performance of countries at di�erent points in time. In terms of pre-
dictive modeling, we introduce a dynamic FPCA approach for forecasting country-speci�c case counts, illustrated 
with 10-day forecasts. �ese forecasts, when compared to the eventually observed curves, can illustrate whether 
a country over- or under-performs during a given shorter time period. Lastly, we apply concurrent regression to 
quantify the e�ects of baseline and time-varying covariates, such as population density and reduction in social 
mobility over time. �e results of our analysis can be summarized in the following seven key messages, where 
we also highlight the underlying methodology:

• �e mean trajectory of log-cumulative case counts per capita increases linearly (representing exponential 
growth) until around day 25 at which time it starts to �atten. Variations from this mean trend follow one of 
two patterns. �e �rst pattern corresponds to a baseline level of viral spread which changes little over time; 
the second corresponds to a marked increase or decrease of the transmission rate a�er the �rst 25 days of 
exposure (Functional PCA, Figs. 2 and 3).

Figure 7.  Time-varying regression e�ects of population density, the fraction of population over age 65, total 
cases per million and the percentage of the reduction from baseline in workplace mobility patterns 13 days prior 
on doubling rate. �e black curves are the concurrent e�ect functions and the orange ribbons represent 95% 
pointwise con�dence bands. �e variable W(t − 13) represents the percent change in workplace mobility lagged 
by 13 days and is generally but not always negative.
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• A country’s relative performance in terms of prevention stabilizes a�er an approximately month-long priming 
period. How well a country handled the situation during this initial window largely determined their �nal 
standing a�er 67 days of exposure (Rank Dynamics, Fig. 4).

• Countries which were late to reduce social activity perform worse both relative to other countries and in 
terms of their own projected case counts (Dynamic FPCA, Fig. 5).

• Trajectories of countries with earlier exposure times contain valuable information for forecasting case counts 
for more recently exposed nations. �e curve-based methods of functional data analysis are uniquely suited 
for pooling information across a sample of trajectories, including those which are only partially observed. 
(Dynamic FPCA, Fig. 5)

• Reduction in workplace mobility is associated with lower spread of the virus, though the e�ects are lagged. 
Bene�ts of reduced social mobility are delayed by roughly 2 weeks (Functional Concurrent Regression).

• Baseline demographics are signi�cantly associated with doubling rates during speci�c time windows. �ere 
was no evidence for a systematic e�ect of population density, while demographically older countries typically 
experienced higher rates of spread during the �rst 25 days of exposure before course-correcting and enjoying 
lower doubling rates therea�er (FCR, Figs. 6, 7 and 8); the latter may be a confounding e�ect.

• Case fatality rates exhibit positive-feedback patterns of severity. A�er the �rst 2 weeks of exposure, higher 
than average case fatality rates foreshadow increased mortality in the future. Meanwhile, countries which 

Figure 8.  Observed (black) and predicted (red) trajectories for doubling rates of COVID-19 in sixteen 
countries, where predictors are total cases on log scale and change in workplace mobility with a 13 day lag. 
Change in workplace mobility is as presented in Fig. 5.
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have lower than average case fatality rates early on typically improve upon these rates even further down the 
line. Demographically older countries su�er higher case fatality rates, as expected. (FCR, Figs. 6 and 9)

�e �rst three key messages highlight the importance of an immediate response to rising caseloads, particularly 
during the �rst 25 days, a period that we have reason to characterize as a priming period. For example, the UK 
and Greece both have average baseline levels of spread, but Greece successfully maintains a level of containment 
while the UK su�ers increased spread of the virus. �e di�erences in initial responses across countries with simi-
lar baselines may be key to understanding the factors that cause a country’s case load to escalate rapidly. Previous 
studies (see, e.g.31) have identi�ed the �rst few weeks as a critical time period for management of the virus, with 
some European countries generally being less prepared to contain spread. �ese �ndings are reinforced by our 
functional principal component analysis, in which the majority of European countries exhibit either high baseline 
levels of spread or a dramatic increase in transmission rate a�er the �rst 25 days.

�e positive-feedback behavior seen in case fatality rates may re�ect variation in the ability of healthcare 
systems to cope with surges of cases, but could also be due to improvements in attribution of cause of death over 
time. Khafaie and  Rahim38 found that early access to medical care plays a key role in decreasing fatality rates 
and suggested that under-supplied countries may not have the resources to e�ciently implement intervention, 
a�ecting patients in high-risk groups negatively. Conversely, when case fatality rates are low, the positive feedback 
loop trending away from the mean that we �nd in the data is driving fatality rates even lower.

�e importance of enacting preventative measures early, which has been previously illustrated in, for 
 example7,  and10, is rea�rmed by our results. We found that countries where decreased social mobility was 
enacted before reaching higher levels of spread did better than their predicted case counts and generally had less 
severe situations at the end of the time period that we considered. We observed a 2 week delay of the e�ect of 
decreased mobility on caseload, which is in line with existing lag estimates, generally characterized as between 
9 and 14 days7,9,35. Generally, our analysis reveals that the impact of factors that are predictive for caseload or 
case fatality rates varies over time. �is indicates that prevention measures will be most e�ective when they are 
closely tied to the dynamics of the pandemic.

�e code for the functional data analysis methods used in this study is publicly available in the R package 
fdapace39.

Methods
Data. Our analysis focuses on modeling and predicting the cumulative number of cases per million indi-
viduals in log scale, using information obtained from the COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University, which was accessed on May 18, 2020. �e data 
consist of the cumulative number of con�rmed cases and deaths per day since Jan 22, 2020 for several countries 
and is publicly available on Github at https ://githu b.com/CSSEG ISand Data/COVID -19. Since the pandemic 
reached individual countries at staggered times, we consider a time interval T = [0, 66] consisting of 67 days 
where the initial time t = 0 represents the earliest date at which at least 20 con�rmed cases were reported.

�e cumulative number of cases per million individuals on the log scale is formally de�ned as

where t ∈ [0, 66] . De�ning the initial time t = 0 in such a way aligns trajectories according to the onset of the 
pandemic in a given country and allows for temporal comparisons across nations even as they were �rst exposed 
to the virus at di�erent times. We include in our analysis countries with population size at least 100,000 by 2018 
that have su�ered at least 5 deaths by May 18, 2020 and have been exposed to the virus for at least 67 days. �is 

C(t) = log10

(

#confirmed cases up to day t

Population size
× 106

)

,

Figure 9.  Time-varying regression e�ects of population density, percentage of population over age 65, and 
case fatality rates on the derivative of case fatality rate. �e black curves are the regression slopes and the orange 
ribbons represent 95% pointwise con�dence bands.

https://github.com/CSSEGISandData/COVID-19
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resulted in n = 64 countries that were included in the analysis. A table of the selected countries and of the dates 
corresponding to t = 0 for all countries can be found in Supplement S.1.

Data for population density and the demographic fraction of the population 65 years old or older as of 2018 
was obtained from the World Bank database, available at https ://www.world bank.org/. For Iran we used the 2017 
data as the data for 2018 were unavailable. For Taiwan, covariate information was not available at the World Bank 
database and was obtained from https ://www.index mundi .com/taiwa n/#Demog raphi cs. We also use Google 
community mobility data as time-varying covariates, available at https ://www.googl e.com/covid 19/mobil ity/. 
�e following countries did not have Google mobility data available: Albania, Algeria, China, Iceland, Iran, and 
Russia. See Supplement S.1 for more details.

Functional principal component analysis. Functional principal component analysis (FPCA) is derived 
from a functional analogue of the spectral decomposition for covariance matrices. Considering a generic 
square-integrable stochastic process C(t), t ∈ T  , with mean function µ(t) = E(C(t)) and covariance function 
G(s, t) = Cov(C(s),C(t)) , s, t ∈ T  , under mild regularity conditions G(s, t) admits an orthogonal expansion

where �1 ≥ �2 ≥ · · · > 0 , 
∑

∞

k=1
�k < ∞ , are the eigenvalues and ϕ1 , ϕ2 . . . are the (orthonormal) eigenfunctions 

of the Hilbert-Schmidt autocovariance operator AG : f ∈ L2(T ) �→

∫
T
G(s, t)f (s)ds.

With this decomposition, the Karhunen–Loève representation theorem states that

where the scores ξk =

∫
T

(C(t) − µ(t))ϕk(t)dt satisfy E(ξk) = 0, Var(ξk) = �k and E(ξkξl) = 0 for k �= l . Here 
ξk is the functional principal component score (FPC) of X(·) associated with the kth eigenfunction ϕk . �us, the 
FPC scores are projections of the centered stochastic process onto the directions given by the eigenfunctions 
and summarize how a function changes from the mean curve along the principal modes of variation. Moreover, 
from (4) the centered process is equivalent to (ξ1, ξ2, . . . )

T.
By truncating the representation in (4) to a �nite number of K components one achieves dimension reduction 

and can approximate the original stochastic process through its most important modes of variations. Plugging 
in estimates for mean function µ̂ , eigenfunctions φ̂k and FPC scores ξ̂k , FPCA then provides �nitely truncated 
�ts for the random trajectories C(·),

Here K is o�en chosen so that the fraction of variability explained,

is above a threshold, e.g. 97%. For the COVID-19 cases, the choice K = 2 meets this criterion. Further details 
can be found  in24,25,33.

�e modes of variation illustrate the individual e�ect that each of the scores has on the function C(t). �e 
�rst mode of variation corresponds to the curve µ(t) + α

√
�1φ1(t) , where α ranges in the interval [−2, 2] . �is 

represents the e�ect of the �rst score on C(t) as it varies between ±2 standard deviations away from the mean. 
Similarly, the second mode of variation is obtained by replacing �1 and φ1(t) by �2 and φ2(t) , respectively, in the 
previous expression, where in implementations these population quantities are replaced by estimates.

Dynamic functional principal components. �e approximation in (5) provides a straightforward 
method for predicting a curve Ci(t) , if we have access to estimates of the mean function, eigenfunctions, and the 
FPC scores. We follow the Principal Components Analysis through Conditional Expectation (PACE) approach 
proposed for sparse longitudinal  data33. For dynamic forecasting we proceed as follows.

Suppose there are m countries for which trajectories have been observed for t0 + �t days, forming a training 
sample. �at is, for the ith country in the training sample, i = 1, . . . ,m , the current span of observations [0,Ti] is 
such that Ti > t0 + �t . If the number of countries m in the training sample is su�ciently large, it is promising 
to predict the future trajectory of a m + 1

st country that is not part of the training sample by borrowing infor-
mation from the countries in the training sample for which trajectories have already been observed for the time 
span to be predicted. Suppose we have data for the m + 1

st country until time t0 and are interested in predicting 
its trajectory for the next �t days, i.e., prediction of the trajectory in the time interval [t0, t0 + �t] , where �t is 
chosen to be reasonably small, based on the observed data vector Cm+1 = (Cm+1(0), . . . ,Cm+1(t0))

T.
One can then recover the process �Cm+1(t) on [0, t0 + �t] by using {Ci(tij)} , where i = 1, . . . ,m and 

0 ≤ tij ≤ t0 + �t . �at is to say the forecast is obtained by using observations between day 0 to t0 + �t from 
the countries in the training sample, for which trajectories {Ci(tij)} have been observed for the time period 
[0, t0 + �t] . �en the estimated Karhunen–Loève representation (5) of Cm+1(t) on the interval [0, t0 + �t] is

(3)G(s, t) =

∞∑

k=1

�kϕk(s)ϕk(t),

(4)C(t) = µ(t) +

∞∑

k=1

ξkϕk(t),

(5)Ĉ(t) = µ̂(t) +

K∑

k=1

ξ̂kϕ̂k(t).

FVE(K) =

K∑

k=1

�̂k/

∞∑

k=1

�̂k ,

https://www.worldbank.org/
https://www.indexmundi.com/taiwan/#Demographics
https://www.google.com/covid19/mobility/
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where µ̂(t) is estimated either cross-sectionally or with a smoothing method, ϕ̂k and �̂k are estimated using 
the truncated spectral decomposition of the covariance surface, and the scores are estimated using the PACE 
 approach33, where the kth score for trajectory (m + 1) is

where �Cn+1 = (Cm+1(0), . . . ,Cm+1(t0))
T is the observed vector of data for the trajectory to be predicted, µ̂ 

is estimated mean vector which equals to µ̂(t) evaluated at t = (0, . . . , t0)
T , and �̂−1

t0
 is the (t0 + 1) × (t0 + 1) 

estimated variance-covariance matrix for �C = (C(0), . . . ,C(t0))
T based on the entire sample.

We then iterate this process for each country of interest, and update our prediction moving forward. For 
forecasting COVID-19 cases, we display results for predicting �t = 10 days at a time.

Empirical dynamics. �e severity of infectious disease spread is commonly modeled using doubling time 
and case fatality rates. Here we describe time-varying regression models for these quantities inspired by empiri-
cal  dynamics28, aiming to systematically model derivatives of smooth processes using the process itself as predic-
tor, which can be characterized as dynamics learning. Additional technical details about empirical dynamics can 
be found in Section S.5 of the Supplement.

Doubling rates. Let Nc(t) denote the total con�rmed cases per million at time t. �en the doubling time κ(t) 
at time t is the length of time necessary for the cumulative cases per million to double. In other words, κ(t) is 
de�ned explicitly by the relation

By a �rst order Taylor series expansion, a linear approximation of the numerator in (8) is

�e approximation in (9) together with the fact that Nc(t + κ(t)) = 2Nc(t) leads to

where the representation in terms of C(t) follows from the substitution C(t) = log10 (Nc(t)).
�e doubling rate γ (t) is de�ned as

�e doubling rate quanti�es the rate of spread, with lower doubling rates corresponding to longer doubling times. 
�is naturally leads us to model the empirical dynamics of the process C(t) by

for t > � where P represents population density, A represents the fraction of the population over age 65, 
W(t − �) denotes the percentage change from baseline of workplace mobility patterns at time t − � , and Z(t) 
denotes a mean zero stochastic dri� process. We use the data adaptive criterion described in Section S.5 of the 
Supplement to select an optimal choice of lag � , which for our analysis is 14 days. Figures 3 and 4 in Section S.7 
of the Supplement illustrate the strong multi-collinearity among the di�erent community mobility patterns, so 
we utilize only workplace mobility. Note that in (10) we model the doubling rate γ (t) instead of the doubling 
time κ(t) , which circumvents the numerical issues involved with a vanishing d

dt
C(t) . For obtaining the observed 

doubling rate trajectories, we estimate the derivative of C(t) using local quadratic  smoothing40,41 with a band-
width of 2 days.

For doubling rate prediction, we consider the functional linear regression  model42,43 that uses the entire his-
tory from t − 13 to t − 1 days,

Further details can be found in Section S.5 of the Supplement.

(6)Ĉm+1(t) = µ̂(t) +

K∑

k=1

ξ̂n+1,kϕ̂k(t), t ∈ [0, t0 + �t],

(7)ξ̂m+1,k = �̂kϕ̂
T

k
�̂−1

t0
(�Cm+1 − µ̂),

(8)
Nc(t + κ(t))

Nc(t)
= 2.

(9)Nc(t + κ(t)) ≈ Nc(t) +
d

dt
Nc(t)κ(t).

κ(t) =

Nc(t)

d

dt
Nc(t)

=

1

d

dt
C(t)

,

γ (t) =

1

κ(t)
=

d

dt
C(t).

(10)γ (t) =
d

dt
C(t) = β0(t) + β1(t)C(t) + β2(t)P + β3(t)A + β4(t)W(t − �) + Z(t)

(11)
d

dt
C(t) = β0(t) +

∫
t−1

t−13

β1(t, s)C(s)ds +

∫
t−1

t−13

β2(t, s)W(s)ds + Z(t).
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Case fatality rates. �e case fatality rate at time t is the ratio of the total death count and the total case count at 

that time. Letting Nd(t) denote the total death count per million at time t, the case fatality rate is CFR(t) =

Nd(t)

Nc(t)
. 

For the dynamics of fatality rates, we consider the concurrent model

where P, A, and Z are de�ned as in the previous section.

Data availability
Data that support the �ndings of this study are publicly available from the following sources: Johns Hopkins 
University CSSE (https ://githu b.com/CSSEG ISand Data/COVID -19), World Bank (https ://www.world bank.org/), 
Indux Mundi (https ://www.index mundi .com/taiwa n/#Demog raphi cs), and Google (https ://www.googl e.com/
covid 19/mobil ity/). Scripts are publicly available in the R package fdapace (https ://cran.r-proje ct.org/web/
packa ges/fdapa ce/index .html).
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