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The integrable system is constrained strictly by the conservation law during the
time evolution, and the prethermal state from the nearly integrable system is also
constrained by the conserved parameters (the constants of motion) with the corre-
sponding generalized Gibbs ensemble (GGE) which is indubitability a powerful tool
in the prediction of the relaxation dynamics. For stochastic evolution dynamics with
considerable noise, the two-point correlation of local operators (like the density of
kinks or transverse magnetization correlators) which don’t exhibit the thermal fea-
tures, display the behaviors of nonthermalization and an asymptotic GGE. In fact
it’s an asymptotic quasi-steady state with an infinite temperature, therefore the re-
quired distance to the nonthermal steady state is in an infinite time average. In this
paper, we unambiguously investigate the relaxation of a nonequilibrium system in
a canonical ensemble for integrable and nonintegrable systems. Temporal behavior
of the many-body quantum system and the corresponding linear-coupling between
the harmonic oscillators are discussed. The matrix-method in entropy ensemble is
utilized to discuss the boundary and the diagonalization algebraically. The approxi-
mation results for nonintegrable system under the considerable perturbations are also
presented.

1 Introduction

The investigation of the time evolution of nonequilibrium system is important for particle
physics, condensed matter physics and even the cosmology (like the entropy of Bekenstein-
Hawking black hole[1]), and especially in the many-body theory prediction by, e.g., the trapped
ultracold atomic gases which have the weak enough interaction with environment and therefore
allow the observation of the unitary time evolution[2]. For nonequilibrium system, the most
common glass-form of the materials can be blocked by the pinning field[3] and produce a glass
transition like the process of ergodic-to-nonergodic by the fluctuation-dissipation theorem. In
replica theory, since the homogeneous liquid given by the replica symmetry has an inhibitory
effect for the entropy production, the broken replica symmetry will leads to an increase of the
overlap of replicas. With the increase of degree of such overlap which can be realized by enlarg-
ing the system size, the number of metastable states (or the hidden one[3]) grows exponentially,
and the entropy grows logarithmically in the mean time. For a typical nonintegrable system,
the chaotic classical system requires the computational resource which increase exponentially
with time and the Kolmogorov entropy, is exponentially sensitive to the initial state. The Kol-
mogorov entropy here dosen’t depends on the error tolerance and it’s as small as 1.1[4] for the
nonintegrable case, while for the integrable system which is effectively solvable by the Bethe
ansatz[5], the required computational resource increase polynomially.

∗chenhuanwu1@gmail.com
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The time evolution of quantum entangled state may cause the decoherence effect which has
been widely found in the condensate system and it takes an important role in the quantum
information processing, quantum computation and metrology, quantum teleportation, quantum
key agreement[6, 7], and even the decoherence in neural network[8]. The entanglement is mostly
produced by the dynamical evolution with the nonlinear interaction[9] and the non-destructive
measurement, like the Dzyaloshinskii-Moriya interaction[10, 11]. Usually the quantum entan-
glement in nonequilibrium quantum systems is studied by the two-qubit system[12, 10], but
sometimes the qutrit system[13, 11] is needed for the special dissipative configuration. In
nonequilibrium and nonstationary open system, the coarse graining which connecting numer-
ous subsystems’ degrees of freedom makes more possible to realizing this process[14], and the
thermal entropy is a good measurement for the effect of coarse graining. The quantum spaces’
dimension increases exponentially with particle number due to the tensor-productor[4], and
similarly, the number of metastables which are the subsystems of the whole spin glasses sys-
tem, increase exponentially with system size at high temperature[15], and the phase transition
or critical fluctuation will occur when it from one kind of the subsystems into another. Such
destruction and restoration of symmetry within this process will also affects the properties of
materials[16], like the dielectric constant, etc. In solid-state quantum system, the spin is the
best candidate among various microscopic atom intrinsic degrees of freedom in thermal entan-
glement which has a higher stability compared to other entanglements due to its relatively long
decoherence time[17] and it’s also closely connected to the local free energy. The long coherence
time in many-body system is useful to detecting the unitary dynamics, e.g., the Hubbard-type
model, and it’s important to detecting the coherent nonequilibrium dynamics for the multiple
phase-transition. Further, when the system is mapped to the one with spinless free fermions
through the Wigner-Jordan transformation, it shows a in-phase fermion liquid state[18] and has
a stationary behavior in such an equilibrium integrable model which is considered as a powerful
tool to obtain the exact solution[19]. The first implementation that using the density matrices
in prediction of many-body system (equilibrium or nonequilibrium) is the Ref.[23]. It discussed
the situation similar to the quantum irreversible process in an energy- and information-lossy
system. The numerical method of time-dependent density matrix renormalization group (t-
DMRG) has show that the matrix product operator is simulation-inefficently for nonintegrable
model which is similar to the tensor-productor, but it’s efficient for the integrable and locally
disordered one[20]. Except that, the method of matrix product wave function is also a good tool
to dealing with this time-evolving one-dimension quantum system[21]. For time evolution of
free fermions or bosons, when the time scale to infinity, the thermal average of spin z-component
Sz is zero and the spin states are half-filled[18]. In this case, the interaction between particles
is strongest due to the zero-polarization[20], and the entanglement entropy is also increase and
becomes more extensive[22].

A fact that the many-body quantum system will tends to equilibrium has been verified
by many experiments, like the trapped ultracold atoms in optical lattices or the interactions
with optical resonance, while for nonequilibrium system, the relaxation and thermal entangle-
ment and the stochastic force also attract a lot of attention[24, 25]. Furthermore, the system
may relax to analogue of thermal state if the initial state is ground state[24]. The method of
fluctuation-dissipation relation (FDR) and quantum state diffusion (QSD) is utilized in this
work to investigating the evolutions to the steady states in integrable system whose final states
are constrained by the conserved law (indeed, it’s the scattering process of particles which
constrained strictly by the conserved law) and with a finite speed of algebraically relaxation
and information transfer under the thermodynamic limit (i.e., the large-N limit, and note that
the speed here will not bounded by the speed of light just like in the relativistic quantum
theory, but bounded by a well known Lieb-Robinson group velocity[26] (see Sec.7,8)). The
integrable system of quantum Newton’s cradle with ground-breaking is an explicit example
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for the conserved-restrictions[27], and the classical systems also have the same results, like
the Fermi-Pasta-Ulam (FPU) theorem[28] and Kolmogorov-Arnold-Moser (KAM) theorem[29].
While for the nonintegrable system, the constants of motion can be expressed by second quan-
tized operator[30] and without the limit like the integrable one. For local observable system,
the stationary and linear value may exist (like thermal state), but for integrable system whose
time evolution found no thermalization and it will tends to a distribution of GGE with an im-
portant fundamental hypothesis for statistical ensemble that it has maximized entropy which is
constrained by local conservation law[31], (e.g., the conservation quantity of momentum occu-
pation number), and hence restrict the ergodicity which makes it couldn’t reaches the thermal
state. For a framework of macroscopic system in finite dimension, it’s also important to in-
troducing the quantum field theory for both the equilibrium and nonequilibrium state in the
open system[14] for investigating its time-dependent nature and coupling in local and nonlocal
case as well as the dynamical fluctuation in short distance. And it’s also necessary to consid-
ering such a quantum field when the Hilbert space is too large to implement a well numerical
simulation[32]. The importance of entangled states for quantum computation is well known, to
reduce the confusions from the decoherence, there is a topological way that storing the quantum
information non-localized[33] or through the non-Abelian braiding statistics which also support
the Majorana fermions[35, 34] by the Majorana-edge modes in finite wire[36], and it can better
solve the problem of infinite dilution of the stored information in local area[24]. Such problem
also investigated in this work.

Since for nearly integrable system, the behavior of relaxation is under the crossover effect of
prethermalization and thermalization which is associate with the thermal correlation and the
speed of information transfer, and the prethermalized state can also be well described by the
GGE[37], i.e., may be viewed as a integrable system. The suppressed thermalization can be
freed by enough perturbation to break the integrability. This crossover effect affects both the
nonintegrable systems as well as the open systems. Through the study of this paper, we know
that the recurrence will appear for long-enough time evolution. In the configuration considered
here, part of the mixed system which is of interest coupling with the environment (i.e., not
isolated), and hence the degrees of freedom of the environment (i.e., the counterpart of the
target-part) can be traced out in the canonical ensemble[29], i.e., tracing over the variables
outside the target-region. This provides support to the matrix-method presented in Sec.10.
Such a large number of degrees of freedom is also an important precondition to implementing
the global relaxation with the thermodynamic limit[39]. For nonlocal operators in equilibrium
state, the dynamical parameters display an effective asymptotic thermal behavior (follow the
Gibbs distribution)[40] during equilibrium time evolution with a determined temperature and
decay with an asymptotic exponential law, while the model what we focus on is towards the
asymptotic quasisteady state with an infinite temperature, which decay with an asymptotic
power law[5] and acted by a diffusion term (see Sec.11). The prethermalization will shares
the same properties with the nonthermal steady state due to the dynamical parameters which
makes the model move close to the integrable points (or superintegrable point) after quenching.
But in fact, for integrable quenching, the stationary behavior for both the local and nonlocal
observables can be well described by the corresponding GGE, and the particles scattering which
constrained by conserved law is purely diagonal[41, 42].

This paper is organized as follows: We introduce the model of two-coupled subsystem
in Sec.2, and the bare coupling is further discussed in Appendix.A. The evolution in non-
dissipation system is discussed in Sec.3, and the quenching for many-body system is discussed
in Sec.4. A system-environment partition is mentioned in these two sections. In Sec.5, we
study the dissipation of nonlocal model. In Sec.6, the time evolution and thermal entangle-
ment of Heisenberg XXZ model are investigated. In Sec.7, the correlation and transfer speed
of information in quantum system is discussed where we take the one-dimension chain model
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as an explicit example. The relations between thermal behavior and the integrability are al-
so discussed in this Section. We present the nonequilibrium dynamics with strong and weak
interaction in Hubbard model in Sec.8. In this section, we investigate the phase transition of
nonintegrable Hubbard model, and the relaxation of double occupation as well as the kinetic
energy. We also use the method of nonequilibrium dynamical mean-field theory (DMFT) to de-
tect the evolution by mapping the lattice model to the self-consistent single-site problem which
can be solved numerically. In Sec.9, we discuss the relaxation to a Gaussian state and in Sec.10,
we resort to the matrix method, the properties of the boundary and the transfer speed are al-
so mentioned. In Sec.11, we discuss the relaxation of nonequilibrium system with stochastic
dynamical variables in a free energy surface, the quantum dissipation in the damp-out process
is also discussed. The diagonal contribution to symplectic spectrum of covariance matrix is
further explored in Appendix.B. The bulk-edge-coupling (Bulk-edge correspondence) type ma-
terials which are related to the spectrum gap are presented in Sec.10 and Appendix.C, and the
perturbation theory as well as the diagonalized Hamiltonian are also discussed in Appendix.C.

2 Model Introduction and the Coupling in Quantum Field Theory

We begin with the perturbation theory in space-time dimension, which is related to the strong
coupling model[29] or the weak-perturbation limit of nonintegrable system, and even with the
broken ergodicity[3]. In dimension of (d + 1) space-time, since the particles obtain mass from
the broken of non-Abelian gauged symmetry, the coupling constant g is dimension-dependent,
except the bare coupling gb which vanish in d + 1 = 4 limit[43]. The broken translational
symmetry also make the spin liquid state solidified rapidly and turn it into the crystalline
structure[16, 44]. Then we define two d-dimension system ψi and ψj with potential φi and φj,
respectively. In weak coupling condition which suitable for the perturbation calculation[16],
there exist a spin density wave (SDW) which in a Fourier expression is ψi = L−d

∑

i e
−iqriφ(x−

ri), and ψj is as the same form. Although L here is constrained by the model dimension d, but
L itself could be dimensionless with the dimensionless length scale and time scale (see Ref.[45]).
The φ here describes the fluctuation as a function in arbitrary dimension, and it’s also useful for
quantum fluctuation or even the vacuum fluctuation. The dimension of φ may even up to ten
according to D-branes of string theory[46]. In our model, we set coupling in each direction in a
range of 0 to n, and the top value is n = 2d/2N in SO(d)×SU(N) system[47]. So a continuous
phase transition with weak coupling pertubative RG under the time evolution can be expressed
by S =

∫

ddxL which appear in the imaginary-time path integral Z =
∫

Dψ†
iDψiDψ

†
jDψje

−S

[48].
The nonrelativistic Lagrange function L is[43, 46]

L =

∫ τ ′

τ

dτ [(iψ†
i∂τψi +

1

2µ
ψ†
i∇ψi − µψ†

iψi) + (iψ†
j∂τψj +

1

2µ
ψ†
j∇ψj − µψ†

jψj)], (1)

where τ and τ ′ are the initial and final time, ∇ is the Laplace operator, and µ is the chemical
potential. This time evolution Lagrange function ignore the interactions, e.g., the impurity-
induced long range order[46, 49]. The fermion system in this model can be expressed as
H =

∑

a=x,y,z Ja
∑

〈i,j〉a ψiψ
a
i ψjψ

a
j , (a = x, y, z), with spin operators Si = iψiψ

a
i and Sj =

iψjψ
a
j . Such definition also consistent with the properties of gauge field. Then we have

H = −
∑

a=x,y,z Ja
∑

〈i,j〉a SiSj. In Eq.(1) we take the imaginary time approach where the

quantum Monte Carlo (QMC) method is utilized [50], the differential symbol ∂τ has below
relation according to the definition of Bernoulli number[51]

n∂τ (
τ 1−z

1− z
) =

τ 1−z

1− z

∞
∑

n=0

Bn
(−∂τ )n
n!

, (2)
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and the differential symbol for mass µ is as the same form

n∂µ(
µ1−z

1− z
) =

µ1−z

1− z

∞
∑

n=0

Bn
(−∂µ)n
n!

. (3)

The Gardner transition which the critical dimension dc = 3 is an important object in the
study of coupling properties of amorphous solids [52]. In (3+1) space-time dimension using
the renormalized coupling, since the bare coupling is absent in the dimension of d+ 1 = 4, the
resulting dimensionless bare action with unbroken Quantum electrodynamics (QED) symmetry
is

S =

∫

dx

{

1

2

n
∑

x,y=0

[(∂µφxy)
2 + rφ2

xy]−
1

3!
(gbi

n
∑

x,y=0

φ3
xy + gbj

n
∑

x,y,z=0

φxyφxzφyz)

}

, (4)

and the action of Landau-Ginzburg-Wilson (LGW) Hamiltonian with N-component O(N) sym-
metry and noncollinear order is[53]

S =

∫

ddx

∫ τ ′

τ

dτ

{

1

2

n
∑

x,y=0

[(∂µφxy)
2 + rφ2

xy]

+
1

4!
[gi(

n
∑

x,y=0

φ2
xy)

2 + gj

n
∑

x,y,z=0

[(φxyφz)2 − φ2
xyφ

2
z]]

}

.

(5)

The summation index x y z range from 0 to (n− 1) correspond to the parameter space setted

above, and here the average term
∑n

x,y,z=0 [(φxyφz)2 − φ2
xyφ

2
z] exhibit the correlation between

these two fluctuation functions φxy and φz. Using the method of time dependent density matrix
RG which have been proved valid for particles at a fixed time evolution[20]. The fermion system
shown as Tijδij = Tr{SiSj} where Tij is the interaction tensor, the Si and Sj are spin operators

for ψi and ψj respectively and δij = {cic†j}. This expression is indeed taking the diagonal
part of Tij. Ref.[43] put forward a valuable view which connecting the bare coupling to the
renormalized coupling by an infinite cutoff, and then the mass-independent bare coupling can
be written as [43]

gb = µ3−d

{

g + δ11
g3

3− d

+ δ21
g5

3− d
+ δ22

g5

(3− d)2

+ δ31
g7

3− d
+ δ32

g7

(3− d)2
+ δ33

g7

(3− d)3
+O(g9)

}

,

(6)

which is satisfactory consistent with the series expansion of β function given in Ref.[54]

β(g) = −β0
g3

16π2
− β1

g5

(16π2)2
− β2

g7

(16π2)3
−O(g9). (7)

This β-function is series-expand to the seven-order of coupling, i.e., the three-loop level for the
gauge field. The specific quantitative analysis of β-function is presented in the Appendix.A.

Fig.1 shows the β(g) as a function of g in SU(3) system (i.e. C
(2)
ij = 3 (see Appendix.A)) with

different number of fermion multiplets m which setted from 0 to 20 by us. It’s obviously to see
that the curves shows a drastic non-linear change, and the m-dependent interaction tensor Tij
also plays a decisive role in the relation between β(g) and g.
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3 Evolution Behavior in Non-Dissipation System

Since the long time scales exist in the metastable states which the quantity grows exponen-
tially with system size[16], e.g., the single positive charge state in p-type material[55] or the
p-spin model[56]. the imaginary-time path integral can be expressed by the trace of time evolu-
tion operator Z = Tr(e−βH) with the evolution propagator U = e−βH = Tr(σi

1σ
i
2 ···σi

nσ
j
1σ

j
2 ···σj

n),
where β is inverse temperature 1/kBT . Note that the spin Pauli matrices here contain all
the components in finite dimension of Hilbert space and Hij is the nearest neighbor Hamil-
tonian which can be decomposed by using the Trotter-Suzuki method which mapping the
one dimension quantum system into two dimension[57] one and the path integral becomes
Z = Tr(Πi,je

−βHij). In this way, the long range interaction can be treated locally as a
nearest-neighbor pair in this spin isotropic system through a single two-qubit exchange gate
Ui,i+1 = e−Hi,i+1δτ due to the iterative nature and acting on two adjacent sites with single time
step δτ evolution, it is also meets with the realignment criterion[12], that is, the local field
effect. Then we have

e−βHi,i+1 =
∏

i

Ui,i+1. (8)

Except the Andenson localization, the local length may strongly increase and obeys the logarith-
mic law[58]. The Hamiltonian here was divided by the partition function Z through the temper-
ature interval or external magnetic field h[47]. By investigating the asymptotic behavior of Z,
when β → ∞, i.e., the temperature decrease with the imaginary time evolution, the Z → 0, and
then the system tends to ground state which is |ψ(0)〉 = |ψi

1〉⊗|ψi
2〉···⊗|ψi

n〉⊗|ψj
1〉⊗|ψj

2〉···⊗|ψj
n〉.

Denoting εn′ is the energy of n′th level (n′ < n) in this system above the ground state, then

εn′ = En′ − En′−1. The Pauli operator σ
i/j
n′ within the expression of evolution propagator U is

σ
i/j
n′ = σ0⊗n′ ⊗σ

i/j
n′ ×σ0⊗(n−n′)[4]. Since within time evolution, the entanglement between parti-

cles which is time-dependent rapidly reach the maximum value, the method of time dependent
density matrix RG becomes invalid due to the too large growth-speed of entanglement entropy.

The evolution by the evolution propagator U can be expressed as

|ψ(β)〉 = U |ψ(0)〉, (9)

and specifically, in the form with imaginary-time analogue eτH(τ) it has[21, 59]

|ψ(τ)〉 = eτH(τ)|ψ(0)〉
|| eτH(τ)|ψ(0)〉 || , (10)

where we define the imaginary-time as τ = t + i0+, while for the evolution Hamiltonian, it is
H(τ) = eαHHe−αH where α = β + i0+. Since ∂βψ(β) = Hψ(β), we have β ∝ (∂τ )

n, which is
also shown in the Eq.(2). For thermal average of an imaginary-time-dependent quantity F , its
expectation value which describes the ensemble average can be written as

〈Fτ 〉 =
〈ψ(τ)|F|ψ(τ〉)
〈ψ(τ)|ψ(τ〉) , (11)

where 〈ψ(τ)|ψ(τ〉) is the partition function here, and the accurate value of 〈ψ(τ)|ψ(τ〉) and
〈ψ(τ)|F|ψ(τ〉) can be determined by the method of tensor RG. The cumulative effect is effi-
ciently in this averaging process[24] and often results in a cumulant expansion at the expecta-
tion value for the simplified result whose truncation is depends on the detail of dissipation[60].
Through this, a world-line tensor grid RG can be formed by taking the coordinate as horizontal
axis, and the time (or temperature) as vertical axis, i.e., forms a tensor network. This ten-
sor network separated by the inverse temperature β and has the spacing ζ = β/M where M
is the total number of lattice sites in the network (also called the Trotte number[57]). Such
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method which utilize the evolution of time and phase also called Trotterization[61]. Through
the theory of t-DMRG, the F can be treated as a matrix product operator which depends
on the time-evolution, Fτ = U(τ)FU †(τ), here Fτ and F base on different basises. With the
nonequilibrium time evolution, the integrable system which has the important feature of local-
ization will relax to the stationary state after quantum quenches, i.e., the suddenly change of
interaction strengh[24], and the density matrices which constrained by the expectation value
will lead to a maximum entropy ensemble[22]. Usually we model the integrable (or superin-
tegrable) model by choosing the special initial state, typically, like the XY spin model which
is superintegrable when without the external magnetic field, and it can be affected deeply by
the constants of motion in the integrable (superintegrable) points (like the nonthermal steady
state). The density matrices here are depend exponentially on the conserved quantities and
the Hamiltonians which related to the initial state. For the matrix product operators which
describe the quantum states, the minimal rank D is required to be the maximal one of the
the reduced density matrices of the bipartition system[4] (bipartition of the target one and its
enviroment) and it needed to truncated by the method of singular values decomposing to keep
the size of D polynomially increase which is local and time-computable, and we keep only the
largest singular value after the truncation, i.e., only keep the basis states[62]. In fact, for dissi-
pation system, the linear or nonlinear dissipation coupling accompanied by the phase noise[63]
(like the Wiener noise (see Sec.11)) or the white noise or colored one[64] also have the inhibition
effect on the exponential increase.

In Schrödinger picture, the observables of thermal states are achieved by carrying the in-
tegrable system into the nonintegrable one (by the perturbations) and in the mean time the
energy-level spacing distribution is evolves from the Poisson distribution with diagonal ma-
trices to the Gaussian one (wigner-Dyson type) with level repulsion and random symmetric
matrices[65] (there are also symmetrically ordered operators in quantum dynamics by the Wign-
er representation[45]). It’s possible to back to the Possion distribution by applying a series of
single gates which prevent the exponential increase of rank D but introduces the norm error[20]

η =
n−1
∑

i=0

(1−
D−1
∑

j=0

λ2j(Ui)), (12)

where Ui is a single gate and λj(Ui) is the decreasing ordered singular values after removing
the maximum one, and the maximum entropy is accessible through the local relaxation similar
to the entanglement. Although for nonintegrable system the growth of D is founded to be
exponential, there exist methods like the diagonalization which keep the size of matrices always
proportional to the time (or the system size), like the Bogoliubov rotation (see Appendix.C).
The procedure of eliminating the small singular values results in a low-rank matrix, and this is
also to keep the local free energy

Efree = − 1

β
ln(

∑

i

λ2i ) (13)

smallest (λi is the singular value), and to enhance the equilibrium characteristics which treated
as a thermodynamics anomaly in glass system[66]. This equation also explicitly shows the
measurement of erengies in units of inverse temperature. To solve the problem of density matrix
in the t-DMRG, one introduce a way to solve the rank minimization problem which makes this
method valid even for the low rank matrices (see Ref.[67]), and it’s helpful to reducing the error
and keeping computational cost low at the same time. On the other hand, that also provides
the convenience that making the matrix nondecreasing and so that the maximum rank is always
appear in the final step of the algorithm.

Since we have implement the system-environment partition, in a full quantum dynamics, we
can yield a well approximation in the weak-coupling regime by the low-order truncation, e.g.,
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the Wigner truncation approximation which truncate in the power of one-order[45]. In such a
phase space, the coupled two subsystems have the relation

∑

ki,kj
(−ki!/Aki)gki(−kj!/Akj)gkj =

∑

k(−k!/Ak)g2k[16], where k is the number of powers of truncation in phase space (e.g., k = 1
when truncate in the first-order) and A is the angles which dominate the series expansion of
the dimensionless coupling g (see Sec.2).

From the discussion on this Section, we can see that the imaginary-time propagation has
similar behavior like the real-time one, it will provides us another way to detecting the de-
caying progress including the die-out of the excitations, and it’s available for similar real-time
setups[50], or application to the nonequilibrium problem with stochastic series expansion in
integrable system without the constraint of local conservation law. Therefore it’s more feasi-
ble to detecting the asymptotics phenomenon in time evolution, especially for the low-order
perturbation theory with external potential.

4 Quenching in Many-Body Local System

For integrable open system, we imagine the bipartition of the Hilbert space, which into the
two formulated finite-dimension linear space (two associated configuration) Vi and Vj which
assumed have same spectrum and their reduced density matrices are

Ji =
R
∑

R=1

λR|ψi
R〉〈ψi

R|, (14)

Jj =
R
∑

R=1

λR|ψj
R〉〈ψj

R|, (15)

where λR is the Schmidt coefficients (the decreasing singular values). The bipartite state
|ψ〉 ∈ C

di ⊗ C
dj which is realized through the Schmidt decomposition via the singular value

decomposition, and the Schmidt rank is min[di, dj][68]. For inseparable case, the reduced
density matrix J ′

i (if it’s pure state density matrix with feature of unitarily invariant) can be
obtained by tracing over the pure states in its extended subsystem (i.e., Cdj), and the product
space which formed by two subsystem is Vi ⊗ Vj. This bipartition can be used in most of
the quantum many-body model, like the Ising transverse field model, XXZ model, and kitaev
model, ect.

Integrability is usually relies on the localization, especially for the superintegrable one (like
the XY spin model) which are fully relies on the localization[31]. For a concrete example, we
consider a XY spin two-chain model without the magnetic field, whose bulk Hamiltonian is[69]

Hi,i+1 =
N−1
∑

i=0

1

2
(σx

i σ
x
i+1 + σy

i σ
y
i+1) · exp[

J

4

N−1
∑

j=0

(σ2x
i+Θ(j−i) + σ2y

i+Θ(j−i))], (16)

where J is the coupling, i, j stands the different chains, and Θ(j − i) is the Heaviside step
function. The correlation in such a system is[15]

〈si, sj〉 =
1

N − 1

∑

ij

sisj =
1

2
qij(N − 1), (17)

where qij is the overlap between these two spin configurations. The local quantum integrability
in the bounded bulk model can be deriving by the explicit form of the quantum R-matrix as
well as the boundary transfer matrices, e.g, see Ref.[70, 69, 31].
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For quench behavior due to the perturbation from local operators, which for the out-of-
equilibrium protocol is striking, the amplitude from initial state to instantaneous n state is[71]

An(t) = −
∫ tf

ti

dt〈n|∂t|0〉exp[i(ϕn(t)− ϕ0(t))] (0 ≤ i ≤ n), (18)

where ϕ(t) is the dynamical phase. Such an amplitude is also the eigenvalue of density matrices
in entropy ensemble with the specific heat

∑

n[En−E0]|An(t)|2. The sum of square of amplitudes
is the excitation probability Pex =

∑

n |An(t)|2 for electrons or holes, i.e., quenched away from
initial state (ground state) to a new state. Here we suppose the quench is very fast that the
initial state ψ0 and the quenched state ψn are almost exist in the same time ti. Then using the
evolution propagator U(t), the amplitude is obtained as[72]

〈n|U(t)|0〉 = −i〈n|
∫ tf

ti

dtH(t)|0〉

= −i〈n|Hint|0〉
∫ tf

ti

dt′exp[i(En − E0)t
′]

= −〈n|Hint|0〉
exp[i(En − E0)t]− 1

En − E0

,

(19)

where E0 is the energy in the initial state ψ0. Through the fermi golden rule, where Hint is the
interaction Hamiltonian with scattering amplitude Ai, which is

Hint =
U(t)(En − E0)

√

2− 2cos[(En − E0)t]
. (20)

For further detect the perturbation from local operators, we present in Fig.2 (a) the energy
difference between the excited state and initial one with different staggered magnetic field hs
in different dimension D of a quantum lattice model, and (b) the excitation probability as
a function of the temperature, it’s clearly that the probability distribution obeys a Gaussian
form. Since the quantum noise comes from the random initial state, we define a Gaussian white
noise in the initial state which has a zero mean and therefore the initial probability distribution
is Gaussian. Then the probability distribution in the process of relaxation is[73]

P =
∑

m,n

δ[∆E − (Em(t
′)− En(ti))]|〈ψm(t

′)|U(t)|ψn(ti)〉|2|〈ψn(ti)|ψ0(ti)〉|, (21)

where δ is the amplitude of the Gaussian (see Sec.11) and ∆E is the energy-difference between
the initial and final state of relaxation. In phase space, such a relaxation can be expressed by
the density matrix

J (t) =
∑

k,k+q

exp[−φ(k)t]J (0) =
∑

k,k+q

exp[−(Ek+q − Ek)t]J (0), (22)

where k and k+ q are the momentum before and after scattering. For slow quench where
the time scales to infinity, the non-diagonal contribution to J (t) (i.e., the part of q 6= 0) is
vanishing due to the fast oscillation of Fourier kernel exp[−(Ek+q − Ek)t].

In fact, the non-diagonal contribution to the mean-field-representation (or the second mo-

ments of the distribution of momentum[24]) 〈cic†i+1〉 =
∫

dnkf(k)cos(ϕ(k)t) is asymptotically
to a fixed value with the time evolution[38]. When a external perturbing-field is considered
in the free energy landscape, a perturbing-term should be added to the local free energy, and
since the perturbation is bad for the conservation of energy, the quantum system under the

9

Page 9 of 53

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly

influence of noise variables will not completely isolated even for the closed quantum system.
The coupling between this perturbing field and the Hamiltonian is beneficial to enhance the
system ergodicity by increasing the coupling of metastates. For closed system which have to-
tal energy conservation, the ergodicity for observables under the long-time limit can be large
enough to expect the time average to the thermal average[30], but there are restrictions on
the observables like the bound of the von Neumann entropy, and hence prevent it closing the
thermal state. (Note that here the correlation between each distinguishable particle and the
environment is still localized.) The entropy of pinning field is increase with the overlap in a
metastate, can associate with the hidden glass states, and it’s confirmed equal to the mean
field potential of glass system[74]. Both the entropy Shidden (not the diagonal one) and its free
energy as well as the non-diagonal contribution vanishes in the final status of the relaxation to
a steady equilibrium state, e.g., the commensurate superfluid state.

Since for the integrable system, most solvable Hamiltonian can be mapped to the effective
noninteracting Hamiltonian[29]

Heff =
N−1
∑

i

ǫiPi (23)

with the eigenenergy ǫi and conserved quantity Pi, and the maximum entropy ensemble after
quenching with local conserve-law can be written using the density matrix as

Jquenched =
1

Z
exp(−

∑

i

PiYi), (24)

where the conserved observable quantity Pi has the form Pi = a†iai where ai is the annihilation
operator of bosons or fermions and has commute relation [H,Pi] = [Pi, P

′
i ] = 0, the Yi is a initial

state-dependent quantity. The partition function Z = Tr[(exp(−
∑

i PiYi))]. This is in fact only
a local steady state but not canonical steady states for the full system[22]. For integrable system
begin with the maximal entropy in GGE, the Yi here can be replaced by a Lagrange multiplier set
{λi}[31, 76, 29, 75], (which is[77] λi = ln[(1− 〈ψ(0)|Pi|ψ(0)〉)/〈ψ(0)|Pi|ψ(0)〉] and constrained
by 〈n〉GGE = 〈ψ(0)|c†c|ψ(0)〉 = Tr(ρn) where n is the conserved number of particles). For
integrable systems which are exactly solvable (i.e., all the eigenvalues and eigenfunctions can
be obtained), since the ǫi is linear eigenenergy, for a simplest conserved quantity, the number
of particles ni, whose eigenstate can be treated as the energy eigenstate E =

∑

i ǫini which is
on the eightbasis of {ni}[45].

Within the scheme of adiabatic perturbation 〈k · p〉 theory, the asymptotic behavior can be
manipulated by the velocity and acceleration of the tuning parameter in quench dynamic[71].
The tuning-dependent Hamiltonian ψ(λ(t)) (λ(t) is the time-dependent tuning parameter) can
also takes effect in the adiabatic excitation of the ground state which then recover quickly due
to the asymptotic effect of time evolution[50]. The asymptotic freedom of system will preserved
until the number of fermion species is too large[54], so this asymptotic state with the scaling
theory depends only on the configuration, e.g., the fluctuation of system [15, 50, 78]. The
scaling is affected by the fluctuation and it tends to Gibbs value when the momentum vector
q → 0[78]. The equilibrium Gibbs free energy is[3] (without restrictions)

EGibbs = − 1

β
ln

∫

dte−βH(t), (25)

and since the Hamiltonian here is manipulated by the potential field, the free energy also treated
as a potential function with the determined weight (probability distribution).
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5 Dissipation in Nonlocal Model

For nonlocal model, there is a large difference compared to the local one. The nonequilibrium
long-range force is also usually unobservable in localized interaction models[79]. Consider the
Yang-Mills theory, the action of field can be expressed as

S =
1

4

∫

ddx

∫ t′

t

dtF µν
i F i

µν , (26)

where F µν
i is the field strength tensor (see Appendix.A), F µν

i = ∂µA
i
ν − ∂νA

ν
µ − gCiabA

a
µA

b
ν [80],

where Aa
µ and Ab

ν are the vector potential of the field and here Ciab is for introduce the SU(3)

structure factor which is Ciab = γiabF aF b, where γiab is the SU(3) structure constant and F a is
the group generator. The relation between the Lie group structure constant C and quadratic

Casimir operator is
∑

abCiabCjab = C
(2)
ij δij[81].

The dissipative effect which is derived from the macroscopic entangled system gives rise
the reservior problem and accompanied by a process of coarse-graining by the isometries that
integrating the degrees of freedom of subsystems[25] and with a dimension smaller than the
maximum one of Hilbert space[82]. The nonlocal correlation between the nearest neighbors can
be treated locally by using the matrix product operator with determined rank and the unitary
transformation with time-evolution operator (see below). For the localized interaction between
nearest neighbor spin accompanied by the local field effect in homogeneous electron system,
since the relatively large coupling constant and long time configuration, it’s priority to use the
nonperturbative method[60], but for nonlinear quantum dissipation it is more acceptable to use
the perturbative one (like the perturbative RG). The Gaussian probability distribution exist in
the linear case, but doesn’t exist in the nonlinear case anymore, and the dimension of density
matrices is also grows non-linearly with time[4], but there are still some linear relations, e.g.,
the entanglement entropy changes linearly with time under a staggered magnetic field in the
disordered case[20].

In a open quantum system, the thermal average of observable F can be written as (here τ
is the complex-time for propagators)

〈F〉τ =
Tr(e−βHe−HτFeHτ )

Tr(e−βH)
. (27)

For integrable system, this equation which describes the thermal average in Gibbs ensemble[19]
is equal to the energy of initial state of relaxation process after quenching which evolution
with time τ . Such thermal average is also meaningful in thermodynamics description for quasi-
equilibrium state[66]. Base on Eq.(8) and using the second order Trotter-Suzuki formation, the
evolution propagator can be decomposed as e−βH = e−βHxe−βHye−βHz + O(τ 2)[62], and Eq.(8)
can be rewritten as

e−βHij =
n
∏

i=0,j=0

Ui,i+a;j,j+a (a = x, y, z). (28)

To study the dissipation of the remaining degrees of freedom in subsystems after coarse granu-
lation in macroscopic model, the reservoir is very important. To introducing FDR to the steady
state, we rewrite the Eq.(27) by the method of path integral as

〈Fτ 〉 =
∫

Dψ(τ)eτH
〈ψ(0 + ε+)|F(0)|ψ(0 + ε−)〉
〈ψ(τ + ε+)|F(τ)|ψ(τ + ε−)〉 , (29)

with ε→ 0, and ψ(τ) = Uψ(0) where U is the time-evolution operator, U = Tτexp(−
∫ τ ′

τ
dτH(τ)).

For statistical linear dissipation system, the correlation between reservoirs 〈RiRj〉 6= 0, the
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method of unperturbed linear dissipation is also suitable for perturbed macroscopic model
if the perturbation Hamiltonianis is linear with the reservoir Hp =

∑

i f(i)Ri where f(i) is
a linear term and therefore the collective responses to the perturbation is mostly linear[60].
This form of Hp is suitable for all the integrable or nonintegrable linear dissipation model.
While for the non-linear dissipation case, since the reserviors in different subsystems is inde-
pendent with each other, so we constraint the reservoir states in the Liouville spaces, and have
〈R(0)|HSR|R(τ)〉 = 0[14], where HSR is the interaction term between system and reservoirs
and there exist shared influence function for all constituent[25].

For non-dissipation system, the propagation along time scale can be expressed by the initial
Hamiltonian and the observable conserved quantity (i.e., Eq.(24)), whereas for linear dissipa-
tion, it needs a stochastic term to compensate the lost energy, and it has a history-independent
potential term ∂τψ(τ) = H0(τ)ψ(τ)−

∑

i f(i)q(i)ψ(τ), where q(i) is the stochastic force or the
noise. For nonlinear-dissipation system, the states of reservoir variables spans only in the Li-
ouville space[14]. Both the linear-dissipation and nonlinear-dissipation contain a friction force
term but the nonlinear-dissipation has a complex memory term which is history-dependent[83]
in the evolution while the linear one hasn’t.

6 Time Evolution and Thermal Entanglement in Integrable Heisen-

berg XXZ Model

We already know that for non-dissipation system the antiferromagnetic Ising chain[4], XY
spin chain[69, 4] and the bulk model[69] are integrable and can be exactly solved. The Heisen-
berg XXZ model is also suggested integrable and own the local conserved quantity, e.g., the
observable microscopic quantity like the Sz or the observable macroscopic quantity like energy
or number of particles. To investigate the imaginary-time evolution in Heisenberg XXZ model,
we firstly need to use a c-number representation which depict a shift of −i~α in the axis of
Imτ (see, e.g., Ref.[60]). Then we introduce the Heisenberg XXZ model with spin 1/2 antifer-
romagnetic free fermions interaction, the n-component anisotropy Heisenberg Hamiltonian of
this system contains a homogeneous external field h

H =
n−2
∑

i=0

(JSx
i S

x
i+1 + JSy

i S
y
i+1 + JzS

z
i S

z
i+1) +

n−1
∑

i=0

(hiS
z
i ), (30)

where J and Jz are the coupling, and Sα
i = 1

2

∑

i σ
α
i (α = x, y, z) is the total spin in α-

component. The important coupling ratio can be defined as

Jz
J

=

{

cos γ, Jz ≤ J,

cosh µ, Jz > J,
(31)

where the tilted angle γ and µ are enlarged with the increased degrees of anisotropy. We focus
on the Jz/J = cos γ case. In the case of Jz = 0, i.e., becomes the noninteracting spinless
fermion system with strongly correlated electronic characteristics under the Wigner-Jordan
(WJ) transformation which turns the regular integrable terms into the chaotic one[4]. In this
case, the fermion representation of the gapless bilinear fermionic system is

Hbf =
∑

i

(cic
†
i+1 + c†ici+1 + hini), (32)

where ∆i = 〈cic†i+1〉 stands for a mean-field and the covalent bonding of WJ fermions[18], and
this is also the tight-binding fermionic model with dispersion relation κ = ±2cos k[22] in π-phase
(the phase difference between neighbor site is π). In this case, this Heisenberg Hamiltonian

12

Page 12 of 53

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly

becomes a strongly correlated electronic system with a finite entropy (will saturation)[69, 20].

The operator of number of the spinless particles is ni = c†ici, and the electron correlation is
Jznini+1. To investigate the nonlinear-dissipation in this spinless fermions chain model, we
need to introduce the master equation with system density matrix J [32],

∂tJ = −i[H,J ] +K
∑

i

[OiJO†
i −

1

2
(O†

iOiJ + JO†
iOi)] ≡ LJ , (33)

where J corresponds to the pure state or mixed state and Oi is the Lindblad operator describing
the bath coupling. The right-hand side of this equation contains two terms, the first one is
the unitary part of the Liouvillean, while the second one is the dissipative term and K is
the coupling strength within the dissipation scenario. We consider the damping here due to
the nonlinear-dissipation. The Gaussian area arrived in time evolution has ∂tJ = 0. In this
case K is almost vanish and produce a zero dissipative area, that suggest that the observables
exponentially fast approach the steady state[36], and the density matrix is close to the diagonal
one with only the main diagonal entries.

To introduce the thermal entanglement in the evolution, we define the generate and annihi-
late operator for sites i as

c†i = eiϕiS+
i , ci = e−iϕiS−

i . (34)

The operators obey the commutation relation [ci, c
†
j]α = δij (boson operator and fermion opera-

tor for α = 1 and −1, respectively), and c†icj+cjc
†
i = δij (α = −1) under the WJ transformation.

The time-involve phase ϕi has
ϕi+1 − ϕi = cni, (35)

where c is a c-number-correlated factor which is defined as the imaginary part of In(τ ′−τ), and
with the phase function ϕi =

∑

i c
†
icic. Then the Hamiltonian (Eq.(30)) can be represented as

H =









Jz/2 + h 0 0 0
0 −Jz/2 J 0
0 J −Jz/2 0
0 0 0 Jz/2− h









, (36)

when |J | < h − Jz, the ground state is disentangled state |0, 0〉 which with the eigenvalue
Jz/2 − h; when |J | > h − Jz, the ground state is entangled state 1√

2
(|0, 1〉 − |1, 0〉) for J > 0

or 1√
2
(|0, 1〉 + |1, 0〉) for J < 0 which with the eigenvalue −Jz/2 − |J |, and this entangled

state will goes to maximal by long-time evolution. Thus, the entanglement increase with the
enhancement of coupling J and Jz no matter they are both greater than zero (ferromagnetic)
or both less than zero (antiferromagnetic), but it’s always symmetry compared to the case of
inhomogeneous magnetic field. We can obtain the relaxations in a long-time scale after the
sudden quenching of J and Jz, and regulate the entanglement by the quenching of magnetic
field h. In equilibrium case, the density matrix of this thermal state can be written as[84]

J =
1

Z
exp(−βH) =

1

Z









e−(Jz/2+h)/T 0 0 0
0 eJz/2T cosh(|J |/T ) −s 0
0 −s eJz/2T cosh(|J |/T ) 0
0 0 0 e−(Jz/2−h)/T









,

(37)
where Z = e−(Jz/2+h)/T (1 + e2h/T ) + 2e(Jz+h)/T cosh(|J |/T ) and s = JeJz/2T sinh(|J |/T )/|J |.
Usually, we can creating strong entanglement by raising the ratio of Jz/J , or by raising the
degree of inhomogeneity of magnetic field h, or properly lower the temperature through the
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previous study[17, 84, 85]. Sometimes the lower temperature which can be implemented by
increasing the system size[85] can decrease the eigenvalue of the density matrix (Eq.(37)).

7 Correlation and Transfer Speed in One-dimension Chain Model

In this section, we focus on the two-point spin correlation in S = 1/2 Heisenberg chain and
S = 1 Ising chain, and define that the J1 and J2 as the nearest neighbor coupling and next-
nearest neighbor coupling in the chain, respectively. The β(inverse temperature)-dependent
magnetic susceptibility can be written as χ(β, t, i) = β2−n

∑n−1
i=1 〈Sz

0S
z
i 〉 for a n-qubit chain, the

latter term in this expression is the spin-spin correlation function for the Heisenberg model[20].
Fig.3 shows the spin correlation C and inverse correlation length ξ−1 for (a) S = 1 Ising spin
chain and (b) S = 1/2 Heisenberg chain with different J2 at different site i. We show that
the nonlocal order parameter decay exponentially due to the perturbations from the long-
range spin-spin interaction which breaks the integrability and therefore exhibits an effectively
asymptotic thermal behavior, though the latter one is exactly solvable (i.e., all eigenvalues can
be obtained by the method of Bethe ansatz in thermodynamic Bethe ansatz (TBA)[86]) beforce
the perturbation. Such an exponentially decay for the nonlocal operators in the nonintegrable
model has been widely observed, e.g., the order parameters in transverse field Ising chain for
ferromagnetic/paramagnetic state[87] or the number of quasiparticles in the time evolution for
a quantum spin chain[88], etc. We also can see that the ξ−1 is tending to saturated with the
increase of distance which obey the equilibrium law, and in fact it’s equivalent to the coherent
state with coherent amplitude in terms of a exponential form, and therefore the phase coherence
rate will display a similar behavior with the correlation length. Fig.4 shows the spin correlation
for S = 1/2 Heisenberg chain as a function of temperature with different J2. We can see that,
with the increase of J2, the spin correlation also increase. We also make the comparision for the
spin correlation C at different temperature for S = 1 Ising chain and S = 1/2 Heisenberg chain
in the Fig.5. It’s obviously that the S = 1/2 Heisenberg chain is earlier becoming saturated
compare to the Ising one. Further, we present the correlation (a) for S = 1/2 Heisenberg chain
which is obtained by the method of Bethe ansantz and make a comparison on the results of
correlation in low-temperature for S = 1/2 Heisenberg chain between the methods of Bethe
ansatz and renormalization group (b) in Fig.6.

Since the equal time spin correlation C has the relation

C(r, t) = 〈S(0, t)S(r, t)〉 ∝ exp(−r/ξ), (38)

with the correlation length ξ−1 = − limL→∞ ln〈SiSi+L〉. Here the distance r can be specified
as i which stands the different coordinates in the spin chain and ξ is the correlation length.
Note that this expression for equal time two-point correlation is well conform for the ordered
phase in the long-time limit, while for disordered phase, the ξ has more complicated form[87].
Now that this spin correlation function displays an effective asymptotic thermal behavior as
introduced in Sec.1, and correlation length ξ is related to the quantum quench protocol[37],
the thermal behavior for a nondissipation system after quench can also have the relation which
mentioned above (Eq.(38)), but note that although this spin correlation is in an exponential
form, the correlation length does not follows the thermal distribution but follows a nonthermal
distribution[37] and guided by GGE. This is because the correlation length is a local quantity
which behave nonthermally. Similar behavior appear in the correlators like the transverse
magnetization and so on. We still need to note that though for infinite system which follows the
effective thermal distribution is mostly nonintegrable, but the initial state of integrable system
which dictated by the noninteracting Hamiltonian may still follows the thermal distribution[89]
since without the effect of interactional quench Hamiltonian. Further, if we mapping to the
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Fourier space, the equal time correlation (Eq.(38)) for the spin-1/2 square lattice model has a
more specific form in the low-momentum case[90]

〈Si(0)Sj(r)〉eikr ∝
e−r/ξ

r4
(1 +

r

ξ
)δij, (39)

which follow the power law decay when r ≪ ξ and exponentially decay when r ≫ ξ.
Since the pinning field play an important role in the process of ergodic to non-ergodic

transition which plug the correlation between subsystems and even the velocity of spin wave
vs[91], which associate with the slope of the dispersion relations in momentum space. For the
case of Jz/J = cos γ, vs can be written as[91]

vs =
Jπ

2

sin γ

γ
(40)

which is consistent with the slope of dispersion relation ∂kκ = ∓sin k. Then a question arisen
that if the speed of information transfer which govern the relaxation time of a post-quench
state relate to the speed of spin wave in a spin-interaction model? The answer is yes. A direct
evidence is the Lieb-Robinson type boundary (the details about the Bose-Hubbard model is
presented in next section). In fact, the spin wave is also related to the momentum transfer[92]
and even the damping of oscillation of the superfluid regime (see Sec.8 or Ref.[93]). We know
that the missing of symmetry is related to the influence of initial states, and the collapse
of physical phenomenas like the interference pattern[38] or the collective excitation[94, 95] by
inhomogeneous oscillation in condensate with a density wave order which act like a single phase
wave or standing wave[96], is revives in the latter time of relaxation. The transfer of correlation
with a finite velocity also construct a line-cone which well describe the relaxation behavior.

8 Double Occupation and The Interaction Quench in Nonintegrable

Hubbard Model Near The Phase Transition Point

We next construct the Bose-Hubbard lattice model by the Hamiltonian as a explicit example

H = −P
n−2
∑

i=0

(b†ibi+1 +H.c.) + U

N−1
∑

i=0

nini+1 − µi

n−1
∑

i=0

ni (41)

where P is the hopping constant, U is the chemical potential and µi is the local potential of
each particle. The interaction between the next-nearest neighbor is assumed to be zero in this
model and only the nearest neighbor pairs have nonzero interaction, thus it is integrable. A
dimensionless reduced coulping is defined here as

gred =
UN

P
(42)

where N is the number of interactional particles. We can implement the phase transition from
Mott-insulator to the condensed state or superfluid by modulating the value of gred, and it
has been implemented experimentally[97, 98, 99]. Even for systems which without hopping
at all (i.e., P = 0), the phase transition from metallic state to the Mott insulator is also
realizable by the interaction quenching of U , and in this case the oscillations with the collapse-
and-revival pattern are periodic with period 2πU/~ [39] The Table.A shows the time scale
of relaxation and the period of collapse-and-revival pattern for several models. In fact, most
many-body systems can exhibit quantum phases with different entanglement structures in the
complex mixed dynamics, and it’s usually realizable by tuning the strength of this competing

15

Page 15 of 53

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly

interaction[9]. The fluctuation of correlation amplitude due to the fast oscillation of phase
factor are related to the distribution of the initial state, and the short-range correlation also
shows distinguishable differences for different configurations of initial states.

In this model we next define a hopping-determined operator R := itP . This periodic-time-
dependent evolution operator for a single-site can be expanded as[24]

eR := eitP =
∑

k≥dr

(itP)k

k!
≤

∑

k≥dr

(6Pt)k
kk (43)

where k denotes the unit vector in phase space and dr is the distance between sites i and i+ r.
There exist a upper bound for dr as dr < 6Pt/e where e is the natural constant since there is
a insurmountable maximum speed for information transfer in this model. The summation of
the part which beyond the distance dr follows the above relation. Thus we also have

eR ≤ (6Pt)d
dd − 6Pt · dd−1

, (44)

which requires dr > 6Pt while the critical distance dc which corresponds to the upper bound
is nearly equals to 6Pt. If we treat the conserved particles-number P as a matrix, then it has
the operator norm ‖PP∗‖op = 1 and P†P = PP† = I where I is an identity operator. This is
related to the case mentioned in Ref.[39] that ni only have the two eigenvalues 0 and 1, and here
the maximal eigenvalue 1 is nondegenerate for our scenario, while other eigenvalues approaches
to 1 smoothly in the long-time limit.

Since in long-time limit the relaxation will removes the non-diagonal part of the density
matrix, the differece between the density matrices and its diagonal one is ∆J = J (t) − JG,
thus for the hopping matrix which mentioned above, its trace norm is

(6Pt)dc
ddcc − 6Pt · ddc−1

c

> ‖∆J ‖. (45)

Note that here the critical value dc is independent of the size of system.
We have present the upper bound of speed for the information transfer by a form of sup-

pressed exponent. Since the nondiagonal contribution won’t vanish until t → ∞ (which corre-
sponds to ∆J = 0), and it’s decay in a time scale as 1/t[30, 22], i.e., the dephasing process, (note
that for large-size system, the inequality of Eq.(45) will become more obvious, and the vanished
nondiagonal contribution will reappear if the size is large enough, which called “rephasing”),
the phase can be expressed as ϕ(k) = ϕ(0) + qℓ + O(qℓ+1)[22] where ℓ is a tunable parameter
in phase space. The contribution in such a dephasing with scale 1/t in phase space is

kℓ =

∫

dkℓeiϕ(k)
k1−ℓ

ℓ

∫

dd−1kf(k), (46)

where ϕ(k) = ϕ0 + kℓ.
Next we form the the Bessel formula to show the reducing property of the evolution operator

eiPt which with large size N and can be viewed as the Riemann sum approximation of the
following function with phase number α [24],

Jα(x) =
1

2πiα

∫ 2π

0

exp[i(αϕ+ x cosϕ)]dϕ

=
1

2π

∫ 2π

0

exp[i(αϕ− x sinϕ)]dϕ,

(47)

which is shown in the Fig.7. Through this, the maximum rate for the system to relaxation to
the Guassian state is obtained as (2Pt)−N/3 for a N -site system.
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For this one dimension bosonic system what we are discussing, the Mott gap U − Uc is
allowed to exist during the relaxation process[39], (for a experiment, see Ref.[100]). For coupled
bose-lattice model, one forms the time-dependent continuous variable n(t) to describe the
quasiperiodic decaying[101], the semiclassical motion equation which is in a continuum bath of
harmonic potential and additively applying a confining parabolic potential, reads

d2n

dt2
+ 4n+ 4gredn

[

cos(ϕ(0)) +
gredn

2

2

]

= 0, (48)

where ϕ(0) is the initial phase. Thus the double occupation 〈n2(t)〉 (also the double momenta
occupation number in momentum space) under the quenches from different Mott insulator
initial state (with different initial phase) to weak interaction one (with weak gred) is[101] (ignore
the influence of high-order U here)

〈n2(t)〉 ≈ n2(0)− 1

2π

∫ π

0

sin2ϕ(0)cos[4t
√

1 + gredcosϕ(0)]dϕ(0), (49)

where n2(0) = 1/4 here is an effective approximation for two uncoupled systems in semiclassical
theory. The n2(t) with weak gred(< 1) according to above equation is shown in Fig.8. Note that
since the critical value of interaction for superfluid-to-Mott insulator phase transition in the
Bose-Hubbard lattice model requires U/P ≈ 16.7 [102], and the reduced coupling gred ∼ N2,
so the ground state of this system will keep this superfluid regime in a large range of gred if
without excitation like the quench behavior. But this expression doesn’t works for the region
of gred > 1, e.g., see (d) and (e) in Fig.8. For long-time behavior with very weak gred, the
asymptotic behavior of Eq.(49) is

〈n2(t)〉 ≈ n2(0)− 1√
16πgredt

[cos(4t
√

gred + 1 +
π

4
) + cos(4t

√

1− gred −
π

4
)], (50)

which is presented in Fig.9. We can see that the amplitude fluctuation is increase with the
reduction of gred, and in long-time limit the undulate of oscillation becomes more flat but no
completely governed by the time-independent Hamiltonian. This corresponds to the superfluid
regime with obvious amplitude fluctuation, the recurrences and interference pattern will also
occur (not shown). For the case of initial gred = N , when the quenched gred & 7N , this
nonequilibrium system will enter into the nonthermal steady state according to the results
shown in Ref.[38] though it’s a nonintegrable system.

For one-dimension nonintegrable case of hard-core bosons (where the generalized eigenstate
thermalization occurs[103]), a typical model of 1/r Hubbard chain also have the feature of
collapse-and-revival oscillations[29] like the nonintegrable one, but it’s dispersion-linear, i.e., it
can be effectively solved by Eq.(23) while the nonintegrable one can not. Now we consider large
gred into the strong-coupling perturbation in a two-dimension version of 1/r Hubbard model-
the lattice fermions Hubbard model, the double occupation d(t) = 〈n↑n↓〉/N can be written
as[104]

d(t) = d(0) +
N−1
∑

i=0

1

gred
〈c†ici+1(ni − ni+1)

2〉+O(
V 2

U2
). (51)

whose graphs have been presented in the Fig.2 of Ref.[104]. This is corresponds to the state of
Mott insulator with strong interaction and have

P〈c†ici+1(ni(0)− ni+1(U))
2〉 = 2

∑

i

[κi(ni(0)− ni+1(U))], (52)

where κi is the dispersion relation related to the kinetic energy Tkin. The prethermalization
regime is also exist in this case for one-dimension or two-dimension Bose-Hubbard model[38],
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but this prethermalization regime as well as the general collapse-and-revival oscillations vanish
in a little range before the critical value Uc which origin from the discontinuous momentum
distribution in Fermi surface due to the quenching.

We show the bandwidth-dependent kinetic energy of 1/r Hubbard chain with different band-
width: W = 1, W = 4, and W = 1/2 (which has been obtained by the method of local density
approximation (LDA)[105]) in Fig.10. It’s obviously to see that the amplitude of hopping is
increases with the bandwidth W (see the inset) and the Tkin decay rapidly with the increasing
distance along the chain. When it quenches to a large U , the oscillations of Eq.(51) makes a
difference[104] ∆d = Pπ(1− 2n/3)/U which is halved in Falicov-Kimball model for nonequilib-
rium dynamical mean-field theory (DMFT) due to the vanishing of P and one of its two spin
species, therefore only one spin specie contributes to the kinetic energy. In DMFT, this kinetic
function due to the considerable noise (see Sec.10, Appendix.C) yields a single-site Green’s
function

G(t, t′) = i〈c(t)c†(t′)〉, (53)

where the contour-order correlation 〈c(t)c†(t′)〉 has

〈c(t)c†(t′)〉 = Tr[eβHGTCe
Sc(t)c†(t′)]

Tr[eβHGTCeS]
, (54)

where TC is the contour-order temperature, and the single-site action[106]

S =

∫

C
dtdt′c†(t)Λ(t, t′)c(t′) +

∫

C
dtV (t), (55)

where Λ(t, t′) is a hybridization between the sites with the rest of the lattice (environment).
By the nonequilibrium DMFT, which well describes the time evolution of an interacting

many-body system (fermions lattice Hubbard model), we can map the lattice model to a single-
site impurity model as shown above. Unlike Eq.(51), the method of DMFT is nonperturbative,
but since we consider the perturbation from noise into the Green’s function, the resulting
Green’s function is

G(t, t′) = G0(t, t
′) +G0(t, ti)ΣijG(tj, t

′), (56)

where G0 is the unperturbed Green’s function, and it has[107]

eV − 1

eV − iG0(eV − 1)
∗G0(t, t

′) = Σ ∗G(t, t′), (57)

where V = H − HG is the non-Gaussian part of the Hamiltonian, i.e., the interaction term
U(t)n↑n↓ which is noncommuting[108]. Thus to linearizing the rest part of Hamiltonian, we
need to tend the partial function which is the denominator of Eq.(54) into the interacting rep-
resentation with decomposed Boltzmann operator using the method of Hubbard-Stratanovich
transformation which require the convergency of the Gaussian integrals[109]. This partial func-
tion select all the possible configuration of single-site along the contour C, which make it possible
to be decouped by a auxiliary-field quantum Monte Carlo methods[108, 106], (Note that the
integrable lattice model for soft-core bosons , the non-Gaussian distribution is origin from the
off-site hopping[110] term unlike the case what we are discussing here). The single-energy
variables si along the contour C have[108] eVσ = diag(eγσs1 , eγσs2 , · · ·, eγσsi) where σ denote the
spin order σ = ±1 and γ here is a temperature- and interaction-dependent parameter. This
equation means that eigenvalues (which can be specialized as the band energy ǫk in Hubbard
model) of hopping matrix V can be diagonalized by the diagonal matrices which shown in the
bracket of above expression.

Since the total Hamiltonian must be conserved within the evolution, the kinetic energy of 1/r
Hubbard chain is suppressed by the term Epot = Ud(t). For half-filling Hubbard Hamiltonian
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(n↑ = n↓ = 1/2) with a semielliptic density of state ρhf =
√

4P2 − ǫ2k/(2πP2), the kinetic
energy per lattice site[104] is Tkin = 2

∫

dǫkρhf (ǫk)n(ǫk, t)ǫk, (with the band energy ǫk) which
obeys the Dyson equation in lattice model with the Green’s function Gk(t, t

′)

Gk(t, t
′)(i∂t + µ− ǫk − Σ) = 1, t = t′ (58)

where the convolution product of local self-energy Σ and Gk yields the equal time double
occupation in a homogeneity phase and the self-consistency local Green function has[111]
Gk(t, t

′) =
∫

dǫkρ(ǫk)Gk(t, t
′), where Gk(t, t

′) is diagonal. The approximation of Hartree-Fock
which works well for the single-particle problem, affects the chemical potential µ which has a
zero mean, by the particle number in canonical ensemble

〈n↑n↓〉 =
1

N2

∑

k,k′

〈nk↑nk′↓〉 =
n2

4
, (59)

and it contributes to self-energy by the diagonalized Hartree-Fock Hamiltonian and provides a
precise result in half-filling case, but since the Hartree-Fock is sensitive to the spin-correlations[112],
it fails when the spin degrees of freedom disappear. In this case, one gives the second-order
contribution to the self-energy in the form of[106]

Σ(t, t′) = −U(t)U(t′)G0σ(t, t
′)G0,σ(t

′, t)G0,σ(t, t
′). (60)

Here the unperturbed Green’s function G0σ can be replaced by the full interacting one: Gσ,
and the interaction U can be viewed as an evolution propagator.

Since the fact[112] that the phase transition of metal-to-insulator in half-filling 1/r Hubbard
chain occurs when U = W where we set W = 4 here, we obatin Uc = 4. Note that the band
energy ǫk is closely related to the continuity of momentum distribution, e.g., it’s discontinuity
when ǫk = 0− and ǫk = 0+ in each side of critical value Uc. When it approaches to critical
value Uc, d(0) = 1/8 after quenching, since we set the n = 1 and the critical value is Uc = 4,
the one-dimension half-filling 1/r Hubbard model has the double occupation as

dhf (t) =
1

8
− (4− U)2

16U
− (16− U2)2

16U2
ln

∣

∣

∣

∣

4− U

4 + U

∣

∣

∣

∣

− cos(Ut)cos(4t)

2Ut2
, for quench from 0 to U;

dhf (t) =
1

8U
+

(4− U)2

16U2
+

(16− U2)2

16U3
ln

∣

∣

∣

∣

4− U

4 + U

∣

∣

∣

∣

+
cos(Ut)cos(4t)

2U2t2
, for quench from ∞ to U,

(61)
while for the quenching that reaches the Uc, the behavior of double occupation is described by

dc(t) =
1

8
− 1

512

[

48sin(8t)

t3
+ (

6− 32t2

t4
)(cos(8t)− 1)

]

− 3

32t2
, for quench from 0 to U;

dc(t) =
1

32
+

1

2048

[

48sin(8t)

t3
+ (

6− 32t2

t4
)(cos(8t)− 1)

]

+
3

128t2
. for quench from ∞ to U.

(62)
Fig.11 shows the graphs of dhf (t) in Mott insulator for quenches from 0 to U and from ∞ to
U (according to Eq.(61)), we can see that the later one is roughly the inverse version of the
former one, and a significant feature is the fast-saturation. The larger the interaction U is, the
faster the curve tends to saturated. Note that the double occupation here is indeed related
to the realistic physical quantity of global correlation for bosons system, and the discussion
above is for a prediction about the behavior in long-time limit, i.e., the stationary results,
which consistent with the thermal values[39]: 1/4 for interaction quenches from 0 to ∞, 1/6
for interaction quenches from ∞ to 0, 1/8 for interaction quenches from 0 or ∞ to Uc, (we set
n = 1 here). The collapse of oscillations are scale as 1/

√
gred, i.e., the amplitude are continually
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decaying along the long-time scale which cover the phase transition, and d(t) will shows strictly
periodic behavior in the noninteracting regime with gred = 0 (not shown in the Fig.11). For
quenches from 0 to finite U , the prethermalization regime also shows large agreement with the
stationary values of d(t) in long-time limit. The effect of damping on the amplitude of collapse-
and-revival oscillations is always exist in the long-time scale, and has important influence on
the relaxation. It produces the “overdamp” in the regime with sufficiently large U , which
nearly reduce the amplitude to 0 after instantly tends to saturate. The process of damping is
related to the velocity of spin wave in Goldsone model that for zero frequency Goldstone mode
it followed by a additional standing spin waves[92, 101]. By setting a list of interactions in
Fig.11, we found that, for quench from 0 to an infinite interaction U , closer the quenches to
critical value Uc, closer the dhf (t) to quasistationary value, which is obtained from the Fig.12
as 0.125 (see the bottom inset of Fig.12(a)): the U which close to Uc in Fig.11(a) is setted
as 3.299, and the long-time result for quench to this U is 0.12499, which is very close to the
stationary prediction 1/8, and it’s reasonably differ from the thermal prediction of 0.098 by the
equilibrium result[113]. While for the quench from ∞ to U , we obtain the same conclusion:
the result of quench to U = 3.299 is d =0.032 which is very close to the stationary value 0.0312
as shown in the bottom inset of Fig.12(b). That is the long-time behavior of nonequilibrium
system which shows well agreement with the result of quasistationary value in phase transition
point (this conclusion will always exist in the time scale of 1/|P| ≪ t≪ U/P2).

While for the anharmonicity case, the coupling gred still usable by the form of a symmetrical
anharmonic term (see Sec.10), the bare action of quantum system with N -component bosonic
field φα in φ4 field theory (where gred close to the critical value with Uc) is[114, 101]

S =

∫

ddrdτ
1

2
[(∇rφα)

2 +
(∂τφα)

2

c2
− (rc + r)φ2

α +
λx4

N
φ4
α], (63)

where α = 1 · · ·N , c is the velocity, λx4 is the quartic nonlinear coupling term, and the critical
value rc is reached at r = 0. For the case of quenches from large U to a small one which
is close to zero, i.e., from the Mott insulator initial state to the superfluid or metallic state,
we introduce the vectors k1 = 2πn1/N and k2 = 2πn2/N which obey the periodic boundary
condition (see Appendix.C) and have n1 6= n2 < N , then when the coupling is close to zero,
the time-dependent nearest-neighbor correlation in the bath with harmonic potential is given
as[101]

〈nr(t)nr+1(t)〉 =
2gred
N

N−1
∑

r

sin2Gt
G , (64)

where the periodic correlator G = 1+ cosk1 − cosk2 − cos(k1 − k2). This utilizes the periodicity
of harmonic oscillators in superfluid regime and exclude the high-frequency part due to the
periodic boundary condition, i.e., keeps the stable low-frequency only.

For many-body system, the dispersion relation κ of this bosonic model is oscillating as a
function of k with the period π (see Fig.13). From Fig.14, it’s obvious to see that the periodic
dispersion relation results in a degeneracy of energy. In the process of relaxation of two-point
correlation, the relevant parameter is assumed changes linearly. By setting the dispersion
relations κ before and after quench, the corresponding relaxation of correlations between the
bosons is shown in the Fig.14, we see that the oscillations approach to quasisteady state with
small (but non-zero) frequency, and with the increasing of dispersion relation the amplitude of
correlation is decreased and the required-relaxation time is shorter. In fact this conclusion is
always correct for all the many-body system in phase-space.
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9 Investigation of Relaxation of Chain Model to Gaussian State By

the Transfer Matrices

We then define the transfer matrix

t(x) = Tr(
a
∏

l

Tl(x)), (65)

where Tl(x) = Rl
n−1(x)R

l
n−2(x) · · ·Rl

0(x) is the monodromy matrix with n-site R-matrices and
x is the spectral parameter. Employing this transfer matrix representation, the initial state can
be written as

F0(x) = lim
n→∞

1

n− 1

∂

∂x
〈ψ(0)|t(x)t†(x)|ψ(0)〉 (66)

where the total number of particles N is a integer multiple of number of transfer matrices
num(t1(x)). Based on this, the localed free energy per spin (or per grid point in the network)
is

Efree = −num(t1(x))

N

1

β
lim

M→∞
lnλmax (67)

where M is the number depends on how many parts the temperature divided into (i.e., the
Trotter number), and λmax is the maximum eigenvalue of transfer matrix and in the limit of
N → ∞ it has

λNmax = lim
M→∞

Tr t
num(t1(x))
1 (x), (68)

i.e., in the case of infinity-system-size the maximum eigenvalue equals to the trace of transfer
matrices. Further, we deduce that

lim
N→∞

ln(λNmax)

N
= lim

M→∞

lnλmax

N
· num(t1(x)), (69)

which can be easily confirmed by numerical methods. In the framework of auxiliary space which
estabished above, one can define the matrix Ai which acts on the auxiliary space[19], then the
wave function of ground state can be redefined as

|ψ(0)〉 =
∑

si

Tr(
n−1
∏

i=0

Ai)|
n−1
∏

i=0

si〉 (70)

where |
∏n−1

i=0 si〉 denotes a normalized computational basis state[20], while the set of unnor-
malized part forms a projective space P is in a dimension of didj − 1[68].

Since in normalization case the expectation value of initial state is 〈ψ(0)|Ji|ψ(0)〉 with
〈ψ(0)|ψ(0)〉 = 1, the transfer matrices in two subspaces can be obtained by the algebraic Bethe
ansatz[76]

t(i+R) = Tr(An−1(R)An−2(R) · · · A0(R)),

t†(i+R) = Tr(A†
n−1(R)A†

n−2(R) · · · A†
0(R)),

(71)

where R is a constants of motion and the matrices A and A† are isomorphic with the bipartite
space of Cdi ⊗ C

dj . In convex hull construction for nuclear norm, a direction of subgradient is
consist of the orthogonal set {si} and {si}⊥[115], and it’s well known that the Schmidt rank
R is invariant by local operations and classical communication (LOCC) but variable when the
bipartite state is mixed[68, 116]. For localized quantum communication, Eqs.(43,44) exponen-
tially suppress the transfer of information, which can be reflected by the the exponentially
fast quantum propagation in branched tree graph and exponentially slow down in latter-time
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motion on the quantum graph[117], for which the information flow toward the random path in
local relaxation process.

In the above Bose-Hubbard model, using the Wigner representation which is generally neg-
ative definite[45] we also have the characteristic function of density matrix Ji as[24]

Tr[Jie
αb†i−α∗bi ] = e−

|α|2

2

∏

dr

Lm(|α|2e2itP(dr)), (72)

with the translation operator eαb
†
i−α∗bi = eαb

†
i e−α∗bie−|α|2/2 where the state of c-number variable

|α〉 = e−|α|2/2(αb†i−α†bi)[32], and Lm is the Laguerre polynomial. The translation operator here
is non-interactive and can be utilized to express the boundary conditions of parameter space.
The density matrix has Ji = Tr(|ψ〉〈ψ|) and b†ibi = −( ∂

∂α
+α∗

2
)( ∂

∂α∗+
α
2
), bib

†
i = (α

2
− ∂

∂α∗ )(
∂
∂α
−α∗

2
).

After the local relaxation (dephasing) to a steady state ensemble with stationary state ρi, the

Eq.(72) tends to the Gaussian form with e−(ρi+1/2)α†α[24] where ρi is the average of initial states
for finite system and reach the maximum entanglement which related to the second moments.
The Hamiltonian has limt→∞〈ψ(0)|eτHHτe

−τH |ψ(0)〉 = Tr(ρHτ ). For integrable homogeneous
system (like the one we present in the Sec.6), the translation invariance in the transition states
is related to the local conservation law and it’s also meaningful in the investigation of relaxation
of degrees of freedom,

The small displacement of coordinates due to the local potential produce a negative Hessian
eigenvalue[118], and since the one-site shift invariance which corresponds to the noninteracting
scenario may be broken by the local conservation law, the incompatible case may appear in the
integrable model[31]. The result of Ref.[24] shows that the local relaxation is always preserves
the full information of initial state, which shows that the information of initial state is not or at
least not only be recorded by the factors of Lagrange multipliers[31], and this is consistent with
the above result in Gaussian form which contains the term about initial states. While for inho-
mogeneous case (like most of the damped or polarized model), since the translation invariance
is broken, the thermal behaviors and scattering is very different from the homogeneous one,
and the prediction of GGE to the final state is also inadequate[119]. Further, the relaxed result
for nonequilibrium system can be constructed as a sum of Gaussians which is associated to the
related collective variables[120] or canonical variables which can be utilized to diagonalize the
inhomogeneous model[121]. Note that this Gaussian state is quasifree and contains only second
moments, i.e., the redistribution by the scattering. We will further represent this process by
matrix method in the next section. When the system has already been relaxed to the equilibri-
um distribution, the dynamic is well described by a stochastic partial differential equation, e.g.,
the quantum Langevin equation[122]. For this equilibrium state under large time evolution, the
diffusion has a non-negligible influence on system and produce the recurrences which occur in
a time scale larger that the relaxation time (i.e., the diffusion time is larger than the relaxation
time), and the recurrences period also depends on the transfer velocity of information.

10 Matrices Processing

The density matrices of Eqs.(14,15) can be represented by the Schmidt decomposition of
bipartite state

|ψ〉 =
R
∑

R

√

λR|JiR〉 ⊗ |JjR〉 (73)

where λR is the maximum eigenvalues of density matrix for each R. If we set the the maximum
rank is R, then it have

∑

R

R λR = 1 and (
∑

R

R

√
λR)

2 ≤ R, Definition[116] shows that the Schmidt

rank is just R under the condition R− 1 < (
∑

R

R

√
λR)

2 ≤ R. In the case of (
∑

R

R

√
λR)

2 < R,
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only the eighnvector which has maximum rank R is needed, that also explain why the singular
values decomposition reserved only the largest singular value (Eq.(12)). The set spaces S with
convex constrution always have SR ⊂ SR. In the zero-entanglement case, the square root of
eigenvalue of JJ ∗ has

√
λR = (V J V †)ij with another index j when (V J V †)ij is diagonal,

and in another expression is 〈Ai|σyA∗
j〉 = λRδij, where σy =

(

0 −i
i 0

)

and A is the matrix-

product state. Here we consider the spin flip in term σyA
∗
j , and it also has 〈Ai|σyA∗

j〉 =

Tr[(σyA
∗
j)

†Ai] = Tr[(AT
j σy)Ai] (not the scalar product). In such a flip in tilted state scheme[19]

we let the eigenvalue λi = eS
z
i , and A = eiθ

∑
i S

z
i , i.e., spin flip when the θ = π. It’s found that

∑

i e
2iθλi = 0 in the zero-entanglement case[123].

A prerequisite to satisfy this formula is the zero-entanglement, i.e., the two subsystem i
and j are separable (or distillable). The density matrix J here is assumed has the eigenvalue
λR and it diagonalized by matrix V when J is symmetry, and in this case, the eigenvalues
of JJ ∗ is non-negative. Assuming V is a m × n matrix with n orthonormal columns and
m < n, thus V acts periodic with period of square of number of column n. Let Σ is the
m × m diagonal matrix which made up of singular values of J , then its nuclear norm can
be expressed as ||J ||∗ = Tr(V ΣV T ). If here V is replaced by the matrix A which appear in
Eq.(71), then the trace norm of A which equals the sum of square root of eigenvalues

∑

i

√
λi

have ||A||Tr = Tr
√
AA† and ||A ⊗ A†||Tr = ||A||Tr · ||A†||Tr = ||A||2Tr. In normalized case with

〈ψ|ψ〉 = 1, the operator norm of A has the similar property with Hermitian conjugate matrices:
||A∗ ⊗ A||op = ||A||2op = 1. This corresponds to an absolute value of the maximal eigenvalue
which is normalized and it’s found nondegenerate for S = 1/2 Heisenberg model[57]. For

separable case,
∑

R

R λR ≤ 1 due to the convertibility and the decomposition of entangled state
into unentangled pure states in the case that the maximum eigenvalue is smaller than the sum
of rest eigenvalues[123], i.e., λ1 < λ2 + λ3 + · · ·λn (here set the i = 1, 2, · · ·, n). For pure state
we have

n− 1

n
≥ 1−

∑

i

λ2i ≥
4

n(n− 1)
(
∑

i<j

√

λiλj). (74)

A general bound of dimension of subspace is that the largest dimension of space is almost
di × dj and the smallest one is (di −R+ 1)(dj −R+ 1), and the dimension of these subspaces
is within this range, i.e., the rank R < R can be represented by the affine variety[68]. Since
a precondition of increase of the Schmidt rank is incresing the dimension of subspace, and the
degree of entanglement is also reaches maximally when it grows into the largest subspace, we
can obtain that in most case, the largest subsystem (which almost is full rank) has the almost
maximal entanglement, except for the pure state which is unmixed[116]. The largest subspace
forms the largest-probability set with the constants of motion which is proportional to the
dimension of the corresponding Hilbert space or projector onto its eigenvalues or its integer
powers of Hamiltonian[75].

Without losing general, for distillable state, the upper bound of entanglement entropy formed
by the logarithmic negativity[124] SN = ln||J Γ||Tr, where J Γ is the partial transpose of density
matrix J and the corresponds covariance matrix is γΓ = PγP with γ the covariance matric and
the diagonal matrix P = (−Ii) ⊕ Ij (I is the identities matrices). Let V the nonsingular and
skew-sysmetric column vector, and it’s real. Then we have V TJ V = J (i.e., J is diagonal), so

the nonincreasing ordered symplectic eigenvalues λΓ with symplectic matrix Ω =

(

0 Id
−Id 0

)

which describe the reduced Gaussian state [124, 125] has

ln||J Γ||Tr =
∑

i

ln(max[1, (λΓi )
−2]) ≤

∑

i

((λΓi )
−2 − 1), (75)
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while the normal eigenvalue of J is λi which equal to (λΓi )
2 (see Appendix.B for the detail).

11 Relaxation of Nonequilibrium System With Stochastic Dynam-

ical Variables

Since for mixed system, if the initial state is homogeneous, the second moments is conserved
and it prevent the system to relax to the thermal state[24], so the effective disentanglement is
impossible in this case, and therefore some microstates are inaccessible since the final state is
constrained by the conserved constants of motion no matter the system is integrable or not. Like
the integrable system which guided by the corresponding GGE with maximal entropy Sij =
−Tr(ρijlnρij), will reach nonthermal steady states and share the similar properties with the
prethermalization plateaus in the long-time limit[29], which also called prerelaxation in the time
evolution of GGE, and this has been founded in the isolated or open quantum system[37, 126],
while for the nonintegrable system, it’s thermalized directly[75]. In the inhomogeneous case
like most of the damping model, the conserved law is no more exist and then the thermal state
is achievable directly. The local minima free energy which separated by barriers in free energy
surface is connected along the steepest descent path in the scenario of discretized evolution[83]
and therefore updates the collective coordinates. This is a powerful way to obtain the symmetric
tensor in the flattened space macroscopically, and even the supersymmetry system with global
minimal potential energy. In these special points, the gradient of free energy as well as the
potential energy vanish, and the energy is rised by the little displacement of coordinates[118].

Defining Z as a collective variable with coordinate x, then for harmonic oscillators with mass
m, in the free energy surface, the distribution of Gaussians can be described by the biasing
potential which is guided by the difference of free energy E(Z)− EG(Z, τ)[127]

Vbias = w
∑

Gaussians

exp(−[Z(x)−Z(xG)]
2/2(δZ)2), (76)

where w and δZ are the height (amplitude) and width of the Gaussians and xG is the positon of
Gaussians, and in the limit of w → 0, it has

∫

dZe−βE(Z) = e−βEG(Z,τ). Such a biasing potential
is indeed a history-dependent term which appear in the non-Markovian dynamics equation and
as a biased estimator for the free energy, while the unbiased estimate require a Markovian
one[120]. An experiment completed recently[128] about the one-dimension Tomonage-Luttinger
liquid model detected the the Gaussians propagation, which is adjusted by microwave and along
the one-dimension trajectorys (“tubes”) and accompanied by a negative perturbation in the
time evolution of w and δZ. That also shows the stability in chaotic scenario. This biasing
potential is indeed a bias estimator of the quantum states with multiple phases, and we can
see that it follows the Gaussian decaying. Here the summation symbols is used due to the
discretized evolution. Note that this expression is for harmonic oscillators, i.e., the system
is linear response. While for anharmonicity oscillators, which produced by, .eg., the detuned
Gauusian laser[129, 130] (blue-shift or red-shift) or the (two-photon) Raman detuning[131],
this potential need to modified by adding some variational parameter which describing the
asymmetry (three-order term) or symmetry (quartic term) anharmonic[94, 132] to the exponent
part of Eq.(76). The coupling in this case is nonlinear, like the scenario in FPU theorem.
The free energy is Efree = −Vbias, and it’s govern by the force F = −∂GEfree[83]. After the
flatting process on free energy surface (for a intuitive schematic view, see, e.g., the Ref.[66]),
the change of the distribution makes the new Gaussains which govern by a new Hamiltonians,
and hence reach a new equilibrium states, but that can only happen in the inhomogeneous
situation. After the local minimums of difference of free energy were mostly eliminated, the
probability distribution is nearly uniform, and the remaining corrugations are independent of
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the E(Z) − EG(Z, τ). The action describing this dynamic of evolution in complex time scale
is (τ is the complex time here)

S(Z) =
m

2

∫ τ ′

τ

dτ [ ˙Z(τ))
2 − µ2Z2(τ)], (77)

where µ is the natural frequency. Note that for macroscopic model, the actions of harmonic
oscillators which are viewed as matter fields coupled with the reservoir or the external elec-
tric field is not stationary and therefore it belongs to the nonequilibrium dynamic, and the
corresponding kernel functions are also in a nonequilibrium form, (see Ref.[106]).

The correlation matrix ΓG which obey the Gaussian distribution is

ΓG(τ) = 〈Z(τ ′)Z(τ)〉G =
δZ
2
〈Ri(τ

′)Rj(τ)〉, (78)

where R is the coupling operators between the states with dissipation scenario (e.g., the reser-
voir), and the evolution is ΓG(τ) = e−τHGΓ(0). The coupling is fadeout in damping system
through this evolution. Then we have the action function

S(Z) =

∫ τ ′

τ

dτg(Z,Z(τ)), (79)

which contains the non-Markovian kernel g(Z,Z(τ)). In the classical limit approximately, the
harmonic motion can be described by

MZ̈ + sŻ = − d

dZ V (Z) + Fn(τ), (80)

where s is a friction parameter and s =M
∫ τ ′

τ
dτS(τ ′−τ) where S is the friction kernel, and Fn

is the noise force. Due to the Markovian noise which obeys the Markovian evolution and can
be well fitted to the master equation Eq.(33), we then need to replace the history-independent
potential term which mentioned above by the form of Eq.(78), i.e., taking the bath coupling R
as the noise sourse which is real and Gaussian, and then it has 〈Ri(t

′)Rj(t)〉 = δijδt′−t. That
is because that for the harmonic oscillator, using Wick theorem, the density matrix can be
diagonalized with a quadratic Gaussian potential (see Ref.[5]), and then the Green’s function
with infinite imaginary-time becomes[133]

G(Zi,Zj; τ) =

∫ Z(τ ′)

Z(τ)

Ds(t)exp(−Seff(Z(t))/~), (81)

where the Euclidean effective action is

Seff(Z(t)) =

∫ τ ′

τ

(
1

2
MŻ(t) + V (Z))dt−

∫ τ ′

τ

dtδ(Z − Z(t)) + V0 (82)

with V0 the time-independent potential. In this expression, the state in next time step depends
only on the state in this time, i.e., variables satisfy the Marcovian evolution, and more impor-
tantly, the contributions of noise in the imaginary axis is vanishing, that also match the real
noise sourse, so we only need to consider the noise in real part. Then the time derivative of Z
has the form

d

dt
Z = A(t) + B(t)Fn(t), (83)

with the 2d × 2d positive definite diffusion matrix D = BBT which is symmetry in Wigner
representation and both A and B are positive and real matrix. By the way, in this case, the
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quantum Fisher information matrix satisfies its saturation condition[134]. This Markovian s-
tochastic evolution can be expressed by the second-order Fokker-Planck equation in a stochastic
description

∂

∂t
E =

[

−
∑

i

∂

∂ZA(t) +
1

2

∑

ij

∂

∂Zi

∂

∂Zj

Dij

]

E (84)

where E is the free energy of the system influenced by the noise variables. Indeed this expression
for the anharmonic case is due to the truncation which discard the asymmetry or symmetry
anharmonic terms (see above). While in a probabilistic description, a Laplacian operator equals
to the second time-derivative of non-Markovian kernel which is negative definite is contained
in the Markovian form Fokker-Planck equation (see Ref.[120]).

Now that in macroscopic system the observables are usually represented by thermal states
directly since the error of statistical prediction is negligible[29]. We then investigate the rate
of variance of the statistical prediction of observable Pi which belongs to the canonical ensem-
ble, i.e., the relation to the decay rate of Liouvillean relaxation[135]. Writting its statistical
prediction as Tr(ρPi) where ρ is the canonical ensemble. As we discussed above, the damp-out
process is associate with the decoupling with the dissipation, and therefore we can also define
the Hamiltonian here as a damping spectrum of the observable, which been classified discussed
here for bosons and fermions, i.e., decompose the Pi into real part and imaginary part. Consider
a bath with space C

2d ⊗ C
2d, then for bosons, the communication relation is [bi, b

†
j] = δij and

for linear bath Hamiltonian which is in a quadratic form (even sector) is H = uTHbu where

Hb is symmetry, and for fermions [fi, f
†
j ]−1 = {fi, f †

j } = δij with Hamiltonian H = wTHfw
where Hf is antisymmetry, where u and w are real vectors. Since the real part of prediction
can be represented by the covariance matric[125] (γb)ij =

1
2
TrρPb where Pb = {ui, uj} and the

imaginary part (γf )ij =
i
2
TrρPf where Pf = [wi, wj], and here always have γb ≥ σy. Writting

the bath matrix asM =
∑

i li⊗ l
†
i with li the vector with dimension 2d and describing the bath

coupling, then we have[125, 36]
∂tγ = XTγ + γX − Y (85)

where for fermions it has X = 2ReM and Y = 4ImM ; while for bosons it has X = 2ImM and
Y = 4ReM . This Sylvester matrix equation also clarify the FDR.

Through this, the bulk-edge-coupling (bulk-edge-correspondence) type materials like the
topological insulators or topological superconductors with the quantum spin Hall effect, have
the full pairing gap inside the bulk and the gapless edge states which protected by the time-
reversal invariance in the edge[34] can decoupling with the bulk part, i.e., without dissipation
at the sample boundary[136] and the subspaces of edge and bulk will separated through the
long-enough time evolution (The closing of gap is due to the effect of off-diagonal term here
and often leads to the phase transition, e.g., which follows the power law decay with the system
size N in the a spinor condensate system[137]). For example, the chiral superconductor with
d+ id′ pairing phase[138] may with the broken time-reversal symmetry (it’s realizable by, e.g.,
applying a strong magnetic field[139]), or the non-Abelian statistical in the Majorana zero
model[140]. For most the bulk-edge-coupling type model which is the spinless fermions model,
the time evolution is presented in the Appendix.C.

We already know that the integrable system in the homogeneous phase can only relaxes to
the nonthermal steady state, but there are some models for which we can’t find the thermal-
ization (e.g., can only to the generalized canonical), like the soft-core bosons model (e.g., the
Mott insulator[38]), spinless fermions model, integrable Luttinger model[89], etc. This kind of
model can’t be effectively predicted by the form of Eq.(24). While for the models which nearly
integrable (like the Hubbard model) or nonintegrable, the expectation will relax to thermal
equilibrium finally, the resulting quasistationary state of this kind of model is nonthermal[30].
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The final state which not be thermalized is quasisteady due to the off-diagonal contribution.
But there are still some integrable system which have the features of thermalization for some
specific variables whose final state is described by the Gibbs ensemble, like the hard-core bosons
system[30, 141], so the integrablility is not the only criterion of the thermodynamic behavior,
the varied or conservative observables which have nonnegligible effect and their off-diagonal
contribution as well as the integrability broken (broken of integrals of motion[142])(see Ap-
pendix.C) are also important to consider. The required distance to the nonthermal steady
state is in an infinite time average, and the required distance away from integrable point for
thermalization to occur is infinitesimal[29], while for a nonintegrable system, the thermaliza-
tion will gradually (“smoothly”) broken when approaches to an integrable point[143] with an
infinite time scale.

12 Conclusion

This work mainly investigate the time evolution of quantum many-body system as well as
the thermodynamics of macroscopical system with the non-Markovian processes in the free-
energy surface for which the steepest descent is used to find the minimal coupling (similar
to the method of covariant derivatives). The condition of the presence of thermalization in
a relaxation process of quantum many-body system is discussed in this work as well as the
entropy and entanglement in the harmonic and anharmonic system. The main model of our
investigation is the non-isolated system and so that the degrees of freedom can be traced out
from the discussed canonical ensembles (or the microcanonical one), and therefore the ergodic
is suppressed, the detail investigation is presented above. Although the integrable system which
governed by the corresponding GGE keeps the expectation value of observables in initial state
while the chaotic one keeps the initial memory less, and it helps to understand the quenches
towards the stationary state in the ordered phase or disordered phase in thermodynamic limit
or scaling limit respectively, the required numerical computation is more demanding and the
eigenstate thermalization hypothesis is failure[143]. We also obtain that, the integrability is
not only affected by the constants of motion, but some other important considerable factors
which constitute the integrability breaking term (see Appendix.C). In applications, e.g., the
frequency-dependent noise which is induced by the current-current correlation in nonequilibrium
Josephson setup leads to the 4π period of the Josephson current, due to the existence of
Majorana bound states[144, 145]. However, such current-current correlation-induced noise will
be exponentially suppressed at low-temperature, e.g., lower than the superconducting critical
temperature. That also implies that the dissipation (which related to the effective mass of the
band gap[146, 147, 148, 149]) plays a important role during the quasiparticle transportation in
spintronics and valleytronics [150, 151, 152, 153, 154].

To investigate the approaching to Gaussian state with maximum local entropy within the
relaxation process, an estimator in terms of trace norm is presented in the Sec.8 which related to
the matrix method. The open quantum system is discussed deeply in the above sections, while
for a closed quantum system which begin with a pure state with Trρ2 = 1 (ρ is the square root
of eigenvalue of the density matrix), it never relax to the thermal state with Trρ2 < 1 which

corresponds to
∑

R

R λR ≤ 1 as discussed in Sec.10. For the diagonal Hamiltonian which makes
the observables tend to diagonal form with the infinite time average, it can be implemented by
the methods like Bogoliubov transformation and a fast relaxation to diagonal ensemble (reach
a quasisteady state) requires the system spectrum is nondegenerate[143] where we have exclude
the accidental degeneracies of diagonal ensemble. In this case, the eigenenergies is linear like
the one mentioned in Sec.4, and the globally observable follows the relation Eq.(126) in the
long-time limit. Note that such a nondegenerate will not be long-live due to the irregular
dispersion in boundaries or the degeneracies generated by the nonlinear waveguide.
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13 Appendix A : Deduction of β-function and the coupling in per-

turbed system

The β-function can be defined as β = µ ∂
∂µ
g = d

d(Inλ)
g, where lnλ = 1

2
µ2. When λ → +∞,

the g → 0[155]. Since the bare coupling gb is independent of the mass, so d
dµ
gb = 0, according

to the relation given in the Ref.[43]

µ
d

dµ
gb = (µ

∂

∂µ
+ µ

d

dµ
g
∂

∂g
)gb. (86)

We can deduce that −∂µgb = d
dµ
g ∂
∂g
gb 6= 0, according to the asymptotic series expansion which

given in the Ref.[43]

µ
d

dµ
gb = εgb − εg

∂

∂g
gb + (b3g

2 + b5g
4 + b7g

6 +O(g8))g
∂

∂g
gb, (87)

when the ε→ 0, i.e., dimension n→ nc,

µ
d

dµ
gb → µ

d

dµ
g
∂

∂g
gb. (88)

The coefficient of Eq.(7) is [54, 155]

β0 =
11

3
C

(2)
ij − 4

3
Tij

β1 =
34

3
(C

(2)
ij )2 − 20

3
C

(2)
ij Tij − 4C

(2)
F Tij

β2 =
2857

54
(C

(2)
ij )3 − 5033

162
C

(2)
ij Tij +

2925

864
C

(2)
F T 2

ij,

(89)

where C
(2)
ij is the quadratic Casimir operator acting on the adjacent nodes, which equals to

N for SU(N) system[155], C
(2)
F is the quadratic Casimir operator acting on fermions, and

has the relation with mass as 1
4
C

(2)
ij dim(Tij)=m[54, 155], where m is the number of fermion

multiplets[80]. With the increase of m, there will be a lot of novel nature in fermion stand
model which we don’t discuss here, for a reference can see the Ref.[156].

According to the supersymmetry SU(3) Yang-Mills theory in Ref.[157, 158], the quadratic

Casimir operator which have C
(2)
ij = F µνFµν where F

µν is the field strength tensor or the SU(N)
generate meta (here is the group generator of SU(3)) which have the below relation with the
coupling g

β(g)

g
F F̃ = −11

4
∂µ(ψ

†(x)γµγ5ψ(x)), (90)

where FF̃ = εµνρσF
µνF ρσ, εµνρσ is the Levi-Civita symbol. Note that this relation is correct

for l-loop order where l ≥ 2 since it’s gauge-independent for β(g) in one-loop order. It’s easy
to obtain that

FF̃ = −11

4

g

β(g)
∂µ(ψ

†(x)γµγ5ψ(x)),

C
(2)
ij =

16π2

g
[− 8

33
(
β(g)

g
)2 − 1

3

β(g)

g
],

(91)

where β(g)
g

in SU(3) system obeys [157].

β(g)

g
=

−3C
(2)
ij

16π2 − 2C
(2)
ij

=
−9

16π2 − 6
, (92)

here utilize the virtue of invariance of γ5 as Λ 1

2
γ5Λ

−1
1

2

= γ5.
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14 Appendix B : The Supplement of Covariance Matrix

Firstly we consider the Minkowski space function[159]

Z = Tre−iHt =

∫

DAe−iS(t), (93)

where A is the vector potential in quantum field, and the partition function Z(β) = Z(−iβ) =
Tre−βH . We consider the canonical ensemble here as

ρ(β) =
e−βH

Z(β)
. (94)

We take the Hamiltonian of components of decomposed covariance matrix γ = (H1 ⊕ H2)/2,
where H1 = V −1/2 and H2 = V 1/2 and V is the potential matrix, into the blocks of 1/β. Then
the free energy in entropy ensemble is[160]

E(β) = TrH2(β)

=
∑

lnγ(β)

=
∑

ln
H1(β)⊕H2(β)

2

(95)

where H1(β) = V −1/2[Id + 2(exp(βH2) − Id)
−1] and H2(β) = V 1/2[Id + 2(exp(βH2) − Id)

−1].
Then the Eq.(75) can be represented as

ln||J Γ||Tr =
∑

i

ln(max[1, λ−1
i ]) ≤ ||λ−1

i − 1||Tr ≤ 2(eβH2 − Id)
−1

(96)

here eβH2 = −Ω−1/2γΓσyγ
Γ(−Ω)1/2 is the blocks of H2 and indeed it play a key role in the

coupling between the target region with the rest. The maximal l1-norm[161] of (eβH2 − Id) is
linear bounded[124] by the size of target region, (linear with the number of degrees of freedom
of boundary of ρ), but it’s independent of size of the total size (contain the nontarget-region).

For a explicit example, we take the equation of stochastic-description dynamics (Eq.(83))
into consider and let the parameters A, B, F be the matrices. For quantitative analysis, we

form a new potential matrix Q =

(

A B
B A

)

. Through the mathematical method, we have[160]

S−1

(

A B
B A

)

S = (A+BF )⊕ (A− BF ) (97)

where S = (P + F )/
√
2 and S−1 = S, and we have A+ BF = (A− BF )−1. The Hamiltonian

which describe the conserved observable becomes

H = Tr(F InQ) = Tr(In
A+BF

A− BF
), (98)

then the determinant det[A+ BF ] = exp(−pTr(F InQ)), where p is the probability within the
canonical ensemble ρ =

∑

p|ψ〉〈ψ|. Through Jacobi’s formula, we have

∂tdet[A+BF ] = Tr(adj[A + BF] · ∂t[A + BF])

= exp(−pTr(F InQ)) · ∂tQ,
(99)

where adj[·] denotes the adjoint matrix.
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15 Appendix C : The Perturbation Theory Applied to Diagonal-

ized Ising Chain Hamiltonian and The Discuss of Off-Diagonal

Contribution Term

We next taking the Ising chain model H = −J∑N−2
i=0 σx

i σ
y
i+1 − gJ

∑N−2
i=0 σz

i with quenching
of magnetic field g0 → g, as an example to detect the effect of perturbation theory in diago-
nalization. For fermion quasiparticles with quasimomentum[162] which have even parity and
even fermion number Neven, they obey the antiperiodic boundary conditions ψ(r+N) = −ψ(r)
with essential vectors k = π(2n − 1)/N (n is a integer); while for the odd parity one which
have a odd fermion number Nodd, they obey the periodic boundary conditions ψ(r+N) = ψ(r)
with essential vectors k′ = 2πn/N . Note that these two sectors can well describe the stationary
phase-space probability distribution by the WKB spectrum[101, 163]. Then the WJ fermions
c†r satisfy

σ+
r =

σx
r′ + iσy

r

2
= c†re

iπN , (100)

σ−
r =

σx
r′ − iσy

r

2
= c†re

iπN , (101)

with r and r′ satisfy the anticommute relation {cr, cr′} = δr,r′ [164]. We introduce the Guassian
white noise to this in this model, then the conserved observables follow the Guassian distribution
after the quenching, which with the Gaussian amplitude ω = 1/(δZ

√
2π) (see Eq.(76)).

For the currents which is proportional to the diagonalization[121], the antiperiodic boundary
conditions which also called the Neveu-Schwarz sector[87] corresponds to the left current J c

L,
and the periodic boundary conditions corresponds to the right current J c

R, which are

J c
R(k) =

∑

k

ψ†
R(k + k′)ψR(k

′) + ψ†
R(k + k′)ψ†

R(k
′) + H.c. (102)

J c
L(k

′) =
∑

k′

ψ†
L(k + k′)ψL(k) + ψ†

L(k + k′)ψ†
L(k) + H.c. (103)

The lagerest current is appear in the ground state, i.e., the J c(0), and the net current Jnet =
NR −NL which is conserved. The observable A in long-time limit has

lim
t→∞

〈ψ(t)|A|ψ(t)〉 = lim
t→∞

〈ψR(t)|A|ψR(t)〉+ 〈ψL(t)|A|ψL(t)〉
2

, (104)

and
〈ψR(t)|ψR(t)〉
〈ψL(t)|ψL(t)〉

= 1 +O(e−nt), (105)

where n is a constant associate with the Jnet, i.e., the wave function in the pictures of left
current and right current are nearly equivalence if Jnet is small enough.

Mapping the fermi field into the Fourier space for simplicity through the transformation
σz
r = 1− 2c†rcr and σx

r = −
∏r−1

r′=0(1− 2c†r′cr′)(cr + c†r), we have ψr(k) =
1√
N

∑

k ψke
ikr for even

parity, and ψr(k
′) = 1√

N

∑

k′ ψk′e
ik′r for odd parity. We then obtain the quadratic Hamiltonian

(but no diagonalized)

H = 2
∑

k>0

c
†
kHkck, (106)

where Nambu vector c
†
k =

(

c†k
c−k

)

, and Hk = H0 + R(t, k)σz where R(t, k)σz is the term

associate to the noise and H0 is the Hamiltonian without the noise which is

H0 =

(

2J(g − cosk) −2Jisink
2Jisink −2J(g − cosk)

)

(107)
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To make the Hamiltonian diagonal in a nonperturbative treatment, we use the Bogoliubov
transformation (rotation) to obtain the expression of Bogoliubov quasiparticles with Bogoliubov
angle θ(k) (assuming the lattice spacing ā = 1)

c(k) = cosθ(k)c0(k) + isinθ(k)c†0(−k), (108)

c†(k) = isinθ(k)c0(−k) + cosθ(k)c†0(k), (109)

with the gap ∆ = ǫ0 = 2J |1− g| which vanish in the phase transition point (quantum critical
point kc=1) where the interactions of quasiparticle become more effective. The excitation
probability of quasiparticles becomes 〈ψ(0)|c†(k)c(k)|ψ(0)〉 = tan2[(θ(k) − θ(0))/2] and obeys
the nonthermal distribution. When g ≫ 1, the ground state is strictly a paramagnetic, while
when g ≪ 1, the ground states are two degenerate ferromagnetic. If we ignore the noise term,
the diagonalized Hamiltonian after the transformation is

H0 = 2
∑

k

ǫk(c
†
0(k)c0(k)− c0(−k)c†0(−k)− 1), (110)

where the linear dispersion ǫk dependents on the H0, and ǫk =
√

|H0| = 2J
√

g2 − 2gcosk + 1.
This a noninteracting Hamiltonian and has the accidental degeneracies due to the periodic
dispersion which has being mentioned above. This procedure is also available for the phonon
field operators, whose Hamiltonian can be exactly diagonalized in harmonic-oscillator[89, 165].
If we consider the noise term, the density matrix of diagonalized Hamiltonian which satisfy the
master equation (Eq.(33)) can be written as

J (k) =

(

c†0(k)c0(k) c†0(k)c
†
0(−k)

c0(−k)c0(k) c0(−k)c†0(−k)

)

, (111)

where the two elements in the main diagonal stands for the number of levels in momentum
space which is invariant under the time evolution, and the two elements in the vice diagonal
describe the coherence which will decay exponentially under time evolution and finally lead
the system to the mixed state with decoherence superposition. For example, we denote the
element c0(−k)c0(k) as c10, then c10(t) = e−Ktc10(0), i.e., it vanishes when t≫ 1/K, this result
is obey the thermal Glauber dynamics[37]. So it has ∂tJ (k) 6= 0. Base on the Bogoliubov
transformation introduced above, the initial state before the quench can be written as[73]

|ψ(g0)〉 = N
∏

k,k′>0

[1 + itan∆θ c†(k)c†(−k)]|ψ(g)〉, (112)

where the difference of Bogoliubov angle ∆θ(k) = θ(k; g)− θ(k; g0) for the left current regime
or ∆θ(k) = θ(k′; g)− θ(k′; g0) for right current regime, and N = exp[−1

2

∑

k,k′>0 ln(1+∆θ(k))].

More parameterized, the difference of Bogoliubov angle ∆θ(k) has[87]

cos∆θ(k) =
ǫ2k(g0g)

ǫk(g0)ǫk(g)
, (113)

where ǫk(g0g) = 2J
√

g0g − (g0 + g)cosk + 1.
Since the WJ fermions is exist here, it’s spinless and therefore the thermalization can’t be

found in this model, which it’s similar to the one mentioned in the Ref.[30]. For the setups of
model mentioned in Sec.10 which have a damping model with damping spectrum, the result
is different with what disscussed above. In integrable case for this Majorana fermions setup,
the Hamiltonian can be simplified as H = −iPf (iγL + γR) where γ are the Majorana models
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and Pf is the hopping between nearest-neighbor fermions. The Majorana model in the edge of
sample is nonlocal and decoherence, the total edge localized model is

cM(k) =
1

2
(iγL(k) + γR(k)), (114)

i.e., the conserved currents couples to the Majorana models. This combination process cost
energy 2Pf and form a dissipative gap with the bulk (this gap requires that the on-site in-
teraction U < 2Pf [35]). Since the damping feature, the bulk part of density matrix (not
the Eq.(111)) decay with the time evolution, and its time derivative has the same form with
Eq.(85), while the edge part is not, i.e., both the main diagonal and vice diagonal are decay
with time exponentially, so the final state becomes a pure state (J = |ψ〉|〈ψ|) with coherence
superposition (in a similar way to Eq.(112)).

In perturbation theory, with the variables driven by time-dependent white noise, the correla-
tion matrix becomes Γ(t) = K

2
〈Ri(t

′)Rj(t)〉 = K
2
δijδt′−t, i.e., the coupling strength K is associate

with the dephasing effect of noise which accelerate the relaxation in a time scale of order 1/K[37]
while the diverging length scale is 1/∆. We take the approximation H = H0 + gH1, where
H0 =

∑

k ǫkc
†(k)c(k) and H1 =

∑

k
δk
2
c†(k)c†(k)c(k)c(k) where H1 is second quantized and δk is

a nonlinear two-body interaction potential unlike the linear eigenenergy ǫk. Then we introduce
the anti-Hermitian operator s as s = gs1+

1
2
g2s2+O(g3) where g is time-dependent parameter

and diagonalize the Hamiltonian through canonical transformation have been presented in the
Ref.[29]

Hd = H0 + gH
(1)
d + g2H

(2)
d +O(g3)

= H0 + g(H1 + [s1, H0]) + g2(
1

2
[s2, H0] + [s1, H1] +

1

2
[s1, [s1, H0]]) +O(g3)

(115)

then the conserved observable Pi have [Hd, Pi] = O(g3). In this way, the diagonalized quasi-
particles are c†(k, t) = eiHdtc†(k)e−iHdt and c(k, t) = eiHdtc(k)e−iHdt. In the range of 1/|g| ≪
time scale ≪ 1/g2 [29], the pure state have the same expectation value with the mixed state,
i.e., the main diagonal and vice diagonal of diagonalized Hamiltonians’ density matrix have the
same degree of decaying.

In the case of g2 ≪ 1, the s can be viewed as gs1, then since Hd(t) = egs1He−gs1 , we obtain

d

dg
Hd(t) = egs1 [s1, H]e−gs1 , (116)

d2

dg2
Hd(t) = egs1 [s1, [s1, H]]e−gs1 , (117)

· · ·
then we further obtain

d

dg
Hd(t) = es[

s

g
,H]e−s, (118)

d2

dg2
Hd(t) = es[

s

g
, [
s

g
,H]]e−s, (119)

· · ·
For a globally conserved observable A =

∏

i Pαi
, apply Hd to it with the GGE average, we

have[39]

〈A〉GGE =
∑

α1···αn

Ãα1···αn

n
∏

i=1

〈Pαi
〉GGE, (120)
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where Ãα1···αn
is the perturbation-averaged matrix elements which is utilized to diagonalize the

Pαi
here and it have the property of

〈A〉GGE = 〈
n
∏

i=1

Pαi
〉GGE =

n
∏

i=1

〈Pαi
〉GGE = 〈

n
∏

i=1

Pαi
〉0 =

n
∏

i=1

〈Pαi
〉0 +O(g3) (121)

we have[29]
〈A(t)〉 = 〈ψ(0)|eiHtFe−iHt|ψ(0)〉

= 〈ψ(0)|e−seiHdtesFe−se−iHdtes|ψ(0)〉,
(122)

which is diagonalized, and with s(t) = eiHdtse−iHdt. This transformation uses the formula eiHt =

e−seiHdtes, we define the e−seiHdtes = ee
R−s

eiHdt where the real linear map R−s := ad−s[166],
and have[167]

−s · (iHdt) = −s+ R−s(iHdt)

1− eR−s
, (123)

then it’s easy to obtain

In(e−seiHdt) ≈ −s+ s−1eR−ss

eR−s − 1
. (124)

A estimator for the integrability breaking is given by the Ref.[142] that adding the integra-
bility broken term into the expression of observable

A(t) ≈ µAinitial + (1− µ)Athermal. (125)

The system is completely integrable when µ = 1, and the system expectation value is the same
as the initial one in this case, and it’s different from the thermal expectation value of micro-
canonical ensemble in completely chaotic case (nonintegrable), which can be well described by
the standard statistical mechanics[143]. The latter case appear when µ≪ 1 and it average over
the initial states, and leads to the thermal state, 〈ψ(0)|Athermal|ψ(0)〉 = 〈ψ(t)|Athermal|ψ(t)〉,
all these eigenstates are within the relevant energy windows with different weight[77]. That
allow the precise prediction for the thermal state in long-time limit with the energy close to
the initial one. So the thermalization require a large number of coarse-grained observables[39].
As predicted in the classical system by KAM theorem, it’s a crossover of regular and chaotic
regime[142], and the achievement of thermalization require enough integrability breaking (oth-
erwise the ergodicity is ineffective and the thermalization is suppressed) and a long-time process
(∼ 1/g3 in our limit), or e.g., an infinite time which average to the diagonal ensemble and then
fluctuate around it in the latter time[143], which can be shown as (not consider the possible
degeneracies here)

〈A(t)〉 = lim
t→∞

1

t

∫ t

0

dtTr(Aρ(t)) = 〈ψ(t)|A|ψ(t)〉diag

=
∑

α

|〈α|ψ(0)〉|2〈α|A|α〉,
(126)

where |α〉 =
∑

b[(|b〉〈b|gH1|α〉)/(Eα − Eb)]. This equation gives the long-time average, and
keeps the diagonal term only. This long-time average will equal to the GGE expectation value
or the one which dominated by the conserved Pi. For Eq.(122), when the state ρ which can be
described by the Hamiltonian H = H0+ gH1 is nondiagonal while the observable A is diagonal
(i.e., [A,Hd] = 0), it becomes[29]

〈A(t)〉 = −〈ψ(0)|(s(t)− s)A(s(t)− s)|ψ(0)〉+O(g3)

= −2(〈ψ(0)|sAs|ψ(0)〉 − Re〈ψ(0)|sAs(t)|ψ(0)〉), (127)
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where the term −Re〈ψ(0)|sAs(t)|ψ(0)〉 is due to the off-diagonal contribution:

−Re〈a|sAs(t)|a〉 = Re
∑

b

|〈a|gH1|b〉|
(Ea − Eb)2

〈b|A|b〉e−i(Ea−Eb)t +O(g3), (128)

where we simplify the initial state ψ(0) as a and the quenched state ψ(t) (t > 0) as b. But in
the case of both ρ and A are off-diagonal, this off-diagonal contribution term becomes

−2Re
∑

b

(|〈a|gH1|a〉| − |〈a|gH1|b〉| − |〈b|gH1|b〉|)2
(Ea − Eb)2

〈a|A|b〉e−i(Ea−Eb)t +O(g3). (129)

While the diagonalized state is

ρdiag(|b〉) =
∑

a

Paρ0Pa, (130)

where the prejector Pa = |a〉〈a| projects ρ0 onto the subspace of the initial state |a〉.
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16 Tables

Table.A:

Model Time scale of relaxation Period of collapse and revival Ref(s).

Falicov-Kimball ~/bandwidth h/U§ [111]

Bose-Hubbard 1/P h/U [38]

Spin glasses macroscopical and with a very broad range - [168],[169]

Tomonaga-Luttinger 2∼3 orders of time h/J (J is the coupling of nearest-neighbor) * [5],[30]

Hubbard ρ−1
F U−2 ∼ ρ−3

F U−4† - [170]

One-dimension hard core bosons 1/Pf
‡ h/U [143],[30]

* Here taking the decaying of time derivative of initial Hamiltonian as the criterion of relaxation.
§ h is the Planck constant and U is the strength of nearest interaction (The belows are also follow this).
† ρF is the density of states at the Fermi level.
‡ Pf is the hopping of finial state after quench.
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17 Figures

Fig.1
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Figure 1: (Color online)β(g) as a function of g in SU(3) system (i.e. C
(2)
ij = 3 (see Appendix.A) with the number

of fermion multiplets m = 0, 1, 2, 3, 5, 8, 10, 15, 20, i.e., the 0-plet, 1-plet,· · ·, 20-plet fermion configration.
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Fig.2
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Figure 2: (Color online) (a) Energy difference between the excited state and initial state as a function of
staggered magnetic field hs for different dimensions of matrix. (b) Probability of excitation Pex as a function
of temperature for different dimensions.
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Fig.3

Figure 3: (Color online)(a)Inverse spin correlation length (square) and spin correlation (triangle) for S = 1 Ising
spin chain at different site i. (b)Inverse spin correlation length and spin correlation for S = 1/2 Heisenberg spin
chain at different site i for different J2. The J1 here is setted as 0.7.
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Fig.4
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Figure 4: (Color online)Spin correlation for S = 1/2 spin chain as a function of temperature for different
next-nearest neighbor coupling J2.
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Fig.5
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Figure 5: Spin correlation for S = 1 Ising spin chain and S = 1/2 Heisenberg chain as a function of temperature.
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Fig.6

Figure 6: (left) Spin correlation as a function of temperature by the method of Bethe ansantz; (right) Comparison
of the results of spin correlation under low temperature between Bethe ansatz and renormalization group (RG).
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Figure 7: (Color online)Graph of Eq.(47) with phase α = 1, 2, 3. It’s obviously to see that the contours is
bounded by a power function.
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Fig.8
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Figure 8: The graphs of 〈n2(t)〉 as a function of t (Eq.(49)). The reduced coupling gred = 0.01, 0.1, 1, 1.5, 2 from
(a) to (e), respectively.
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Fig.9
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Figure 9: The large time behavior of 〈n2(t)〉 with coupling gred = 0.1, 0.05, 0.01, 0.001 from left to right (Eq.50).
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Fig.10
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Figure 10: (Color online) Kinetic energy of 1/r Hubbard chain as a function of U with different n and bandwidth
W = 1/2, 1, 4. The bandwidth-dependent hopping constants of 1/r Hubbard chain as a function of distance is
shown in the inset.
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Fig.11

Figure 11: (Color online) Double occupation for half-filling Mott insulator dhf (t) quenches from U = 0 to U
(a) and from ∞ to U (b). The insets show the enlarged views of the dhf (t) for quenches to U = 1.
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Fig.12

Figure 12: Double occupation for quenches from 0 to critical value Uc (a) and from ∞ to Uc. The top insets show
the enlarge views on short-time scale, while the bottom insets show the enlarge views on large-time behavior.
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Fig.13

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5
 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

di
sp

er
si

on
 re

la
tio

n

k
0 1 2 3 4 5 6

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

k

 lowest
 upper
 ground state

Figure 13: (left)The dispersion relation in k space with different regulatory paramater (0 to 1 from bottom to
the upper); (right)The upper, lowest, and ground state energy in a same space according to Ref.[57].
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Figure 14: (Color online) Correlations 〈b0b†r〉 as a function of distance r for different quench of dispersion rela-
tions. The curves with different colors from outside to inside corresponds to κ1 to κ2,κ2 to κ3,κ4 to κ5, κ6 to κ7,
and κ7 to κ8, respectively. The dispersion relations are setted as κ1 = 0.191820018, κ2 = 0.331662479, κ3 =
0.45825757, κ4 = 0.5, κ5 = 0.619656837, κ6 = 0.866025404, κ7 = 1.118033989, κ8 = 1.322875656.
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