
J
H
E
P
0
4
(
2
0
1
9
)
0
8
7

Published for SISSA by Springer

Received: November 7, 2018

Revised: February 13, 2019

Accepted: April 8, 2019

Published: April 11, 2019

Time evolution of complexity: a critique of three

methods

Tibra Ali,a Arpan Bhattacharyya,b S. Shajidul Haque,c Eugene H. Kimc and

Nathan Moynihand

aPerimeter Institute,

31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada
bCenter for Gravitational Physics, Yukawa Institute for Theoretical Physics (YITP),

Kyoto University,

Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
cDepartment of Physics, University of Windsor,

401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
dThe Laboratory for Quantum Gravity & Strings,

Department of Mathematics & Applied Mathematics, University of Cape Town,

Private Bag, Rondebosch, 7701, South Africa

E-mail: tali@perimeterinstitute.ca, bhattacharyya.arpan@yahoo.com,

shajid.haque@uwindsor.ca, ehkim@uwindsor.ca, nathanmoynihan@gmail.com

Abstract: In this work, we propose a testing procedure to distinguish between the differ-

ent approaches for computing complexity. Our test does not require a direct comparison

between the approaches and thus avoids the issue of choice of gates, basis, etc. The pro-

posed testing procedure employs the information-theoretic measures Loschmidt echo and

Fidelity; the idea is to investigate the sensitivity of the complexity (derived from the dif-

ferent approaches) to the evolution of states. We discover that only circuit complexity

obtained directly from the wave function is sensitive to time evolution, leaving us to claim

that it surpasses the other approaches. We also demonstrate that circuit complexity dis-

plays a universal behaviour — the complexity is proportional to the number of distinct

Hamiltonian evolutions that act on a reference state. Due to this fact, for a given number

of Hamiltonians, we can always find the combination of states that provides the maximum

complexity; consequently, other combinations involving a smaller number of evolutions will

have less than maximum complexity and, hence, will have resources. Finally, we explore

the evolution of complexity in non-local theories; we demonstrate the growth of complexity

is sustained over a longer period of time as compared to a local theory.

Keywords: Effective Field Theories, Lattice Quantum Field Theory, AdS-CFT Corre-

spondence, Black Holes in String Theory

ArXiv ePrint: 1810.02734

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP04(2019)087

mailto:tali@perimeterinstitute.ca
mailto:bhattacharyya.arpan@yahoo.com
mailto:shajid.haque@uwindsor.ca
mailto:ehkim@uwindsor.ca
mailto:nathanmoynihan@gmail.com
https://arxiv.org/abs/1810.02734
https://doi.org/10.1007/JHEP04(2019)087


J
H
E
P
0
4
(
2
0
1
9
)
0
8
7

Contents

1 Introduction 1

2 The model and quench protocol 5

3 Complexity 6

3.1 Complexity from Fubini-Study 7

3.2 Circuit complexity á la Nielsen 10
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1 Introduction

Recent progress in the fields of quantum information and condensed matter have shed light

on the inner-workings of holographic duality (AdS/CFT duality). It is becoming evident

that the entanglement entropy (EE) defined in the boundary conformal field theory (CFT)

is related to the emergence of the bulk geometry; this relationship becomes more stimu-

lating in the context of black hole physics [1–4].1 In the black hole setting, an important

question is, “What is the appropriate observable which can probe physics behind the hori-

zon?” It was observed that although the EE saturates as the black hole thermalizes [5],

the size of the Einstein-Rosen bridge (of an eternal AdS black hole) continues to increase.

Based on this observation, Susskind et al. proposed that the quantity in the CFT that

continues to increase after thermalization is the complexity [6–8]. Two interesting propos-

als were made in the context of AdS/CFT [6–8]. The first is ‘complexity equals volume’

(CV conjecture) — the volume is that of a maximal co-dimension-one bulk surface extend-

ing to the boundary of AdS space time, which can be chosen to asymptote to a specific

1Amassive literature exists in this context; the reader is encouraged to consult ref. [4] for a comprehensive

list of references.
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time-slice where the boundary state resides. The second is ‘complexity equals action’ (CA

conjecture) — one evaluates the bulk action (with suitable boundary and counter terms

to make the variational principle well defined) on the so-called Wheeler-DeWitt (WDW)

patch. Both these objects probe physics behind the horizon and grow with time even after

thermalization. Both of these proposals have their shortcomings, and many recent studies

have tested these proposals in various settings [9–53].

Given its importance in holography, it is crucial to be able to quantify complexity

in quantum field theory; recently, some progress has been made in this direction [54–69].

Computational complexity (or circuit complexity in our case) is an important concept

for quantum information theory [70–79] — given a suitable basis, the complexity is the

minimum number of operations needed to perform a desired task. It is of central importance

to be able to quantify this, since it helps distinguish the quantum nature of an algorithm

from its classical counterpart; this identifies if a proposed quantum computer is indeed a

true quantum computer [80–83].2 The study of circuit complexity in quantum field theory

is in its infancy; only a few cases have been studied to date and much remains unexplored.

In [84–86], it was shown that simulation of several field theoretic observables on a quantum

computer has an exponential advantage over classical algorithms which use perturbative

Feynman diagrams. For our purpose, we will adhere to the notion of complexity associated

with a quantum circuit — the task is to prepare the ‘target state’ (for us, this is the time

evolved ground state of some Hamiltonian) by a quantum circuit starting from the suitable

‘reference state’, and make this circuit as efficient as possible. In [87–89], a geometric

approach for circuit complexity was put forward; this was studied in ref. [54] for free

scalar field theory. Several methods have been proposed/employed to quantify/compute

complexity in quantum field theory [54, 55, 60]. A common feature of these computations is

that they all geometrize the quantity. Interestingly, the similarities and differences between

these approaches are far from being understood. In this paper, we make some progress in

this direction.

Note that one of the key motivations of Susskind et al. for exploring complexity was

that it does not grow quickly with time like the entanglement entropy. The growth sus-

tains over a longer period of time compared to the case of entanglement entropy [7, 24],

and it continues to grow even after the boundary has reached thermal equilibrium until

finally saturating at some later time. In the context of holography, the time evolution

of complexity has been studied for various types of eternal AdS black holes in different

dimensions using both using both the CA and CV conjectures. Ref. [29] observed that

the complexity obtained from CV conjecture monotonically increases with time and then

saturates to a (positive) constant, which is reminiscent of the Lloyd bound [73]. On the

other hand, complexity obtained using the CA conjecture for an uncharged black hole re-

mains constant at early times, decreases briefly, and then exhibits a positive growth; at

large times, the complexity saturates, but it does so from above, thus violating the Lloyd

bound [29]. In ref. [20], a quantity dubbed ‘complexity of formation‘ was defined and stud-

2This list is by no means complete. Interested readers are encouraged to check further references men-

tioned in these articles and their citations.
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ied in the context of holography. This quantity is the difference between the complexity

associated with the eternal black hole background and the complexity of the vacuum AdS

spacetime. In [20], it was observed that it is divergent for the extremal black hole and a

possible interpretation is given based on the fact that states with finite temperature and

chemical potential are infinitely more complex than the vacuum state. Additionally, the

time evolution of complexity has been studied in the context of collapsing black holes (eter-

nal AdS-Vaidya black hole) using both the CA and CV conjectures [41, 45]. Depending

on the energy of a collapsing shell, one observes different types of growth patterns for the

complexity at early times [45]. The evolution of complexity has been studied for various

other interesting holographic scenarios [16–18, 24, 33–35, 38, 40, 42, 49, 50, 68]. Among

these is a proposal to study complexity and its evolution for a subsystem at the bound-

ary [42] which extends the notion of complexity for mixed states. A quantity named the

‘complexity of purification’ has been proposed as a diagnostic. While these developments

are certainly interesting, they are still at their early stages and a proper field theoretic

interpretation is currently outstanding.

A natural place to begin investigating the evolution of complexity is in simple QFTs;

some studies have been made in this regard. In [61, 64], the time evolution of complexity

was studied for free scalar field theory after a quench, and a comparison was made with the

evolution of the EE. In [68, 69], this computation has been extended for fermionic systems.

In [64], the authors also computed the ‘complexity of purification’ for this model. In [67],

the nature of complexity evolution from an axiomatic point of view has been discussed.

In [57], complexity evolution for thermofield double states in CFTs has been studied. In

this work, we consider simple models (free theories) in the hope that this will pave the way

forward to study interacting QFTs (appropriate for understanding holography). Second,

we would like to differentiate between the various methods for computing complexity in

this setup. Although our proposal is general, for explicit illustration we will use a generic

bosonic lattice model which corresponds to a plethora of interesting QFTs in the continuum

limit. We compare the three most common methods of computing complexity, namely (1)

the Fubini-Study approach [55], (2) the covariance matrix method [60] and (3) circuit com-

plexity (going directly at the wavefunction) [54]. We show that only circuit complexity is

sensitive to our diagnostic. We further discover/demonstrate a generic pattern of this sen-

sitivity, which hints at interesting physics that might be useful for quantum computation.

In [90–94], an alternative method of computing complexity using path integral approach

has been proposed; in [95] its implications for holography were further motivated. We

will not consider this path integral approach, but will scrutinize the other three methods

discussed above.

To establish our testing method, we will use two common information theoretic mea-

sures — the Loschmidt echo and fidelity. Generally speaking, the Loschmidt echo is de-

fined as the overlap between a reference state and a forward and then backward evolved

state. One starts with a reference state |ψ0〉, which is first forward evolved by some

Hamiltonian followed by a backward evolution by a slightly different Hamiltonian (|ψ2〉 =
exp(iH ′

1t) exp(−iH1t)|ψ0〉). The Loschmidt echo is defined as [96]

FLE = |〈ψ0|ψ2〉| . (1.1)

– 3 –
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This overlap can be thought of as a distance (in state space) between two states. Another

way to represent the above overlap is the following

F̃ = |〈ψ̃1|ψ1〉|, (1.2)

where, |ψ1〉 = exp(−iH1t)|ψ0〉 and |ψ̃1〉 = exp(−iH ′
1)|ψ0〉.

Clearly, these two quantities have the same value, thereby making it insensitive to the

details of the evolution of states — they only depend on the Hamiltonians H1 and H ′
1

and the reference state |ψ0〉 [24]. These overlaps contain important physical information

about the underlying system. In this paper we investigate if there is any difference between

FLE and F̃ . More explicitly, we address the question — is there any alternative notion of

distance that can differentiate between the states involved in these overlaps? Complexity

can be a natural candidate for this. To incorporate complexity with this quest we develop

a test and then check the different methods of complexities. One of our main results is

that circuit complexity from Nielsen method can give us the desired quantity. Then we

generalize our result for states with multiple evolutions and find a generic property that

might be useful from the perspective of quantum computation — one can compute one

quantity with less complexity over the other; this is the quantity which can be simulated

more efficiently by a quantum computer.

To quantify the complexity associated with the states involved in FLE and F̃ , we will

use the ‘bra’ and ‘ket’ of the overlap as the reference and target states. Then we compute the

complexities associated with these states for both FLE and F̃ by three methods discussed

above. The strength of this method is that we do not need to do a direct comparison

between the approaches. Rather, we are exploring the evolution of complexities associates

with the states in FLE and F̃ and checking if the evolutions are identical or not.

Computing complexity using the Fubini-Study approach amounts to first identify the

target state as some kind of coherent state, and then finding the geodesic (connecting the

target and the reference state) distance on this manifold induced by this family of states.

On the other hand, both the circuit complexity and the covariance matrix method employ

the geometric method pioneered by Nielsen [87–89] and translated in the context of QFT

by [54], with only difference being, for the first case one uses directly the wave function and

the for the second case one uses covariance matrix (appropriate only for Gaussian states).

We will discuss them in detail in the later sections. We find that only the circuit complexity

gives us the desired difference between the complexities defined for the states coming from

the Loschmidt echo with those of fidelity; in that sense, circuit complexity is a better

approach. Moreover, complexity from the Loschmidt echo is always larger. We extend

this idea for an arbitrary number of evolutions and show that the number of evolutions

performed on one state (ket) dictates the complexity between a pair of states, and the state

with the highest number of evolutions will have the highest complexity. This implies that

if one is interested in overlap measurement between two states, Fidelity which corresponds

to the smallest number of evolutions on one state will always be the easiest choice since

it has the least complexity. The other two methods are unable to distinguish between

the complexities of these two different quantities, thereby demonstrating the advantage of

circuit complexity approach over these two methods.
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The organization of the paper is as follows. In section 2 we discuss our model and

set up the quench protocol. In section 3 we discuss the computation of the complexity for

the time evolved ground state of our model by three different methods. In section 4 we

explain our testing procedure and apply this to different methods of complexities. In the

following section we then generalize our arguments and discuss the implications in detail.

In section 6 we briefly explore the time evolution of complexity for non-local theories and

compare with results from local theories. Lastly, we conclude by summarizing our results

and note interesting future work.

2 The model and quench protocol

We consider a free bosonic field theory (regularized) on a lattice;3 the Hamiltonian is

H(q, q̂) =
1

2

∑

l

[

p2l + q2 x2l + q̂ xl+1xl
]

. (2.1)

In eq. (2.1), xl (pl) is the position (momentum) operator at site-l, and {q, q̂} parameterize

the “restoring forces” — q > 0, but we allow q̂ to have either sign. This Hamiltonian

is more general than a free scalar field theory discretized on a lattice; depending on the

choice of parameters, a variety of interesting behaviors arise.4 For us, this provides a

convenient/natural medium to explore our testing procedure.

Eq. (2.1) is readily analyzed by expanding the position and momentum operators in

Fourier modes (normal modes) as

xl =
1√
N

∑

k

e−i
2πk l
N x̃k , pl =

1√
N

∑

k

e−i
2πk l
N p̃k , (2.2)

where 0 ≤ k ≤ (N − 1) with N being the total number of (lattice) sites; one obtains5

H(q, q̂) =
1

2

∑

k

[

p̃kp̃−k + ω2
k x̃kx̃−k

]

, (2.3)

where ω2
k = q2 + q̂ cos(2π kN ) and ωk = ω−k. Eq. (2.3) is then diagonalized by introducing

creation and annihilation operators6

H(q, q̂) =
∑

k

ωk

(

a†kak + 1/2
)

, (2.4)

where

x̃k =
1√
2ωk

(

ak + a†−k

)

, p̃k =
1

i

√

ωk
2

(

ak − a
†
−k

)

. (2.5)

3We set the lattice spacing to unity.
4E.g. writing q2 = (a2 + b2) and q̂ = 2a b (a, b ∈ R), one has the bosonic analog of the Su-Schreiffer-

Heeger model [98, 99].
5We have used the orthogonality condition

1

N

N−1∑

l=0

exp[−i 2π (k − k′)l/N ] = δk,k′ .

6[ak, a
†
k] = 1 ∀ k.
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We are interested in studying quenches in the above model — the quench protocol we

employ is

H = H(q, q̂) for t ≤ 0 (2.6a)

H = H1(q1, q̂1) for t > 0 , (2.6b)

where (q, q̂) and (q1, q̂1) are different. For t ≤ 0, we prepare the system in the ground state

of H(q, q̂); then we evolve the state by U1(t) = exp[−iH1(q1, q̂1) t]. In what follows, we

consider the evolution of the complexity following the quench — we consider the complexity

between the initial state and the time evolved state. In the following section, we compute

the complexity for this model by the different approaches.

3 Complexity

In this section, we will explore the different approaches of probing the complexity. At the

end of this section we will comment on the differences between the different approaches.

We will investigate the following methods-

• Complexity from Fubini-Study

• Circuit complexity from wave function

• Circuit complexity from the covariance matrix

The basic idea of complexity is the following: one starts with a suitable reference state,7

which one acts on with a set of unitary operators to reach a target state; the complexity

corresponds to the minimum number of operations needed to accomplish this. To carry

out this procedure, one first fixes the set of elementary unitary operators and determines

the operator space; the complexity is the shortest distance in that (operator) space con-

necting the reference and the target states [87–89]. In general, this is a nontrivial and even

ambiguous procedure. To proceed, one defines suitable measures on the operator space,

which satisfy the following criteria [54, 87–89]:

1. They should be continuous.

2. These should be positive definite.

3. They should be homogeneous.

4. They should satisfy the triangle inequality.

5. They can be infinitely differentiable.

Criteria (1)-(4) identify these quantities as legitimate functions to measure distance be-

tween points in the underlying space; if condition (5) is satisfied, then they correspond to

the distance between points on a Finsler manifold.

7The reference state is preferably an unentangled state in some suitable basis. We explain in detail the

choice of reference state when we discuss the notion of ‘circuit complexity.’
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Figure 1. An illustration for different distances between reference (ψR) and target state (ψT ) in

the Hilbert-space. Complexity (from Fubini-Study approach) will correspond to the length of the

geodesic shown in blue.

Now there are various methods for computing complexity. The Fubini-Study ap-

proach [55] naturally selects one particular measure. In this method, one typically identifies

the state as some kind of coherent state of a particular group, and then one defines a metric

for that group manifold; the complexity is computed as the geodesic distance between the

reference and target states (for that particular metric). This is illustrated in the figure 1,

while the details are discussed in section 3.1. On the other hand, the ‘circuit complexity’

approach allows one to choose various measures [54, 60, 65] satisfying the properties men-

tioned above. For the model (and states) considered in this work, it is natural to write the

reference and target states in the position representation: ψ(~v) = exp(−~vT .A.~v), where
~v = {x1, x2, · · · } and A is a matrix; then the problem is reduced to finding the optimal

unitary which takes the reference state (AR) to the target state (AT ).

AT = U.AR.UT . (3.1)

This is discussed in detail in section 3.2. Now for Gaussian states, they are equivalently

described by their covariance matrix; complexity in this case quantifies the minimum num-

ber of unitary operations required to generate the covariance matrix of the target state

starting from the covariance matrix of the reference state. The details of the covariance

matrix approach are presented in section 3.3.

3.1 Complexity from Fubini-Study

In this section, we detail the calculation of the complexity using the Fubini-Study approach.

This is executed by writing the eigenoperators of H1 (the Hamiltonian for t > 0) in terms

– 7 –
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of the eigenoperators of H (the Hamiltonian for t ≤ 0). As per eq. (2.5), we have8

for H(q, q̂) :

(

x̃k
p̃k

)

=
1√
2ωk

(

1 1

−i ωk i ωk

)(

ak
a†−k

)

,

for H1(q1, q̂1) :

(

x̃k
p̃k

)

=
1

√

2ω1,k

(

1 1

−i ω1,k i ω1,k

)(

a1,k
a†1,−k

)

;

(3.2)

from this, one obtains the Bogoliubov transformation relating (a1,k, a
†
1,−k) to (ak, a

†
−k):

(

a1,k
a†1,−k

)

=

(

Uk Vk
Vk Uk

)(

ak
a†−k

)

, (3.3)

where

Uk =
ω1,k + ωk
2
√
ω1,kωk

, Vk =
ω1,k − ωk
2
√
ω1,kωk

,

with |Uk|2 − |Vk|2 = 1. Hence, we obtain

H1(q1, q̂1) =
N−1
∑

k=0

ω1,k[(U2
k + V2k)τ zk + UkVkτ+k + UkVkτ−k ], (3.4)

where
{

τ+k = a†ka
†
−k , τ−k = a−kak , τ zk =

(

a†kak + a−ka
†
−k

)

/2
}

(3.5)

satisfy an SU(1, 1) algebra

[τ zk , τ
±
k ] = ±τ±k , [τ+k , τ

−
k ] = −2τ zk . (3.6)

As discussed above, we take the ground state of H(q, q̂, q′) as our reference state; this

is given by

|ψ0〉 =
N−1
∏

k=0

|k,−k〉 , (3.7)

where |k,−k〉 denotes the Fock vacuum for modes k and (−k). We are interested in the

complexity of the time-evolved state

|ψ1(t)〉 = U1(t)|ψ0(t = 0)〉. (3.8)

To evaluate this, we employ the decomposition9 [100]

exp(βk τ
z
k + α+

k τ
+
k + α−

k τ
−
k ) = exp(γ+k τ

+
k ) exp((ln γ0k)τ

z
k ) exp(γ

−
k τ

−
k ), (3.9)

8Note that ω1,k and ωk are functions of (q1, q̂1) and (q, q̂), respectively.
9Now τ−

k simply annihilates the state |k,−k〉 for all values of k. So the action of exp(γ−
k τ−

k ) on |k, k〉

is trivial. Also, τ−
k |k,−k〉 = 1

2
|k,−k〉. Then, exp((ln γ0

k)τ
z
k )|k,−k〉 = (γ0

k)
1/2|k,−k〉. This produces just an

overall phase and can be absorbed inside the normalization (Nk(t)) of the state. Non trivial effects comes

from the exp(γ+

k τ+

k ).

– 8 –
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where

γ0k =

(

cosh (µk)−
βk
2µk

sinh (µk)

)−2

, γ±k =

(

α±
k

µk

)

(

sinh(µk)

cosh(µk)− βk
2µk

sinh(µk)

)

(3.10)

with µ2k = (β2k/4)− α+
k α

−
k ; one obtains

|ψ1(t)〉 =
N−1
∏

k=0

Nk(t) exp(γ+1,k(t) a
†
ka

†
−k)|k,−k〉 , (3.11)

where

γ+1,k =

(

α+
1,k

µ1,k

)





sinh (µ1,k)

cosh (µ1,k)− β1,k
2µ1,k

sinh (µ1,k)



 , µ21,k =
β21,k
4
− α+

1,kα
−
1,k , (3.12)

with

β1,k = −i t ω1,k

(

U2
k + V2k

)

, α+
1,k = α−

1,k = −i t ω1,k UkVk .

The state eq. (3.11) can be thought of as an SU(1, 1) coherent state; the state manifold

can be given a Riemannian structure [101] — considering the class of states

|ψ{γk,τ (t)}〉 =
N−1
∏

k=0

Nk(t) exp(γk,τ (t)a†k a
†
−k)|k,−k〉 (3.13)

labeled by the parameter τ and evaluating the Fubini-Study line element

(

ds

dτ

)2

= 〈dψ
dτ
| dψ
dτ
〉 − 〈dψ

dτ
| ψ〉〈ψ | dψ

dτ
〉 , (3.14)

one obtains

ds2 =

N−1
∑

k=0

ds2k =

N−1
∑

k=0

|dγk,τ |2
(1− |γk,τ |2)2

. (3.15)

For each value of k, one has H2 in the CP 1 representation.

For a given k, the distance is naturally defined by10

sk =

∫ 1

0
dτ

1

1− |γk,τ |2
∣

∣

∣

dγk,τ
dτ

∣

∣

∣. (3.16)

The full state manifold has the form H2 ×H2 × · · · — the distance can be defined as

s =

√

√

√

√

N−1
∑

k=0

s2k . (3.17)

10For simplicity, we defined range of τ from 0 to 1; one can reparametrize it to redefine its initial and

final value.
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In this (Fubini-Study) approach, the complexity geodesic distance between the reference

and target states (3.18) — it follows from eq. (3.17) that the complexity is

CFS =

√

√

√

√

N−1
∑

k=0

C2k , (3.18)

where Ck is the geodesic distance for a particular k.

To proceed, we write

γk,τ = |γk| exp(i φk) , |γk| = tanh
(θk
2

)

; (3.19)

one obtains

ds2 =
1

4

N−1
∑

k=0

(dθ2k + sinh(θk)
2dφ2k). (3.20)

Considering two points (θ1,k, φ1,k) and (θ2,k, φ2,k), the complexity (3.18) takes the form

CFS =
1

2

√

√

√

√

N−1
∑

k=0

(

arccosh
[

cosh(θ1,k)cosh(θ2,k)− sinh(θ1,k)sinh(θ2,k) cos(φ1,k − φ2,k)
])2

.

(3.21)

For reference and target states given by eqs. (3.7) and (3.11), respectively, θ1,k = 0 and

θ2,k = 2arctanh |γ1,k| with γ1,k defined in (3.12),11 the complexity takes the form

CFS =

√

√

√

√

N−1
∑

k=0

(arctanh |γ1,k|)2. (3.22)

3.2 Circuit complexity á la Nielsen

We now detail the calculation of the circuit complexity.12 This approach was pioneered

by Nielsen;[87] it was adapted for free scalar field theory in [54] and has recently been

generalized for interacting field theories in [66]. We start with the (defining) expression

|ψTτ=1〉 = Ũ(τ)|ψRτ=0〉, (3.23)

where U(τ) is a unitary operator representing the quantum circuit, which takes the ref-

erence state |ψR〉 defined at τ = 0 to the target state |ψT 〉 defined at τ = 1. As before,

τ parametrizes a path in the Hilbert space (and one can re-parametrize this τ in various

ways). Now the unitary operator can be written as a path-ordered exponential

Ũ(τ) =
←−P exp(i

∫ τ

0
dτ H(τ)), (3.24)

where H(τ) is a Hermitian operator. Next we fix a basis {MI} and expand H(τ) in term

of this basis:

H(τ) = Y I(τ)MI ,

11For a more detailed discussion about the choice of reference state, see appendix B.
12In the rest of the text whenever we will mention circuit complexity we will refer to this approach.
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where the coefficients {Y I(τ)} are referred to as ‘control functions’. The {MI} provide

the elementary gates that will be used. The algebra satisfied by these gates gives us the

structure of the group; the unitary Ũ(τ) can be parametrized as a general element of that

group. The goal now is to minimize the depth of this circuit to find the optimal control

functions {Y I(τ)}. To this end, we define the circuit complexity C(Ũ) through suitable

cost functions F(Ũ , ˙̃U) as [54, 87–89]

C(Ũ) =

∫ 1

0
F(Ũ , ˙̃U) dτ . (3.25)

We minimize this cost function and find the geodesic connecting the two states; evaluating

C(Ũ) on this geodesic, we obtain the complexity. There are various possible choices for these

functions F(Ũ , ˙̃U), but they should satisfy the conditions (1)-(5) discussed in section 3.

Here we mention a few of them that have been used extensively in the literature:[54, 60, 65]

F2(U, Y ) =

√

∑

I

pI(Y I)2,Fκ(U, Y ) =
∑

I

pI |Y I |κ, κ is an integer & κ ≥ 1,

Fp(U, Y ) = (tr(V †V )p/2))1/p, V = Y I(τ)MI , p is an integer .13

(3.26)

The {pI}, known as ‘penalty factors’, are weights which, at the moment, are arbitrary.

Among these, Fκ=1 directly counts the number of gates; most importantly, F2 with pI = 1

for all I is basically a distance function on a given manifold. We note that the complexity

computed using F2 is very similar to CFS , as both of are coming from evaluating the

shortest between two points on a given manifold; the difference lies in the fact that circuit

complexity, a priori, cannot fix the {pI} — we have to make a choice for that. The

Fubini-Study approach canonically fixes it (in fact, they are all fixed to unity) [55]. In the

subsequent analysis, we compute the complexity using F2 (with pI = 1 for all I) to make

a direct comparison with the Fubini-Study approach.

For our case the target wave function following from (3.8) is given by14

ψτ=1(x̃k, t) = N τ=1(t) exp

[

−
∑N−1

k=0 Ωk x̃
2
k

2

]

, (3.27)

where N τ=1(t) is the normalization factor. The frequencies (Ωk) are given by

Ωk = ω1,k

[

ω1,k − i ωk cot (ω1,k t)

ωk − i ω1,k cot (ω1,k t)

]

; (3.28)

their real and imaginary parts are

Re(Ωk) =
ω2
1,kωk

sin(ω1,k t)2(ω
2
k + ω2

1,k cot(ω1,k t)2)
,

Im(Ωk) =
ω1,k(ω

2
1,k − ω2

k) sin(2ω1,k t)

2 sin(ω1,k t)2(ω
2
k + ω2

1,k cot(ω1,k t)2)
.

(3.29)

13These are formally known as ‘Schatten Norms’ and first considered in [60] and explored in detail in [65].
14See appendix A for further details.
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This wave function can be written as

ψτ=1(x̃, t) = N τ=1(t) exp

[

−1

2

(

va.A
τ=1
ab .vb

)

]

, (3.30)

where v = {x̃0, · · · x̃N−1} and Aτ=1 is an N ×N diagonal matrix

Aτ=1 = diag{Ω0, · · · ,Ωk}. (3.31)

Also we take the reference as (in the same basis v)

Aτ=0 = diag{ωr, · · · , ωr}. (3.32)

ωr can in general be complex. The unitary (3.24) acts as

Aτ = Ũ(τ).Aτ=0.ŨT (τ) (3.33)

with the boundary conditions

Aτ=1 = Ũ(τ = 1).Aτ=0.ŨT (τ = 1) , Aτ=0 = Ũ(τ = 0).Aτ=0.ŨT (τ = 0) . (3.34)

A convenient way to parametrize this Ũ(τ) is as follows,

Ũ(τ) =
←−P exp

(

∫ τ

0
Y I(τ)MIdτ

)

, (3.35)

where at τ = 1 we reach the target state. Now the components of Aτ=0 and Aτ=1 for our

case can be complex. So we restrict ourselves to GL(N,C) unitary. Then control functions

{Y I} are complex parameters and the {M I} are the N2 generators. Then,

Y I = tr(∂τ Ũ(τ).Ũ(τ)−1.(M I)T ) , (3.36)

where tr(M I .(MJ)T ) = δIJ and I, J = 0, · · · , N2 − 1. Then the metric can be defined as,

ds2 = GIJdY
IdY ∗J . (3.37)

There is a certain arbitrariness regarding the choice of GIJ — we choose, for simplicity,

GIJ = δIJ [54] i.e. we are fixing the penalty factors to unity; this will enable us to make a

more direct comparison with the Fubini-Study approach.

Since we are working with a basis in which both the reference and the target states

can be simultaneously diagonalized, the off-diagonal components coming from some of

the elements of GL(N,C) will increase the distance between states; the shortest distance

corresponds to them being set to zero [54]. Hence, the Ũ(τ) will take the form

Ũ(τ) = exp

(

N−1
∑

k=0

αk(τ)Mdiag
k

)

, (3.38)

where the {αk(τ)} are complex, and the {Mdiag
k } are the (N) diagonal generators containing

only one identity at the k’th diagonal entry. Then using (3.37), one obtains the flat metric

ds2 =

N=1
∑

k=0

((dαk,1)2 + (dαk,2)2) , (3.39)
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where the superscripts 1 and 2 denote the real and imaginary part of αk, respectively. It

follows the geodesic is simply a straight line of the form

αk,j(τ) = αk,j(τ = 1) τ + αk,j(τ = 0) (3.40)

for each value of k (j = 1, 2); using the boundary conditions, one obtains

αk,1(τ = 0) = αk,2(τ = 0) = 0,

αk,1(τ = 1) =
1

2
log
|Ωk|
|ωr|

, αk,2(τ = 1) =
1

2
arctan

Re(ωr)Im(Ωk)− Re(Ωk)Im(ωr)

Re(ωr)Re(Ωk) + Im(Ωk)Im(ωr)

(3.41)

for each k. Then the complexity is given by

C(Ũ) =

∫ 1

0
ds
√

gij ẋiẋj , (3.42)

where gij denote the components of the metric (3.39), and the xi’s are coordinates associ-

ated with this metric. Finally, one obtains

C
(

Ũ
)

=
1

2

√

√

√

√

N−1
∑

k=0

[

(

log
|Ωk|
|ωr|

)2

+

(

arctan
Re (ωr) Im (Ωk)− Re (Ωk) Im(ωr)

Re(ωr)Re(Ωk) + Im(Ωk)Im(ωr)

)2
]

. (3.43)

Like before (i.e in section 3.1) we choose the reference as the ground state of H(q, q′)

at t = 0 — ωr will be ωk as defined in (2.4); we obtain

C
(

Ũ
)

=
1

2

√

√

√

√

N−1
∑

k=0

[

(

log
|Ωk|
ωk

)2

+

(

arctan
Im (Ωk)

Re (Ωk)

)2
]

. (3.44)

This expression is very pleasing — the first part is the logarithm of the ratio of the frequen-

cies of target and reference state,15 and is similar to time independent case [54]; however,

we have an additional contribution from the phase term, namely the second term in (3.44).

This is very reasonable, since the time-evolved state has a non-trivial phase. To reproduce

those phases starting form a simple reference state, one needs appropriate unitary opera-

tors and they will obviously generate certain cost; the complexity evaluated by this method

is aptly capturing that.

Next we look at the structure of the optimized circuit. We rewrite (3.38) using (3.41)

and get,

Ũ (τ) =

N−1
∏

k=0

exp
[(

α̃kMdiag
k + β̃kM̃diag

k

)

τ
]

. (3.45)

Here k runs from 0 to N − 1 and the corresponding α̃k’s are equal to 1
2 log

|Ωk|
ωk

. M̃diag
k are

−2 i times the diagonal generators and β̃k’s are −1
4 arctan

Im(Ωk)
Re(Ωk)

for corresponding values

of k. Now we can identify the unitary gates which are the building blocks of Ũ(τ). The

unitary operators take the form exp(i O), where O is some Hermitian operator. Now given

15Again, for a more detailed discussion about the choice of reference state, see appendix B.
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the basis v = {x̃0, · · · , x̃N−1}, we can act on it by the unitary operators and from their

action on v we can identify (i O) to these matrices Mdiag
k and M̃diag

k . The first one Mdiag
k

corresponds to (i x̃kp̃k) for each value of k. They are the usual scaling operators and there

are N of them. The second one M̃diag
k corresponds to {i (x̃kp̃k)(x̃k p̃k) + x̃k p̃k}. In terms

of these operators the optimal circuit that generates the required target state takes the

following form,

Ũ(τ) =
N−1
∏

k=0

exp(i ǫ α̃k τ Ok) exp(i ǫ β̃
k τ Ôk), (3.46)

where

Ok = (x̃k p̃k + p̃k x̃k), Ôk = Ok Ok (3.47)

and α̃k = 1
2 ǫ log

|Ωk|
ωk
, β̃k = − 1

4 ǫ arctan
Im(Ωk)
Re(Ωk)

. Note that here we have introduced an

infinitesimal parameter ǫ. For all practical purposes (at least from the point of view

of implementation), the target state can only be achieved up to a certain tolerance, i.e

||ψT 〉 −U |ψR〉| < ǫ. Basically, ǫ plays the role of a small error, which we want to minimize

as much as possible [54]. Oks scale the coefficients of x̃2i inside the wave function by a

real number and the other operator Ôk scales the coefficients of x̃2i by a complex number.

Together they are sufficient to reproduce the target wave function as the coefficients of x̃2i
inside the wave function are complex numbers.

Note that, one could have used i x̃2i together with the scaling operators to get the

target state from the reference state. But the geodesic analysis prefers rather different set

of operators beside the scaling operators. The reason is two fold. As we have seen, when the

target Aτ=1 and the reference Aτ=0 can be simultaneously diagonalized, the geodesic is just

a straight line path and that, in turn, gives us the optimal circuit consisting of mutually

commuting gates [54]. From this one can easily see that it rules out the possibility of

having ix̃2i and scaling together, since they don’t commute with each other. The second

reason is a technical reason. Given the basis v = {x̃0, · · · , x̃N−1} we can see that it is not

possible to write down a matrix representation for the operator ei x̃
2
i as the action of i x̃2i

on the basis v takes it out of the basis. In other words, the action of this operator on the

reference state is non-linear. On the other hand, we will see in the next section that one

can find a representation of ix̃2i , with respect to the covariance matrix and the optimal

unitary coming from the geodesic analysis will consist of this operator.

3.3 Circuit complexity from the covariance matrix

Just like the reference wave function, the target wave function (3.27) is purely Gaussian; it

can be completely characterized by its first and second moments. Therefore, we can define

a covariance matrix [103], which will contain the same information as the matrix A defined

in the wave function (eq. (3.30)); hence, we can reformulate the analysis of section 3.2 in

terms of the covariance matrix [60].

The components of the covariance matrix (G) can be defined via

Gab = 〈ψ(x̃k, t)|ξaξb + ξbξa|ψ(x̃k, t)〉, (3.48)
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where ~ξ = {x̃0, p̃0, · · · , x̃N−1, p̃N−1}. The matrix G then takes the form

G =







(Gk=0)2×2 · · · 0
...

. . .
. . .

0 · · · (Gk=N−1)2×2






. (3.49)

For each value of k, the matrix G factorizes further into 2 × 2 symmetric blocks — these

blocks have one-to-one corresponds with the canonical pair {x̃k, p̃k}; hence, there will be N
of the 2×2 blocks. The matrix G is (N×N) symmetric matrix. For our target state (3.27),

each of the (2× 2) matrices takes the form

Gτ=1 ,k
2×2 =

(

1
Re(Ωk)

− Im(Ωk)
Re(Ωk)

− Im(Ωk)
Re(Ωk)

|Ωk|
2

Re(Ωk)

)

. (3.50)

Also for the reference state (3.32) we have

Gτ=0 ,k
2×2 =

(

1
Re(ωr)

− Im(ωr)
Re(ωr)

− Im(ωr)
Re(ωr)

|ωr|2

Re(ωr)

)

. (3.51)

Note that the determinants of both of these matrices are unity. Now to facilitate the

computation we will perform a change of basis for each of the smaller blocks as follows.

G̃τ=1 ,k = S.Gτ=1 ,k.ST , G̃τ=0 ,k = S.Gτ=0 ,k.ST , (3.52)

with16

S =
1

√

Re(ωr)(Im(ωr)2 + (Re(ωr)− 1)2)

(

|ωr|2 − Re(ωr) Im(ωr)

Im(ωr) 1− Re(ωr)

)

, (3.53)

such that G̃τ=0 ,k = I (an identity matrix). Therefore, G̃τ=1 ,k and G̃τ=0 ,k always commute

with each other and can be diagonalized simultaneously [64]. This is same as section 3.2,

where Aτ=1 and Aτ=0 commute with each other. In terms of the covariance matrix the

statement (3.33) becomes,

G̃τ = Ũ(τ).G̃τ=0.ŨT (τ). (3.54)

Now as before we restrict ourselves to the GL(R) unitary. Given the fact that G’s admit

a block structure, as before it is convenient to parametrize Ũ(τ) as GL(2N, R)=GL(2,

R)× · · · (2N−2) · · · ×GL(2, R).17 Further we can parametrize each of these GL(2, R) block

as R×SL(2, R). We will now conduct all the subsequent analysis block by block. For each

block we have,

Ũk(τ)= exp(yk(τ))

(

cosφk(τ)coshρk(τ)−sinθk(τ)sinhρk(τ) −sinφk(τ)coshρk(τ)+cosθk(τ)sinhρk(τ)

sinφk(τ)coshρk(τ)+cosθk(τ)sinhρk(τ) cosφk(τ)coshρk(τ)+sinθk(τ)sinhρk(τ)

)

.

(3.55)

16This is just one possibility — we could have chosen differently; that would have also produced the

desired result.
17This is a special choice, but given the block diagonal structure of Ũ(τ) we can easily justify this.
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Next we set the boundary conditions as before.

G̃τ=1 ,k = Ũk(τ = 1).G̃τ=0 ,k.(Ũk(τ = 1))T . (3.56)

This will give the final boundary condition as follows

{yk(τ = 1), cosh2ρk(τ = 1), tan(θk(τ = 1) + φk(τ = 1))}

=

{

0,
Re(ωr)

2 +Re(Ωk)
2 + (Im(ωr)− Im(Ωk))

2

2Re(ωr)Re(Ωk)
,
G̃τ=1, k

11 − G̃τ=1, k
22

2 G̃τ=1, k
12

}

,
(3.57)

where G̃τ=1, k
ij denote various components of the matrix G̃τ=1, k. Also we need the following,

G̃τ=0 ,k = Ũk(τ = 0).G̃τ=0 ,k.(Ũk(τ = 0))T . (3.58)

This gives,

{yk(τ = 0), ρk(τ = 0), θk(τ = 0) + φk(τ = 0)} = {0, 0, ck}. (3.59)

ck is an arbitrary. For simplicity we will choose φk(τ = 1) = φk(τ = 0) = 0 and θk(τ =

1) = θk(τ = 0) = ck = tan−1
(

G̃τ=1, k
11

−G̃τ=1, k
22

2 G̃τ=1, k
12

)

. Given this form of Ũk(τ) we can write

down the metric as shown in (3.36) and (3.37). Following [54, 60, 65] the metric is (we

have set GIJ = 1
2δIJ for simplicity),

ds2k = dy2k+dρ
2
k+cosh(2ρk)cosh

2ρk dφ
2
k+cosh(2ρk)sinh

2ρk dθ
2
k−sinh(2ρk)2 dφkdθk. (3.60)

The total complexity (after summing over k) is defined as,

C(Ũ) =

∫ 1

0
ds

√

√

√

√

N−1
∑

k=0

gkij ẋ
i
kẋ

j
k, (3.61)

where gkij denote the components of the metric (3.60) for each k and xi’s are coordinates

associated with this metric for each value of k. The simplest solution for the geodesic is

again a straight line on this geometry [54].

yk(τ) = 0, ρk(τ) = ρk(τ = 1) τ, θk(τ) = θk(τ = 0), φk(τ) = 0. (3.62)

So finally we get,

C(Ũ) =

√

√

√

√

N−1
∑

k=0

ρk(τ = 1)2

=
1

2

√

√

√

√

N−1
∑

k=0

(

arccosh

(

Re(ωr)2 +Re(Ωk)2 + (Im(ωr)− Im(Ωk))2

2Re(ωr)Re(Ωk)

)2
)

.

(3.63)

Choosing the reference state as the ground state of (2.6a), this simplifies to the following,

C(Ũ) =
1

2

√

√

√

√

N−1
∑

k=0

(

arccosh

(

ω2
k + |Ωk|2

2ωk Re(Ωk)

)2
)

. (3.64)
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Now let’s investigate the structure of the optimal circuit. Give this solution (3.62) we get,

Ũk(τ) = exp
[

M̃ τ
]

, (3.65)

where

M̃ =

(

− sin θk(τ = 0) cos θk(τ = 0)

cos θk(τ = 0) sin θk(τ = 0)

)

ρk(τ = 1). (3.66)

This can be decomposed in terms of SL(2, R) generators in the following way,

M̃ = α1M11 + α2M22 + α3M33, (3.67)

where

M11 =

(

−1 0

0 1

)

, M22 =

(

0 0

1 0

)

, M33 =

(

0 1

0 0

)

,

α1 = sin θk(τ = 0), α2 = α3 = cos θk(τ = 0).

(3.68)

These three generators satisfy the following commutation relation,

[M11,M22] = 2M22, [M11,M33] = −2M33, [M22,M33] =M11. (3.69)

From these representations (induced on the covariance matrix) we can now identify the

operators as [64],

M11 →
i

2
(x̃k p̃k + p̃k x̃k), M22 →

i

2
x̃2k, M33 →

i

2
p̃2k. (3.70)

Finally, in terms of these operators we get,

Ũk (τ) = exp

[

i ρk (τ = 1) τ

2

{

sin θk (τ = 0) (x̃k p̃k + p̃k x̃k) + cos θk(τ = 0)(x̃2k + p̃2k)
}

]

.

(3.71)

Note that even though we start with the full GL(2, R) generators, the optimal circuit is

composed only of the generators belonging to the SL(2, R) sub-group.

A brief comparison. At this point, we pause and make a brief comparison between the

three methods and comment on the structure of the optimal circuit. In all three methods,

for each value of k we have restricted ourselves to the space of GL(2, R) unitaries. Then we

have performed an optimization to find the best possible unitary which leads to the minimal

depth. Both the Fubini-Study (section 3.1) and covariance matrix methods (section 3.2)

give a set of operators which satisfy SU(1,1) and SL(2, R) algebras, respectively; the

optimal circuit for both these two cases are made up of scaling operators (i (x̃kp̃k + p̃kx̃k))

and (i x̃2k, i p̃
2
k) operators. These operators are local operators in normal mode basis. On

the other hand, the geodesic analysis done in the context of circuit complexity (section 3.2)

forced us to a different set of operators (Ôk) as shown in (3.47), except the scaling operators

(i (x̃kp̃k + p̃kx̃k)). The Ôk operators (as mentioned in (3.47)) are slightly more non-local

compared to the i x̃2k and i p
2
k operators in the normal mode basis. We should note that when
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the wave function is a real Gaussian, then we do not need any of these extra operators. Only

the scaling operator Ok (mentioned in (3.47)) is sufficient. The expressions for complexity

coming from the covariance matrix method (3.63) and circuit complexity method (3.43)

are basically identical, given the same reference state. However, when the target wave

function is a complex Gaussian, they are different as it is evident from (3.43) and (3.63).

It seems, the advantage of using Fubini-Study and covariance matrix methods is that we

get the optimal circuit made from local operators, whereas the circuit complexity method

tends to prefer slightly more non-local operators. However, in the next section, we will

establish that the circuit complexity (from wave function) has an advantage over the other

two methods as it can capture the evolution of states.

To end this section, we stress that complexity depends on both the choice of reference

state and gates (and also on the measure used). For a fixed reference state and fixed

measure, the value of the complexity will depend on the underlying unitary gates. In the

next section we compare the complexity obtained from the different methods — this will

not be a comparison between their magnitudes, but rather a comparison of their sensitivity

to a particular test that we propose.

4 Loschmidt echo, fidelity, and complexity

In this section, we propose a diagnostic to test the advantages or disadvantages of these

three different methods. As discussed in the Introduction, we consider an interest-

ing information-theoretic measure, namely the Loschmidt echo (1.1); here we discuss it

in detail.

The Loschmidt echo (LE) is considered as a measure of the sensitivity of quantum

mechanics to perturbations in the evolution Hamiltonian. As mentioned earlier (eq. (1.1)),

the LE is defined as [96, 97]18

FLE(t) = |〈ψ0| exp(iH ′
1t) exp(−iH1t)|ψ0〉|. (4.1)

Since one is performing a forward evolution followed by a backward evolution with slightly

different Hamiltonians, the Loschmidt echo also quantifies the irreversibility in a quan-

tum system.

For our case we take |ψ0〉 as the ground state of the Hamiltonian at t = 0 (eq. (2.6a)),

which is defined in (3.7). The Hamiltonian H1 (defined in eq. (2.6b)) is a function of

(q1, q̂, ). Also, H ′
1 is of the form as eq. (2.4), however, it is a function of (q2, q̂2). These

parameters are slightly different from both (q, q̂) and (q1, q̂1). We define

|ψ2〉 = exp(iH ′
1t) exp(−iH1t)|ψ0〉. (4.2)

Then rewrite (4.1) as,

FLE(t) = |〈ψ0|ψ2〉|. (4.3)

18For a more comprehensive review of the application of the Loschmidt echo, interested readers are

referred to [102].
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Figure 2. An illustration for Loschmidt echo and Fidelity.

We can view (4.1) is a different way. We define the following,

|ψ1〉 = exp(−iH1t)|ψ0〉, |ψ̃1〉 = exp(−iH ′
1t)|ψ0〉 (4.4)

In terms of these we can rewrite (4.1) in the following way,

F̃(t) = |〈ψ̃1|ψ1〉|. (4.5)

We termed this as Fidelity. An illustration of Loschmidt echo and Fidelity is shown in

figure 2. Basically here we have defined the overlap of two wave functions evolved from

the same initial state but with slightly different Hamiltonian. Quantum mechanically (4.1)

and (4.5) are equivalent. Using these overlaps, we will propose a diagnostic to distinguish

between different methods of measuring complexities. We will call this ‘LE vs F Test’ of

complexity. We will use the ‘bra’ of the overlap as the reference state and ‘ket’ as the target

state. Explicitly, for Loschmidt echo we will compute the complexity of ψ2 with respect to

ψ0 and for fidelity we will compute the complexity of ψ1 with respect to ψ̃1. Although the

overlap of states-(4.1) and (4.5) are the same, we find that the circuit complexity (using

the wave function, as done in section 3.2) differs. On the other hand, complexities for

Loschmidt echo and fidelity, coming from either Fubini-Study method (as in section 3.1)

and the circuit complexity from covariance matrix method (as in section 3.3) are the same.

4.1 Fidelity and complexity

For Fidelity the states in the overlap are both evolved states, therefore, for this case we

will compute the complexity of one evolved state with respect to the other and call this

the complexity of fidelity CF (Ũ). Explicitly we find the complexity of evolved state ψ1 by

H1 from ψ0 with respect to ψ̃1 by H ′
1 from ψ0.

• To compute the complexity for this case using the Fubini-Study method (section 3.1),

we have to use the general formula mentioned in (3.21). Now unlike (3.22), θ1,k will

be non zero. In fact we will have

θ1,k = 2arctanh |γ1,k|, θ2,k = 2arctanh |γ2,k|,

cos (φ1,k − φ2,k) = Re

(

γ1,k
γ2,k

|γ2,k|
|γ1,k|

)

,
(4.6)
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where γ1,k is defined in (3.10) and (3.12). γ2,k is associated with the Hamiltonian

evolution of |ψ0〉 by H ′
1 and has the same form as γ1,k but is a function of (q2, q̂2)

instead. These parameters are slightly different from (q1, q̂1).

• To compute the circuit complexity as sketched in section 3.1 we need to use (3.43).

Also following (3.27) we get

ψ̃1(x̃k, t) = N (t) exp

[

−
∑N−1

k=0 Ω1,k x̃
2
k

2

]

, (4.7)

where N (t) is the normalization and

Ω1,k = ω2,k

[

ω2,k − i ωk cot(ω2,k t)

ωk − i ω2,k cot(ω2,k t)

]

. (4.8)

Here ω2,k is associated with H ′
1 and ω2

2,k = q22 + q̂2 cos(
2π k
N ). Now in (3.27), we need

to replace ωr by Ω1,k.

• For the covariance matrix method (section 3.3) we have to use the general formula

for the complexity given in (3.63) and again replace ωr = Ω1,k.

4.2 Loschmidt echo and complexity

The overlap in Loschmidt echo contains one forward and then backward evolved state and

a ground state. Therefore, for this we will compute the complexity (CLE(Ũ)) of |ψ2(x̃k, t)〉
as defined in (4.2) w.r.t. the ground state |ψ0(x̃k, t)〉 of H(q, q̂) at t = 0. Now we have,

|ψ2(x̃k, t)〉 = eiH
′
1
t|ψ1(x̃k, t)〉, (4.9)

|ψ1(x̃k, t)〉 is defined in (4.2). e have already computed it in section 3. We have to now do

one more time evolution (backward) on it to get the |ψ2〉.
• For the Fubini-Study approach, we start with the state defined in (3.11). Then we act

it by exp(iH ′
1 t). Then again we can decompose exp(iH ′

1 t) like what we have done

in (3.9) using BCH formula with the definitions given in (3.10). To be more explicit,

exp
(

iH ′
1 t
)

= exp
(

γ+2,kτ
+
k

)

exp
((

ln γ02,k
)

τ zk
)

exp
(

γ−2,kτ
−
k

)

,

γ02,k =

(

cosh (µ2,k)−
β2,k
2µ2,k

sinh (µ2,k)

)−2

,

γ±2,k =

(

α±
2,k

µ2,k

)





sinh (µ2,k)

cosh (µ2,k)− β2,k
2µ2,k

sinh (µ2,k)



 ,

µ22,k =
β22,k
4
− α+

2,kα
−
2,k,

β2,k = i t ω2,k

(

Ũ2
k + Ṽ2k

)

,

α+
2,k = α−

2,k = i t ω2,k ŨkṼk,

Ũk =
ω2,k + ωk
2
√
ω2,kωk

, Ṽk =
ω2,k − ωk
2
√
ω2,kωk

.

(4.10)
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Given this we need to evaluate the following,

|ψ2〉 =
∏

k=0

Nk (t) exp(γ+2,kτ+k ) exp((ln γ02,k)τ
z
k ) exp(γ

−
2,kτ

−
k ) exp(γ+1,k(t) a

†
ka

†
−k)|k,−k〉.

(4.11)

We know that τ−k annihilates |k,−k〉. Then we successively use BCH formula and

the decomposition mentioned in (3.9). Finally, after absorbing overall phase factors

inside the normalization we get,

|ψ2〉 =
∏

k=0

Ñk(t) exp(γ̂k τ+k )|k,−k〉 (4.12)

where

γ̂k = γ+2,k +
γ+1,kγ

0
2,k

1− γ+1,kγ−2,k
. (4.13)

Then we compute the complexity for this case. We can simply use the formula (3.22)

and replace γ1,k by γ̂k as mentioned in (4.13).

• For computing complexity by the methods outlined in section 3.2 and section 3.3, we

need the following evolved state ψ2(x, t),

ψ2(x̃k, t) =

N−1
∏

k=0

N̂k(t) exp
[

−1

2
Ω̂kx̃

2
k

]

, (4.14)

where

Ω̂k = i ω2,k cotω2,kt+
ω2
2,k

sin2 ω2,kt(Ωk + iω2,k cotω2,kt)
(4.15)

and N̂k(t) is the normalization factor so that the inner-product of the wave function

with itself remains one. ω2,k is defined below equation (4.8). To compute the com-

plexity using either of these two methods we can simply use either (3.44) or (3.64)

and replace Ωk by Ω̂k as defined in (4.15).

4.3 LE vs F test for different methods of complexities

Now we explicitly evaluate CF(Ũ) and CLE(Ũ) coming from three different methods. This

will show the difference between these three method, namely we will get, CF(Ũ) = CLE(Ũ)

for Fubini-Study and covariance matrix method but CF 6= CLE(Ũ) from circuit complex-

ity method as described in section 3.2. We evaluate all the expressions and present two

representative plots by choosing the following values for the parameters,

{q2 = 5, q21 = 20, q22 = 29, q̂ = 4, q̂1 = 16, q̂2 = −20}, (4.16)

with two choices for N = 500 and N = 1000.
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Figure 3. LE vs F Test for Fubini-Study.

Complexity from Fubini-Study. For this case we have the following expressions for

the complexities:

CLE(Ũ)=

√

√

√

√

N−1
∑

k=0

(arctanh |γ̂k|)2, (4.17)

CF(Ũ)=
1

2

√

√

√

√

N−1
∑

k=0

(

arccosh
[

cosh(θ1,k)cosh(θ2,k)−sinh(θ1,k)sinh(θ2,k)Re
(γ1,k
γ2,k

|γ2,k|
|γ1,k|

)]

)2

,

where θ1,k = 2arctanh |γ1,k|, θ2,k = 2arctanh |γ2,k| and γ1,k and γ̂k are defined in (3.12)

and (4.13) respectively. From figure 3 one can immediately see that the Fubini-Study

approach cannot distinguish between the two complexities. They overlap with each other

completely. At this point we are unable to prove analytically that the two expressions

CLE(Ũ) and CF(Ũ) mentioned in (4.17) are equal to each other. However, we can only

show that they are equal, at the leading order in small t expansion. We sketch the proof in

the appendix C and leaving the complete proof for future study. Nevertheless, to further

solidify our claim, we plot the absolute values of the difference |CLE(Ũ)−CF(Ũ)| against time

t. This is shown in figure 4, which clearly shows that the magnitude of |CLE(Ũ) − CF(Ũ)|
fluctuates between 10−13 and 10−14. Given our working precision, these small fluctuations

are just coming from the numerical errors. For all practical purpose, we can easily conclude

that CLE(Ũ) is equal to CF(Ũ) and this justifies our claim.

Circuit complexity. For this case we have the following,

CLE
(

Ũ
)

=
1

2

√

√

√

√

√

√







N−1
∑

k=0

(

log
|Ω̂k|
ωk

)2

+



arctan
Im
(

Ω̂k

)

Re
(

Ω̂k

)





2





, (4.18)

CF
(

Ũ
)

=
1

2

√

√

√

√

N−1
∑

k=0

[

(

log
|Ωk|
|Ω1,k|

)2

+

(

arctan
Re (Ω1,k) Im (Ωk)− Re (Ωk) Im (Ω1,k)

Re (Ω1,k)Re (Ωk) + Im (Ωk) Im (Ω1,k)

)2
]

,
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Figure 4. Difference plot for Fubini-Study method.

where, Ωk and Ω1,k are defined in (3.28) and (4.8) respectively. From figure 5 it is evident

that the two complexities are quite different in circuit complexity method. Moreover, the

complexity related to Loschmidt Echo (complexity for the state, we obtained by a forward

followed by a backward evolution) is larger than the complexity that we get for the Fidelity,

namely the complexity between two forward evolved state for most part of the evolution.

|〈ψ0|ψ2〉| = |〈ψ̃1|ψ1〉|
C(ψ2, ψ0) > C(ψ1, ψ̃1) (4.19)

Therefore, although the closeness of states between (ψ0 and ψ2) is same as the closeness

between (ψ̃1 and ψ1), the complexity of ψ2 with respect to ψ0 is larger than the complexity

of ψ1 with respect to ψ̃1. We further plot |CLE(Ũ) − CF(Ũ)| with respect to time. From

figure 6 we observe that this difference becomes constant quite fast and just fluctuates

around this constant value even at large time. It will be interesting to do further numerical

analysis to explore the late time behaviour and investigate their physical implications in a

future work.

So far we have only used, F2 as the measure for the complexity. We have also considered

another measure of complexity, namely Fκ=1, as defined in (3.26) with pI = 1 for all I.

Using the arguments of [65] one can easily show that, like F2, Fκ=1 also get minimized

when evaluated on the same geodesic solution (3.40). Then we can numerically show that

the complexities associated with Loschmidt Echo and Fidelity are different with respect to

this Fκ=1 measure.
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Figure 5. LE vs F Test for Circuit Complexity.

Figure 6. Difference plot for circuit complexity method. Dashed lines corresponds to the value

around which |CLE(Ũ)−CF(Ũ)| fluctuates at late times which are approximately, 3.2 (for N=1000,

corresponding to the red dashed line) and 2.2 (for N=500, corresponding to the black dashed

line) respectively.

Complexity from the covariance matrix. For this case we have the following,

CLE(Ũ) =
1

2

√

√

√

√

N−1
∑

k=0

(

arccosh

(

ω2
k + |Ω̂k|2

2 ωkRe(Ω̂k)

))2

,

CF(Ũ) =
1

2

√

√

√

√

N−1
∑

k=0

(

arccosh

(

Re(Ω1,k)2 +Re(Ωk)2 + (Im(Ω1,k)− Im(Ωk))2

2Re(Ω1,k),Re(Ωk)

))2

,

(4.20)

where, Ωk and Ω1,k are defined in (3.28) and (4.8) respectively. Just like the Fubini-Study

approach, from figure 7 one can immediately see that the covariance matrix methods cannot

distinguish between the two complexities. They overlap with each other completely and

again this behaviour is independent of the values of the parameters and N . Again, like

the Fubini-Study case, we are unable to prove analytically that these two expressions

CLE(Ũ) and CF(Ũ) mentioned in (4.20) are equal to each other. However, we can only
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Figure 7. LE vs F Test for covariance matrix Method (section 3.3).

Figure 8. Difference plot for covariance matrix method.

show that they are equal at the leading order in small t expansion. We sketch the proof

in the appendix C and leaving the complete proof for future study. As before, we plot

the absolute values of the difference |CLE(Ũ) − CF(Ũ)| against time t. This is shown in

the figure 8. From this we can again see that magnitude of |CLE(Ũ) − CF(Ũ)| fluctuates
between 10−14 and 10−15. These small fluctuations are just coming from the numerical

errors. For all practical purpose, we can easily conclude that CLE(Ũ) is equal to CF(Ũ).

Now we would like to stress the following point. In the literature, for example, [96, 97,

102], the Loschmidt echo is considered as a diagnostic for quantum chaos and for that it

is imperative to consider the two Hamiltonians H1(q1, q̂2) and H
′
1(q2, q̂2) are only slightly

different. In our notation this corresponds to the fact that the values of the parameter sets

{q1, q̂1} and {q2, q̂2} are slightly different from each other. However the results presented in
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Figure 9. Triangle Inequality for Circuit Complexity.

this section and the next, only require that the values of these two sets of parameters have

to be different from each other, but they do not depend on the magnitude of this difference.

In fact difference between {q1, q̂1} and {q2, q̂2} can be large and the choice made in (4.16)

corroborate this statement.

A consistency check. We will conclude this section with a quick check of the triangle

inequality. This also serves as a consistency check for our computation. We considered

states-{ψ0, ψ1, ψ2} and computed circuit complexities (section 3.1) for the state ψ1 (forward

evolved by H1) with respect to ψ0 (C1), the state ψ2 (forward evolution by H1 followed

by a backward evolution by H ′
1) with respect to ψ0 (C2) and finally for the state ψ2 with

respect to ψ1 (C3). ψ0 is the ground state of the Hamiltonian (2.6a). Then the figure 9

clearly shows that the triangle inequality (C1 + C2 ≥ C3) is satisfied. For the other two

methods (in section 3.1 and section 3.2) we can check that triangle equality is trivially

satisfied. This is a consistency check for our numerical computations.

5 A generic feature of circuit complexity

In the previous section, we established that only circuit complexity is sensitive to the

evolution of states; in that sense, one can argue that it is a better measure of complexity.

Now we will explore if this is a generic feature of the overlap, namely if we do further forward

and backward evolutions by another set of Hamiltonians H2 and slightly different H ′
2.

|ψ4(x̃k, t)〉 = eiH
′
2
te−iH2teiH

′
1
te−iH1t|ψ0〉 (5.1)

The analogue of Loschmidt echo will be

FLE = 〈ψ4|ψ0〉 (5.2)

Note that this overlap (5.2) can be written as follows:

〈ψ4|ψ0〉 = 〈ψ1|ψ3〉 = 〈ψ̃2|ψ2〉, (5.3)
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Figure 10. Evolution with four Hamiltonians. We have used the following set of parameters:

{q2
0
= 5, q̂0 = 4} for H0(for , t ≤ 0) and {q2

1
= 20, q̂1 = 16, q2

2
= 34, q̂2 = −30, q2

3
= 117, q̂3 =

108, q2
4
= 208, q̂4 = −192} for H1, H

′

1
, H2, H

′

2
respectively.

where

|ψ3(x̃k, t)〉 = e−iH2teiH
′
1
te−iH1t|ψ0〉, |ψ1(x̃k, t)〉 = e−iH

′
2
t|ψ0〉 ,

|ψ2(x̃k, t)〉 = eiH
′
1
te−iH1t|ψ0〉, |ψ̃2(x̃k, t)〉 = eiH2te−iH

′
2
t|ψ0〉 . (5.4)

Therefore, we get two different overlaps with the same magnitude. Hence we get two

different types of Fidelities in terms of states involved in the overlap. We will label 〈ψ1|ψ3〉
as Fidelity F1 and 〈ψ̃2|ψ2〉 as Fidelity F2. Note that, one can also consider the reverse

combination of states, when defining Fidelity, such as 〈ψ2|ψ̃2〉 and 〈ψ3|ψ1〉. These extra

overlaps will not change the qualitative feature of our results, therefore, for illustration

purposes we will ignore them. After performing the appropriate number of evolutions,

we compute the corresponding complexities. Our computation is summarized in figure 10.

Once again we see that the complexity for the LE is always larger than complexity computed

for any combinations of intermediate states corresponding to Fidelity. This result can be

written as

C(ψ4,ψ0)
LE (Ũ) > C(ψ3,ψ1)

F1
(Ũ) > C(ψ2,ψ̃2)

F2
(Ũ) (5.5)

The superscripts denote the pair of wave functions for which we compute the complexity.

Now there are several comments are in order.

• We made an important assumption here that, each evolution (forward and backward)

are done by a different Hamiltonian. Let us try to elaborate this point. For the
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case of LE (〈ψ0|ψ4〉) in the above example, |ψ4〉 is being generated from |ψ0〉 by 4

evolutions by 4 different Hamiltonians.19 One can obviously generalize this argument

for any number of evolutions. Now once we fix the set of the Hamiltonians entering

in LE, we can easily compute various types of Fidelity by distributing this same set of

Hamiltonians in various different ways such that quantum mechanically all of these

overlaps will be the same. For the case stated earlier, there will be two distinct types

of fidelities namely, 〈ψ1|ψ3〉 and 〈ψ̃2|ψ2〉.

• Another point is that, for the purpose of these computations our starting point is

always the ground state of the Hamiltonian (for example |ψ0〉 in the equation (5.1))

which is of the form (2.1). All the other states are constructed by evolving this

ground state.

• If we do not impose the above constraints (especially the first one) our arguments

will fail. To illustrate this let us consider the two evolution case as discussed in

the section 4 as an example, however, this can be generalized for any number of

evolutions. Now if we consider the following scenario:

|ψ0〉 = eiH1t|φ0〉 ≡ |φ1〉,
eiH

′
1
te−iH1t|ψ0〉 = |ψ2〉 = eiH

′
1
t|φ0〉 ≡ |φ̃1〉,

|ψ̃1〉 = e−iH
′
1
t|ψ0〉 = |ψ̃1〉 ≡ e−iH

′
1
teiH1t|φ0〉 ≡ |φ2〉, (5.6)

then (under time reversal) the LE, 〈ψ2|ψ0〉 will become fidelity 〈φ̃′1|φ1〉 in terms of

φ’s and vice versa. Consequently our conclusion in (4.19) will be reversed:

C(ψ2, ψ0) > C(ψ̃1, ψ1)↔ C(φ2, φ0) < C(φ̃1, φ1) (5.7)

Now notice that, the second line of the equation (5.6) gives |ψ2〉 ≡ |φ̃1〉, when we

substitute the first equation as follows:

eiH
′
1
te−iH1t|ψ0〉 = eiH

′
1
te−iH1teiH1t|φ0〉

|ψ2〉 = eiH
′
1
t|φ0〉 (5.8)

Therefore,

|ψ2〉 ≡ |φ̃1〉 (5.9)

Note that (5.8) is leading to (5.9), since we are using the hamiltonian H1 to backward

evolve |φ0〉 to get |ψ0〉. This hamiltonian is also used to forward evolve |ψ0〉 on the

second line of (5.8). Now as we have restricted ourselves (mentioned in the first

bullet point) to the case where each of these forward and backward evolutions has

been done with different Hamiltonians this situation can easily be avoided. Hence

our conclusion will be valid.

• Last but the not the least, the result in (5.5) does not depend on whether we are

performing a forward or a backward evolution and also does not depend on the degree

to which these Hamiltonians differ from each other.
19We thank the referee for raising this point.
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Figure 11. Evolution with eight Hamiltonians. We have used the following set of parameters:

{q2
0
= 5, q̂0 = 4} for H0(for , t ≤ 0) and {q2

1
= 20, q̂1 = 16, q2

2
= 34, q̂2 = −30, q2

3
= 117, q̂3 =

108, q2
4
= 208, q̂4 = −192, q2

5
= 325, q̂5 = 300, q2

6
= 468, q̂6 = −432, q2

7
= 637, q̂7 = 588, q2

8
=

832, q̂8 = −768} for H1, H
′

1
, H2, H

′

2
, H3, H

′

3
, H4, H

′

4
respectively.

Now given these facts we next try to generalize our results. We can perform the same

operations for arbitrary number of different Hamiltonians, leading to arbitrary number

of evolutions for the state. We have tested this for 8 different evolutions with different

Hamiltonians and interestingly, we find that the complexity corresponding to Loschmidt

echo is always larger than any possible fidelity. Moreover, for different fidelities, the number

of evolutions performed on reference state dictates the magnitude of their complexities.

This is shown in the figure 11.

This result motivate us to make the following conjecture:

Overlap with the largest number of evolutions acting on the same reference state

always corresponds to the highest complexity.

C(ψn,ψ0)
LE (Ũ) > C(ψn−1,ψ1)

F1
(Ũ) > C(ψn−2,ψ2)

F2
(Ũ) > .. . . . > C(ψn/2,ψ̃n/2)

Fn
(Ũ). (5.10)

This result implies, although the closeness between two states (overlap) does not change

with unitary evolutions, they are very different from the perspective of a quantum circuit

and the difficulty (in terms of complexity) of getting an evolved target state from the

other. And our analysis also gives us a guideline about pairs for which it is easier to move

between states in the sense of complexity. It tells us which pair of states will have the

smallest complexity for a given set of Hamiltonians.

One interesting feature of these differences in complexity for the overlaps is that they

do not die away with time. The differences are small at very early time, but it become fixed
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as soon as the complexities saturate. Moreover, our analysis indicates an upper bound on

the complexity for a given overlap evolved with a fixed number of Hamiltonians. Since as

overlaps they are all the same, this comparison by complexity can be seen as comparing

the same quantity from different ways, therefore, by abusing the language we can say

that, any pair other than the pair with maximum complexity will have uncomplexity or

resources [24]. In our language,

The complexity corresponding to the Loschmidt Echo will always have the high-

est complexity. Therefore, the complexity corresponding to the Fidelity will

have resources.

Given the recent experimental advances one can possibly simulate these overlaps in an

experimental setting [96, 104, 105]. Our complexity analysis is providing us with the most

efficient (optimal) quantum circuit needed to simulate the time evolution, hence providing

a natural selection mechanism. Note that quantum mechanically all of these overlaps are

the same. Therefore, this test will reduce the difficulties of experimental implementation

in the sense that it can be obtained by constructing a quantum circuit with a minimal

number of gates.

Before ending this section, we want to further clarify what we meant by having re-

sources. Again, let’s assume that we want to make overlap measurements (say, for two

steps of evolutions) in the lab. We can measure either Loschmidt Echo or Fidelity since

quantum mechanically the result is the same. Now suppose we are being supplied with

either ψ1 or ψ̃1, apart form ψ0 then our result implies that it is easier to measure Fidelity

as the complexity between the states entering in Fidelity is less compared to the complexity

between the states entering in Loschmidt Echo. Note that, if we do not have either of ψ1 or

ψ̃1, but only ψ0 then of course we will loose this advantage since then we have to also take

into account the complexity of simulating ψ1 or ψ̃1 from ψ0. We will have this advantage

only when we are being supplied with either ψ̃1 or ψ1. This is precisely what we meant by

having resources i.e having possession of states with some extrinsic complexity (w.r.t. ψ0).

6 Evolution of complexity: local vs non-local theory

In this section, we explore the evolution of complexity in a different context; to highlight

the point, we show results obtained from the circuit complexity method (section 3.2), but

our discussion is applicable to the other two methods as well (discussed in sections 3.1

and 3.2).

As seen in figure 5, CLE(Ũ) and CF(Ũ) grow almost instantaneously, and then fluctuate

around a constant value.20 While the fluctuations are not unexpected [24], the fast growth is

not in conformity with some of the expectations in the existing literature [24]. Furthermore,

we have found the complexity attains saturation faster than the entanglement entropy [69,

107]. Although it is a bit early to do a direct comparison with Holography, we note that

this feature contradicts the holographic expectations, namely that the complexity grows

20This behavior was observed for all values of the parameters considered.
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Figure 12. Comparison between early time growth of circuit complexity for local and non-local

theory.

more slowly than the entanglement and attains saturation much later. We will address this

issue of the different time scales in upcoming works [69, 107].

One might expect that this issue can be cured by considering interacting theories; here

we take an alternative route — we consider a Hamiltonian of the form in eq. (2.3), but

with a more general dispersion relation, namely

ωk =

(

q2 + q̂ cos

(

2πk

N

))α/2

. (6.1)

For α = 1, this is the model considered in this work; here we consider (positive and negative)

integer values of α with |α| > 1 i.e. we consider a non-local theory. Figure 12 shows the

early time (t < 10) behavior of the circuit complexity for both CLE(Ũ) and CF(Ũ) for several

values of α.21 Notice that the complexity grows for a substantial amount of time in these

non-local theories i.e. we get the desired time-dependence of the complexity; the more non-

local the theory is, the slower the rate of growth. [Also notice that the difference between

CLE(Ũ) and CF(Ũ) becomes more pronounced as the theory becomes more non-local.] In

non-local theories, the entanglement entropy exhibits volume-law scaling (compared to the

area-law scaling exhibited by local theories) [106]; we speculate the volume-law (or area-

law) scaling of the entanglement entropy is related to the growth of the complexity. We

investigate this in detail in a forthcoming paper [107].

7 Discussion

In this work, we proposed a litmus test, titled LE vs F Test, to distinguish between dif-

ferent methods of computing complexities. This test was predicated on the fact that an

overlap between two states is invariant under unitary evolution; we categorized the dif-

ferent overlaps as Loschmidt echo and fidelity and computed the complexity between the

states involved in the overlap. The idea was to investigate if the different measures of

complexity are sensitive enough to capture the evolution of states; intriguingly we found

that only circuit complexity from the Nielsen approach passes the test. This lead us to

conclude that circuit complexity from the Nielsen approach is a more sensitive method, at

least from the perspective of sensing time evolution of states. Finally, we examined the

21We have set N = 500 and used the values of the parameters in eq. (4.16).
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nature of the growth of complexity for our model — the complexity grows very quickly,

saturates, and then exhibits fluctuations around the saturated value. We observed that

if we make the theory non-local (namely, considered a dispersion relation of the form in

eq. (6.1) with |α| > 1), the complexity grows more slowly.

There are many interesting directions to pursue. It is important to understand the

issue of the time scales, namely the relation between the equilibration time and the time

for the complexity to saturate. Until now, we have worked primarily in a discretized

set-up; we would like take a continuum limit to make better contact with (continuous)

QFTs. Moreover, to make contact with holography, it is important to generalize our

results to interacting theories; toward that goal, one starting point could be to use the

construction of [66]. It is known that the Loschmidt echo can be used as a diagnostic for

chaos, and one can extract information about the Lyapunov exponent from it [96, 102];

it would be interesting to evaluate CLE(t) for chaotic theories and study its relation to

chaos. Furthermore, it would be valuable to extend this construction to mixed states,

which would create a platform to test some of the holographic results related to sub-region

complexity [42]. Last but not the least, tensor networks provide useful ways to represent

the time evolution of wave functions [108]; it would be interesting to understand if this

kind of computation could shed light on the optimal network required to represent time

evolution, thereby improving such constructions. One could also study the causal structure

of spacetime [109], and understand the connection between our construction and various

path integral approaches [95, 110–112].
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A Time evolution of the ground state wave function

In this appendix, we provide the details for obtaining the time-evolved wave function (3.27),

starting from the ground state of the Hamiltonian (2.6a).

The ground state of (2.6a) is given by

ψ(x̃k, 0) =

N−1
∏

k=0

Nk(t = 0) exp
(

− 1

2
ωk x̃k

)

(A.1)

with Nk(t = 0) =
(

ωk
π

)1/4
. The time-evolved wave function (3.27) is obtained via

ψ(x̃k, t) =
N−1
∏

k=0

Nk(t = 0)

∫ ∞

−∞
dx̃′kK

k(x̃k, t|x̃′k, t = 0) exp
(

− 1

2
ωkx̃

′
k

)

, (A.2)

where the kernel is

Kk(x̃k, t|x̃′k, t = 0) = 〈x̃k| exp(−i tH1(q1, q̂1, q
′
1))|x̃′k〉 , (A.3)

with H1(q1, q̂1, q
′
1) defined in (2.6b); explicitly,

Kk
(

x̃k, t|x̃′k, t = 0
)

(A.4)

=

(

ω1,k

i 2π sin (ω1,k t)

)1/2

exp

{

i ω1,k

2

[

((x̃k)
2 + (x̃′k)

2) cot(ω1,k t)
]

− 2 x̃k x̃
′
k

sin(ω1,k t)

}

.

Carrying out the Gaussian integral(s), one obtains

ψ(x̃k, t) =

N−1
∏

k=0

Nk(t) exp
(

− 1

2
Ωkx̃

2
k

)

, (A.5)

where

Ωk = ω1,k

[

ω1,k − i ωk cot (ω1,k t)

ωk − i ω1,k cot (ω1,k t)

]

,

Nk =
(ωk
π

)1/4
[

1

ωk − i ω1,k cot (ω1,k t)

]1/2( ω1,k

i sin (ω1,k t)

)1/2

.

(A.6)

B Choice of the reference state

In the main text, we discussed the complexity associated with the two overlaps (1.1)

and (1.2). For that we computed the relative complexity between some time evolved

state and the ground state of the Hamiltonian (2.6a). In general, given a target state,

the value of the complexity depends on the choice of reference state. A natural choice for

the reference state is an unentangled state, namely a state which has no entanglement in

the original coordinate basis; this unentangled reference state is the ground state of the

ultra-local Hamiltonian

H0 =
1

2

∑

k

[

p̃kp̃−k + ω2
0 x̃kx̃−k

]

, (B.1)
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where ω0=constant i.e. it is dispersionless. Here we compute the complexity w.r.t. such an

unentangled state, for the sake of the comparison with results in the main text.

With respect to this state, one can readily write down the expression for the complexity

as evaluated in sections 3.2 and 3.3 — we replace ωk by ω0 in (3.44) and (3.64). The

complexity from the Fubini-Study approach, however, is more involved; in what follows,

we outline the calculation. As done in section 2, one can diagonalize H0 by introducing

x̃k =
1√
2ω0

(

ck + c†−k

)

, p̃k =
1

i

√

ω0

2

(

ck − c
†
−k

)

; (B.2)

one obtains

H0 =

N−1
∑

k=0

ω0

(

c†kck +
1

2

)

. (B.3)

Next the operators {ak, a†−k} of (2.6a) are related to {ck, c†−k} via
(

ck
c†−k

)

=

(

U0
k V0k
V0k U0

k

)(

ak
a†−k

)

, (B.4)

where

U0
k =

ω0 + ωk

2
√

ω0ωk
, V0k =

ω0 − ωk
2
√

ω0ωk
, (B.5)

with |U0
k |2 − |V0k |2 = 1. Then the ground state of H0, which we denote by |ψr〉, is given in

terms of ground state of (2.6b) as

|ψr〉 =
∏

k=0

1

(U0
k )

2
exp

[

γ0k a
†
ka

†
−k

]

|k,−k〉, (B.6)

where |k,−k〉 is the {ak} (Fock) vacuum and γ0k =−2
(

V0
k

U0
k

)

. With respect to this state (B.6),

the complexity for the time-evolved state (3.11) is given by eq. (3.21) with

θ1,k = 2arctanh |γ0k | , θ2,k = 2arctanh |γ1,k| , φ1,k = π, φ2,k = arccos
[

Re
( γ1,k
|γ1,k|

)]

. (B.7)

C A perturbative proof of CLE(Ũ) = CF (Ũ) for Fubini-Study and covari-

ance matrix method

Here we present a perturbative proof for the equivalence of the two expressions in (4.17)

and (4.20). We show below, CLE(Ũ) = CF (Ũ), to the leading order in small time expansion.

LE vs F test using Fubini-Study method. From (3.12) and (4.10), αi,k, βi,k, µi,k for

i = 1, 2 are of O(t), in fact linear in t. Now we expand all the expressions in small t and

keep only the leading order term.

sinh(µi,k) = µi,k +O(t2) + · · · ,
1

cosh(µi,k)− βi,k
2µi,k

sinh(µi,k)
= 1 +O(t) + · · · , i = 1, 2.
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So from (3.10) and (4.10) we can easily approximate γi,k for i = 1, 2 as follows,

γ±i,k = αi,k +O(t2) + · · · , i = 1, 2. (C.1)

Also,

γ̂k = γ+2,k +
γ+1,kγ

0
2,k

1− γ+1,kγ−2,k
= γ1,k + γ2,k +O(t2) + · · · = α1,k + α2,k +O(t2) + · · · . (C.2)

From this we get,

arctanh |γ̂k| = |γ̂k| = |α1,k + α2,k|+O(t2) + · · · . (C.3)

Next,

θi,k = 2 arctanh |γ1,k| = |γi,k|+O(t2) + · · · , i = 1, 2. (C.4)

Using this we make the following expansion,

Re

(

γ1,k
γ2,k

|γ2,k|
|γ1,k|

)

= 1 +O(t2) + · · · (C.5)

and

arccosh

[

cosh (θ1,k) cosh (θ2,k)− sinh (θ1,k) sinh (θ2,k)Re

(

γ1,k
γ2,k

|γ2,k|
|γ1,k|

)]

=
1

2
|α1,k + α2,k|+O

(

t2
)

+ · · · . (C.6)

Then from (4.17) we can easily see that,

CLE
(

Ũ
)

= CF
(

Ũ
)

= t

√

√

√

√

N−1
∑

k=0

(

ω2,k ŨkṼk − ω1,k UkVk
)2

+O
(

t2
)

+ · · · ,

=
t

2

√

√

√

√

N−1
∑

k=0

(

ω2
1,k − ω2

2,k

ωk

)2

+O
(

t2
)

+ · · · .

(C.7)

LE vs F test using covariance matrix method. From (3.29), small t expansion gives,

Re(Ωk) = ωk + t2 ωk
(

ω2
1,k − ω2

k

)

+O(t3) + · · · ,
Im(Ωk) = t

(

ω2
1,k − ω2

k

)

+O(t2) + · · ·
(C.8)

We obtain similar expressions for Ω1,k with ω1,k in the above expressions replaced by ω2,k.

Then we get,

|Ω1,k|2 + |Ωk|2 − 2Im(Ω1,k)Im(Ωk)

= 2ω2
k + t2

(

(ω2
1,k − ω2

2,k)
2 + 2(ω2

1,k + ω2
2,k)ω

2
k − 4ω4

k

)

+O(t3) + · · · .
(C.9)
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Also we have,

1

2Re (Ω1,k)Re (Ωk)
=

1

2ω2
k

− t2
(

ω2
1,k + ω2

2,k − 2ω2
k

2ω2
k

)

+O
(

t3
)

+ · · · . (C.10)

Putting all these together we finally get,

(

arccosh

(

Re(Ω1,k)
2+Re(Ωk)

2+(Im(Ω1,k)−Im(Ωk))
2

2Re(Ω1,k),Re(Ωk)

))2

= t2
(ω2

1,k−ω2
2,k)

2

ω2
k

+O(t3)+· · · .
(C.11)

On the other hand from (4.15) we can easily see that,

Re(Ω̂k) = ωk + t2 ωk
(

ω2
2,k − ω2

1,k

)

+O(t3) + · · · , Im(Ω̂k) = t
(

ω2
1,k − ω2

2,k

)

+O(t2) + · · · .
(C.12)

Using this it’s not hard to show that,

(

arccosh

(

ω2
k + |Ω̂k|2

2 ωkRe(Ω̂k)

))2

= t2
(ω2

1,k − ω2
2,k)

2

ω2
k

+O(t3) + · · · . (C.13)

Then from (4.20) we get,

CLE
(

Ũ
)

= CF
(

Ũ
)

=
t

2

√

√

√

√

N−1
∑

k=0

(

ω2
1,k − ω2

2,k

ωk

)2

+O
(

t2
)

+ · · · (C.14)

This proves our claim. We leave the more general proof (non-perturbative in t) for a future

investigation. Interestingly we observe that at this order expressions mentioned in (C.7)

and (C.14) are equal to each other.
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