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Abstract

The Einstein–Podolsky–Rosen (EPR) pair of qubits plays a critical role inmany quantumprotocol

applications such as quantum communication and quantum teleportation. Due to interactions with

the environment, an EPR pair can lose its entanglement and no longer serve as a useful quantum

resource. On the other hand, it has been suggested that introducing disorder into environmentmight

help prevent thermalization and improve the preservation of entanglement. Here, we theoretically

investigate the time evolution of quantumentanglement of an EPRpair in a random-fieldXXZ spin

chainmodel in theAnderson localized (AL) andmany-body localized (MBL) phase.Wefind that the

entanglement between qubits decreases and approaches a plateau in theAL phase, but shows a power-

lawdecrease after some critical time determined by the interaction strength in theMBL phase. Our

findings shed light on applying AL/MBL to improve quantum information storage, and can be used as

a practical indicator to distinguish theAL andMBLphase.

1. Introduction

AnEinstein–Podolsky–Rosen (EPR) pair is a pair of qubits which are in amaximally entangled state. Due to their

perfect quantum correlations, EPRpairs lie at the heart ofmany important proposals for quantum

communication and computation, such as quantum teleportation [1, 2]. In reality, however, due to the

unavoidable decoherence induced by coupling to the surrounding environment, an EPRpairmight become a

state ρ that losses entanglement after a certain time,making this qubit pair no longer useful as a quantum

resource. One of themain tools to overcome the decoherence is a protocol named entanglement distillation

[3, 4]. Thismethod can be used to transformNc copies of less entangled states ρ back into a smaller numberm of

approximately pure EPRpairs by using only local operations and classical communication (LOCC), where the

ratiom/Nc depends on the amount of entanglement left in ρ. Therefore, it is of great interest to design quantum

information storage devices that can keep a strong quantum entanglement for a long time to improve the

distillation efficiency. In this work, we study the possibility of preserving quantum entanglement in a localized

environment by introducing strong disorder.

The idea that disorder can help protect initial correlations and information isfirst proposed byAnderson in

1958.He focused on the behavior of non-interacting particles experiencing a randompotential, which is now

named as Anderson localization (AL) [5]. In AL, the diffusion of a particle’s wave-packet in a disordered

environment is absent, implying the initial information of the positions is ‘remembered’. Extending this concept

to an interacting system, namelymany-body localization (MBL), has attractedmany people’s interest including

Anderson himself. Recently, this field has attracted significant attention [6–8], partially due to the rapid progress

in ultracold atomic experiments that hasmade quantum isolatedmany-body systemswith tunable interaction

and disorder available, including ultracold atoms in optical lattices [9–11] and ion traps [12]. These

experimentally available systems constitute promising platforms for exploring the AL andMBLphases and

stimulated a series of theoretical studies.Many remarkable properties of these localized phases have since been

theoretically predicted: Poisson distributions of the energy gap [13, 14], absence of transportation of charge,
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spin,mass or energy even at high temperature [15–17], protecting quantumorder and discrete symmetry that

normally only exists in the ground state [18–21], and existence of amobility edge [22–24]. In particular,

quantum entanglement has been discovered to play an important role in identifying different phases: energy

eigenstates in localized phases have an area-law bipartition entanglement entropy, in contrast to the volume-law

entropy of a thermalized state [25, 26]. In addition, after a sudden (global or local) quench, the entanglement

shows a fast power-law spreading in a thermal phase, but only a slow logarithmic spreading in anMBLphase and

no spreading at all in anAL phase [27–29]. The slow entanglement spreading in the localized phases is restricted

by a variant of the Lieb–Robinson bound on the information light-cone, which can in principle be observed via

out-of-time-order correlations (OTOC) [30–32]. This slow-spreading of entanglement also suggests that the

local correlationsmight bemaintained for a long time in a localized environment, which has a potential

application in quantum information storage. Indeed, it has been shown that deep in the localized phase, the

quantum coherence of local degrees of freedom, e.g. a single qubit, canmaintain for a very long time [33, 34].

However, to the best of our knowledge, whether disorder can also help to protect quantum entanglement

between qubits has never been directly studied. (The difference between behaviors of decoherence and

entanglement in a localized environment is discussed in appendix C.)

In this work, we focus on studying the time evolution of the quantum entanglement between an EPRpair

shared by two observers, namely Alice and Bob, and coupled to a localized environment. The rest of the paper is

organized as follows. In section 2, the details of ourmodel set-up to study this problem is outlined. The

numerical results are reported in section 3 and an analysis of these results usingℓ-bitmodel are present in

section 4. A summary of our study is given in section 5.

2.Model

As a concrete example, we conduct our analysis on a prototypeHamiltonian that has been studied extensively in

theMBL literature: a one-dimensional s=1/2 spin chainXXZHamiltonianwith nearest neighbor interactions,

H J s s s s s s h s , 1
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where J andΔ are the coupling constant, and hi are random fields uniformly distributed over [−h, h]. The

parameter L′ that determines the upper limit of the summation can be used to conveniently implement open

boundary condition or to decouple the last spin. The totalmagnetization S sz i i
zº S is a good quantumnumber,

and hencewewill restrict our calculation for Sz=0 hereafter (unless otherwise specified).Wewant to

emphasize here that the spin–spin interactingHamiltonian is chosen not only because its localized phase has

beenwell studied, but also because in some cases, themain source of decoherence for qubits is from their

interactionwith unwanted environment spins.We also remark here that theHamiltonian in equation (1) can be

mapped onto a Fermi–Hubbardmodel using a Jordan–Wigner transformation, where J is equivalent to the

hopping coefficient andΔ is equivalent to the interaction strength. Thus, with strong enough disorder h the spin

chain is expected to be in the AL (MBL) phase forΔ=0 (Δ¹ 0).

We prepare an initial state in the formof 0 EPR NEEL EABY ñ = ñ Ä ñ∣ ( ) ∣ ∣ (unless otherwise specified), where

the subscript A stands for Alice’s spin, B stands for Bob’s, and E stands for all the other spins serving as an

environment. The environment is prepared in aNéel statemimicking a high-temperature environment and is

initially not entangledwith the EPRpair of the spins A andB.We then study the time evolution of this state under

theHamiltonian in equation (1) using exact diagonalization, obtaining the reduced densitymatrix ρ of the spin

pair A andB by tracing out all the environment spins and calculating quantum entanglementmeasurements that

are usually averaged overmany realizations of disorder (typically 1000 times). The details of numerical

calculation are given in appendix A. The quantum entanglementmeasurement we focus on here is the

logarithmic negativity is given by S Nlog 1N 2= +( ), where the negativityN, is ameasure related to the Peres–
Horodecki criterion: N 2 max 0,i im= å -( ) [35, 36]. Here,μi is the eigenvalues of ρ

Λ that is the partial

transpose of ρ.Wewould like to remark here that the logarithmic negativity, even though lacks convexity, is a

full entanglementmonotone that does not increase on average under a general positive partial transpose

preserving operation aswell as LOCC [37]. In addition, the logarithmic negativity serves as the upper bound of

distillable entanglement that limits the amount of nearlymaximally entangled qubit pairs that can be

asymptotically distilled fromNc copies of ρ [3, 4].

In our current set-up, two scenarios can be studied: in the first scenario shown infigure 1(a), Bob is isolated

from the environment, which resembles a quantum communication or quantum teleportation situation; in the

second scenario illustrated infigure 1(b), bothAlice and Bob are in contact with the same environment

mimicking a quantum calculation realization. To be specific, we usually put Alice’s (Bob’s) spin at the left (right)

end of the chain, the initial state can thus be expressed explicitly as

2
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where the subscript gives the site number of the corresponding spin, and c=2, 3 ..., L−1, where L is the
number of sites in the spin chain. In scenario one, the last spin (Bob’s spin) is decoupled from the system

[L′=L−2 in equation (1)] and experiences no on-site potential (hN=0); in scenario two, Bob’s spin is
coupled to the spin chain, andwe set L′=L−1 to implement the open boundary condition. Our numerical

results show that the entanglement decreases in both scenarios and their evolution has similar qualitative

behavior. The decrease of entanglement between Bob andAlice’s spin can be understood by themonogamy

properties of entanglement, i.e., a given spin that ismaximally entangledwith another spin cannot be entangled

with any other spins. This implies that if Alice’s spin is entangledwith other spins in the spin chain, it can no

longer form an EPRpair with Bob’s spin. The spreading of entanglement in the spin chain causes the decrease of

entanglement betweenAlice and Bob’s spins. In addition, Bob’s spin is completely decoupled fromAlice’s spin

in scenario one; while in scenario two, Bob’s spin is usually very far away fromAlice’s spinwith no presence of

long-range interaction.Hence, there is no or very little direct entanglement generation betweenAlice and Bob’s

spins in both scenarios, and the evolution of entanglement ismostly determined by the spreading of

entanglement in the spin chain, which explains the similarity of entanglement evolution in the two scenarios.

Hereafter, we focus on discussing the logarithmic negativity for scenario one. These discussion and conclusions

are however applicable for other entanglementmeasurements such as concurrence and entanglement of

formation in both scenarios. These details are discussed in appendix B.

3. Results

3.1. Entanglement evolution

Figure 2 shows ourmain result, the logarithmic negativity betweenAlice and Bob as a function of time in

scenario one, with disorder strength h=3J for different numbers of spins L (including Alice and Bob’s spins)

andΔ=0 (10−2) for the AL (MBL) phases. Initially, the entanglement is prepared atmaximum SN(0)=1. At

around t≈1/J, the entanglement in bothAL andMBLphases shows a power-law decay following some

oscillations, which has been recognized as the diffusion of an initial state to the size of the localization length.

After a critical time tc≈1/Δ, the entanglement in theMBL andALphases shows dramatically different

behavior. The entanglement inAL phases converges to a constant value independent of the spin chain size L,

where all curves for different L are visually overlapping. In contrast, the entanglement in theMBLphases shows a

power-law decay∼t− v, with v>0, which is emphasized by the linear behavior on a log–log scale infigure 2. Due

to thefinite size of our system, the entanglement in theMBLphaseswill eventually also saturate to some constant

value after a significant time.Nevertheless, as illustrated in the inset offigure 2, thefinal saturated values are

shown to decrease exponentially as a function of spin chain size Lexp b~ -( ), whereβ is a constant.

From these observations, one can expect that the entanglement inAL phasewill never reduce to zero, but

become a constant depending only on disorder strength even in the thermodynamic limit L  ¥. On the other

hand, nomatter how small the interaction strengthΔ is, the entanglement will be dissipated after an infinitely

long time in the thermodynamic limit. However, this dissipation is very slow if the disorder is strong enough. In

addition, the entanglement of the AL phase andMBLphases only becomes different after the critical time tc. IfΔ

is small, the entanglement in theMBLphase can still be preserved before tc.

Figure 1.A sketch of the two scenarios studied here. (a)Thefirst scenario, where bothAlice and Bob’s spins are immersed in the same
disordered environment. (b)The second scenario, where Bob is isolated from the environment that Alice experiences.
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Wecan conclude that theALphase is ideal for creating quantum storage devices to preserve quantum

entanglement between a qubit pair.On theother hand, if aweak interaction strengthΔ is unavoidable in the

system, theMBLphase can still be applied to preserve entanglementwith an expiration time tc. After carrying out

an entanglement distillation [3, 4], the qubit pair is then ready for quantumcommunication or teleportation.We

alsowish to emphasize here that thepreservationof entanglement between twoqubits in a localized environment

is, of course, not better than in a completely decoupled environment.However, in a realistic situationwhere

coupling between thequbit pair and the environment cannot be eliminated, our study provides a genericway of

preserving entanglementwithout a specificfine tuning of theHamiltonian but simply introducing strong enough

disorder into the environment. For example, themain source of decoherence for nitrogen-vacancy (NV) centers in

diamond are their interactionwith randomly distributed 13Cnuclear spins [7].Wenote that theNVcenters have

alreadybeen applied tomake quantummemory [38], therefore our proposal to introduce disorder innearby spins

can be regarded as an improvement of thequantummemory.

Our results can also be directly applied to identify the localized phase being AL orMBL.Most previous such

studies have focused on studying the bipartite entanglement, i.e. dividing the system into two sub-systems, of an

initial product state after a global quench or an energy eigenstate after a local quench [27–29]. The experimental

observation of bipartite entanglement in principle can be very challenging for a large system, andmay even be

impossible in the thermodynamic limit. On the other hand,measuring entanglement between local degrees of

freedom in an optical lattice [39] and trap ions [40, 41] has been recently explored,motivating the studies of

entanglement between local sites, where the entanglement between local degrees of freedom ismore

experimentally accessible [42–44]. These studies usually focus on the casewhere the initial state is a product state

and a temporary entanglement generated due to initial diffusion. TheAL andMBL features are analyzed by the

decay of this temporary entanglement that is decreasing exponentially as a function of distances between sites in

the deep localized phase. Therefore, these studies are usually limited to entanglement between nearest few sites.

Ourmethods, using an initial prepared EPRpair, can in principle overcome these limitations and be

experimentally accessible.

3.2. Logarithmic light-cone

Our study also gives an interesting insight into the nature of entanglement spread inMBLphases. The power-law

decay and the saturated values of entanglement inMBLphases suggest that we can define a saturation time scale

ts, where the entanglement inMBLphases is saturating, as v t Llog s ~( ) , which resembles the logarithmic light-

cone found in previous bipartite entanglement studies [27–29]. This logarithmic light-cone can be understood

from themodified Lieb–Robinson bound of information spreading (in this case entanglement spreading) in

systemswith short-range interactions [45]. One convenient and commonway to describe the Lieb–Robinson

bound is to compare the time evolution of a local observableA (at site iA) under the fullHamiltonianHwith its

time evolution under a truncatedHamiltonianHL, which only includes interactions contained in a region of

distance nomore than L. Under certain assumptions, amodified Lieb–Robinson bound

Figure 2. Logarithmic negativity inAL (Δ=0J) andMBL (Δ=10−2J) phases as a function of time for disorder strength h=3 and
different spin chain length L in scenario one. The dashed line helps to highlight the power-law decay behavior in theMBL phases. The
inset shows thefinal saturation values of entanglement SN ¥( ) inMBLphases as a function of L, where the error bar shows the
variance from averaging over different disorder realizations. The dashed line shows a exponential fit of S LexpN ¥ ~ -( ) ( ).
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A t A t at ae eL L v L v t vlog- =- - -∣ ( ) ( )∣( ) ( ) has been proposed forMBL systems [46], where a, v>0 are all
constants, A t A0 e e 0Ht Hti iy y= á ñ-( ) ( )∣ ∣ ( ) and A t A0 e e 0L H t H ti iL Ly y= á ñ-( ) ( )∣ ∣ ( )( ) . The underlying physics is

clear: at time t the degrees of freedomoutside the light-cone is not entangledwith the degrees of freedomat iA.

Therefore, the time evolution of observableA can be approximated by only considering the effects of the degrees

of freedomswithin the light-cone.

Even though entanglement is technically not an observable, we study the quantity S S SN
L

N
L

N
L16D = -=( ) ( ) ( ) in

scenario one under the same spirit as Lieb–Robinson bound.Here, we choose to study the totalHamiltonianH

with 16 spins. Since Bob’s spin is completely decoupled from the spin chain, the truncatedHamiltonianHL only

includes spins that are within the distance L to Alice’s spin at the leftmost site, which is equivalent to a spin chain

Hamiltonianwith only L spins. The quantity SN
LD ( ) can be interpreted as the difference of entanglement

evolution between a full spin chain of L=16 and a truncated spin chain of L<16 near Alice’s spin. The results

are shown infigure 3, where one can directly see that the significant differences are constrainedwithin a

logarithmic light-cone. This is direct evidence that entanglement is spreading logarithmically in anMBLphase

as suggested by previousOTOC studies [30–32].

3.3. Effects of disorder and interaction strength

We further take a qualitative analysis of the effects of interaction strengthΔ and disorder strength h on the decay

of entanglement. Figure 4 shows the entanglement decay for differentΔ, confirming that entanglement in the

AL andMBLphases only become different abruptly after the critical time tc≈1/Δ. Furthermore, the saturated

value in theMBLphases does not vary appreciably for differentΔ. In fact, the logarithmic entanglement for

t tc is a universal function of tΔ as shownby the inset offigure 4. Interestingly, the average two-site

entanglement of a spin chain that is initially prepared in a product state also decays in time as a power-law in the

MBLphase. However, the power-law exponent is not universal and displays a clear dependence on the

interaction strength [43].We believe that this is due to the average two-site entanglement including

entanglement fromneighbor sites that are directly coupled by the Ising interaction. The Ising interaction not

only causes the spread of entanglement but also directly generate entanglement between the neighbor sites. In

contrast, Bob’s spin is completely decoupled fromAlice’s spin (and all the other spins in the chain) in our

scenario one, therefore the decay of entanglement betweenAlice and Bob only reflects the spread of

entanglement in the spin chain. Therefore, we conclude that the spread of entanglement is universal and

independent ofΔ, while the generation of entanglement between neighbor sites by Ising interaction depends on

the interaction strength.

Finally, figure 5(a) shows the entanglement decay for different h, where the decay rate becomes slower and

the saturated value becomes larger for a stronger disorder. As a result of the competition of these two effects, the

saturation time becomes longer, suggesting that a stronger disorder is beneficial for storing EPRpairs. Our

numerical results also show that the decrease of entanglement at infinite long time S1 N- ¥( ) and the decay

index v both have a power-law dependence on h, as shown infigures 5(b) and (c). This analysis can be interpreted

as a stronger disorder andweaker interaction is beneficial for preserving quantum entanglement, which is

consistent with our expectation.

Figure 3.Color plot of SN
LD ( ) in scenario one defined in themain text. The red color indicates a large value of SN

LD ( ), which is
constrained by a logarithmic light-cone.
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3.4. Non-maximally entangled state

Previous subsections focus on the situationwhere Alice and Bob’s spin form amaximally entangled EPR pair

initially. However, a perfect EPRpairmight be challenging to prepare and fragile tomanipulate. In this

subsection, we show that the entanglement evolution is also qualitatively similar for non-maximally entangled

initial state, and hence ensure the robustness of our scheme of preserving entanglement and distinguishing

AL/MBLphases.Wefirst study the case of non-maximally entangled state, 0 NEEL EABY ñ = F ñ Ä ña∣ ( ) ∣ ∣ ,

where AB a bF ñ = ñ + ña∣ ∣ ∣ and 12 2a b+ =∣ ∣ ∣ ∣ . The initial negativity and logarithmic negativity is

therefore given by N 0 2 a b=( ) ∣ ∣∣ ∣and S 0 log 2 1N 2 a b= +( ) ( ∣ ∣∣ ∣ ), respectively.When 1 2a b= = , the

system reduced to the EPRpair case.We can also study the case where the initial state is amixed state 0r =( )

0 NEEL NEELEEABr Ä ñ á( ) ∣ ∣ , wherewe choose p p I0 EPR EPR 1 4E EAB ABAB ABr = ñ á + -( ) ∣ ∣ ( ) . ρAB(0) can be

regarded as the convex combination of amaximally entangled state, EPR ABñ∣ , and amaximallymixed state, IAB.

The initial negativity and logarithmic negativity can also be given analytically asN(0)=(3pE−1)/2 and

S p0 log 3 2 1 2N E2= +( ) ( ), respectively.When pE=1, ρAB(0) reduces to an EPRpair, andwhen p 1 3E  ,

ρAB(0) becomes separable.

Figures 6 and 7 show the time evolution for different initial pure ABF ña∣ andmixed state ρAB(0), respectively.

These results show that the quantitative behavior of the entanglement evolution are quite similar regardless of

Figure 4.Entanglement decay for different interaction strengthΔ in scenario one.Here, the size of spin chain L=12 and h=3J. The
inset shows the long-time behavior of entanglement as a universal function of tΔ.

Figure 5. (a)Entanglement decay for different disorder strength hwith L=12 andΔ=10−2J in scenario one. The red thin (blue
thick) curves represent AL (MBL) phases for h=2J, 3J, 4J, 5J, 6J frombottom to top. (b)The saturated value S1 N- ¥( ) as a function
of h, the red circles (blue squares) represent AL (MBL) phase, where the solid lines are power-lawfit S h1 N

c- ¥ ~( ) . (c)The symbols
are the decay index v as a function of h, and the solid line is a power-law fit.
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whether the initial state ismaximally entangled orwhether it is pure. For t>tc the entanglement has a power-

law decay in theMBLphase and approaches to a constant value in the AL phase.While the power-law exponent

in theMBLphase and the constant value in the AL phase depend on the details ofHamiltonian, for the purpose

of identifying AL/MBLphases, our scheme is robust with respect to the different initial states.We also remark

here that, if the initial state ρAB(0) is separable, i.e. p 1 3E  , Alice and Bob’s spinwill always remain separable in

scenario one (not shown in thefigures here). This can be understood by realizing that Bob’s spin is not coupled

toAlice’s spin or any other spins in the spin chain. If they are initially separable, there is nomechanism to create

entanglement between them.

4.Discussion

In this section, we intend to understand the power-law decay of entanglement in another perspective by studying

the same physics in an effective phenomenologicalmodel, i.e., theℓ-bitmodel [47]. In the deep localized regime,

Figure 6. Logarithmic negativity SN as a function of time for L=12, disorder strength h=3 and interaction strength J J0 10 2D = -( )

for AL (MBL) phases in scenario one. Different curves are correspond to different initial states determined by parameterα. The thin
(thick) curves correspond to theAL (MBL) phases.

Figure 7. Logarithmic negativity SN as a function of time for L = 10, disorder strength h = 3 and interaction strengthΔ = 0J (10−2J)
for AL (MBL) phases in scenario one. Different curves correspond to different initial states determined by parameter pE. The thin
(thick) curves correspond to theAL (MBL) phases.
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the systempossesses an extensive number of locally conserved quantumnumbers (‘constants ofmotion’). One

can in principle construct local operators corresponding to these conserved quantumnumbers and define them

as local pseudospins {τi}, namelyℓ-bits (localized-bits), in contrast to the p-bits {si} (physical spins). One

intuitive way to construct τi is to suitably dress si at the same site with nearby p-bits so that theHamiltonian can

bewritten in the form,

H h J , 3
i

i i
z

i j

ij i
z

j
z

,

å åt t t= + +˜ ˜ ( )ℓ

where hi
˜ are random fields and J W eij ij

i j= z- -˜ ∣ ∣ are interaction terms, with hi
˜ andWij both assumed to be

randomvariables uniformly distributed in the range [−W,W], and ζ is a constant that should be determined by

the localization length. Further terms inHℓ only include n>2 products of τi’s, but no terms involving i
xt or i

yt
may appear. For simplicity, the higher order termswill be neglected and are irrelevant for our purposes. The

dynamic ofℓ-bits underHℓ is clear: allℓ-bits precess about the z-axes of their Bloch sphere with conserving i
zt ’s.

The rate of precession is however determined by all τi’s (with the effects ofℓ-bits at long distance suppressing

exponentially), which leads to dephasing.

Inspired by [43], we study theℓ-bitmodel numerically to see the effects of dephasing. The precise formof the

mapping between {τi} and {si} is not obvious, but in general, an EPR pair in p-bits cannot be directlymapped to

an EPRpair inℓ-bits. Nevertheless, we focus here on the explanation of power-law decay inMBLphase that

exists regardless of the formof initial state as long as there is entanglement. Therefore, we choose to study the

evolution of entanglement of an initial EPR pair inℓ-bits 0 EPR EAB 0Y ñ = ñ Ä F ñ∣ ( ) ∣ ∣ , where

ecos sin 4E j
L

j
i

j0 2
1 jf fF ñ = Ä ñ + ñq

=
-∣ [ ( )∣ ( )∣ ] ( )

with θj andfj assumed to be randomvariables uniformly distributed in the range of [0,π/2] and [0,2π],

respectively. Similar to the scenario onewe studied before, we assumeAlice (Bob) have the leftmost (rightmost)

ℓ-bit, and Bob’sℓ-bit is completely decoupled from all the otherℓ-bits (including Alice’s). The calculation is
averaged over 1000 distinct initial states (different realizations of {θj} and {fj}), local disorder hi

˜ and interaction

termsWij.

Figure 8 shows the power-law decay of entanglement in theℓ-bitmodel, where the final saturated constant is

afinite size effect. It is also interesting to see that the power-law exponent seems to be independent ofW but only

determined by ζ.

5. Summary

In summary, we have studied the time evolution of quantum entanglement of an EPRpair coupling to a

localization environment. This study allows us to explore the possibility and limitation of applying localization

phase to preserve quantum entanglement between qubit pairs. Our results can also be regarded as an

experimentally accessible protocol to discriminate AL andMBLphases, and understand the nature of

entanglement propagation in these systems.

Figure 8. Logarithmic negativity SN as a function of time for the ℓ-bitmodel. The thick solid curves correspond to ζ=1,W=3with
different L showing thefinite size effect. The thin curves are all for L=22with different ζ andW as shown in thefigure.
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AppendixA.Numericalmethods

Sincewe are interested in the dynamic properties of the system in the thermodynamic limit at a very long time,

ideally wewould like to study systemswith infinite size that evolve for infinite long time. But in reality, we can

onlyworkwith finite size systems in afinite time and extrapolate our expectation to infinite size and time.

Obviously, wewould like to study the largest system that evolves for long enough time. The long-time limit

makes propagationmethod such as split-operator or Crank–Nicolsonmethod, where the accuracy propagation

is limited by finite step size. Therefore, we use the conventional exact diagonalizationmethod, wherewe

Figure 9.Concurrence as a function of time for disorder strength h=5 and interaction strengthΔ=0J (10−3J) for AL (MBL) phases
in scenario two. The results for AL phases with different spin chain length L are almost overlapping each other, and the results for
differentMBLphases are indicated in thefigure.

Figure 10.Entropy of formation as a function of time for disorder strength h=5 and interaction strengthΔ=0J (10−3J) for AL
(MBL)phases in scenario two. The results for AL phaseswith different spin chain length L are almost overlapping each other, and the
results for differentMBLphases are indicated in thefigure.
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diagonalized theHamiltonian and get all the eigenstates y ñb∣ and eigenenergies Eβ. The time evolution of the

quantum state ty ñ∣ ( ) is then described by a projectedwavefunction

t 0 e ,E tiåy y yñ = á ñ
b

b
- b∣ ( ) ∣ ( )

where the accuracy is thenonly limitedby themachinery accuracy of y ñb∣ andEβ, allowingus to evolve our system to

very long time.However, the exact diagonalization for all eigenpairs is limitedby the systemsize and computation

power. In the future,we intend to apply themore advanced time-evolving block-decimation technique that basedon

matrix product state anddensitymatrix renormalization group to access larger systems.

Appendix B.Quantum entanglementmeasurements

It iswell known that vonNeumannentropy is not a valid entanglementmeasurement if the collective states are in

mixed states.However, several entanglementmeasurements have been found for apair of qubits, including

concurrence, negativity and their close relatives: the entropyof formation and logarithmicnegativity. These

entanglementmeasurements are ‘good’ in the following sense: (i) for amaximally entangled state, i.e. anEPRpair,

thesemeasurements reach theirmaximumvalues (equal one inourdefinitions); (ii) for collective separable states,

thesemeasurements vanish; (iii) is a continuous functionof densitymatrices of the two-qubit states.Notice that these

measurements, however, donot necessarily give sameordering for different entangled states.

Let usfirst give thedefinitionof the entanglementmeasurementsmentioned above.Denoting

the collective state for two selectedqubits by adensitymatrixρ, the concurrence is givenby

C max 1 2 3 4l l l l= - - -( ), where il ’s are the eigenvalues of rr̃ in descendingorder
and y y y y*r s s r s sº Ä Ä˜ . Concurrence ismonotonically related to the entanglement of formation

by theWootters formula S h C1 1 2F
2= + -[( ) ], where h x x x x xlog 1 log 12 2= - - - -( ) ( ) ( ).

Negativity is ameasure related to thePeres–Horodecki criterion: N 2 max 0,i im= å -( ), whereμi’s are
the eigenvalues ofρΛwho is thepartial transposeofρ. The logarithmicnegativity is then givenby S Nlog 1N 2= +( ).

We show the time evolution of logarithmic negativity between a pair of qubits that initially prepared to be as

an EPRpair in scenario one in themain text. Here, in thefigures 9–12, we present results of other entanglement

measures in scenario two and show that thesemeasurements are qualitatively similar, and serve the same role in

our analysis. Therefore, the discussions and conclusions of logarithmic negativity in scenario one are also

applicable for allmeasurements in scenario two.

AppendixC.Quantumdecoherence

Inspired by [33], we also study the decoherence of a spin in bothAL andMBLphase.Without loss of generality,

we initialized the second spin to the left in the chain (namely spin A) in a superposition state

2+ñ = ñ + ñ∣ (∣ ∣ ) , and all the other spins in aNel’s state. The quantumdecoherenceD can be quantified

Figure 11.Negativity as a function of time for disorder strength h=5 and interaction strengthΔ=0J (10−3J) for AL (MBL) phases
in scenario two. The results for AL phases with different spin chain length L are almost overlapping each other, and the results for
differentMBLphases are indicated in thefigure.
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by the absolute value of theoff-diagonal densitymatrix element of spinA,which is then at themaximumvalue of

0.5 initially. The dynamical evolutionof quantumcoherence can be studied similarly to the spin echo scheme in

[33].However, insteadof focusing on the canceling of time evolution by applying a time-reversalπ-pulse,we study

thedecoherencedirectly byfirst applying aπ/2-pulse to the spinA at an initial time, and anotherπ/2-pulse before

measuring the decoherenceD. The result is present infigure 13.One keydifference between thebehavior of

quantumdecoherence andquantumentanglement is the fact that quantumdecoherence in bothALandMBL

phasedecrease and saturated to afinite value in the thermodynamic limit L  ¥, where quantumentanglement

will eventually vanish inMBLphase. This can be understood as the quantumcoherence is not sensitive to the

dephasing in the system, andhence cannot distinguish thedifferences betweenALandMBLphase.

ORCID iDs

JiaWang https://orcid.org/0000-0002-9064-5245

Figure 12. Logarithmic negativity as a function of time for disorder strength h = 5 and interaction strengthΔ=0J (10−3J) for AL
(MBL)phases in scenario two. The results for AL phaseswith different spin chain length L are almost overlapping each other, and the
results for differentMBLphases are indicated in thefigure.

Figure 13.Quantumdecoherence as a function of time for disorder strength h = 5 and interaction strengthΔ=0J (10−3J) for AL
(MBL)phases. The results for AL phases with different spin chain length L are almost overlapping each other. The results for different
MBL phaseswith different spin chain length L=8, 10, 12, 14, 16 are indicated in the figure from top to bottom, where the results for
L=12, 14, 16 are almost on top of each other, showing a fast saturationwith regard to L.

11

New J. Phys. 20 (2018) 053015 JWang et al

https://orcid.org/0000-0002-9064-5245
https://orcid.org/0000-0002-9064-5245
https://orcid.org/0000-0002-9064-5245
https://orcid.org/0000-0002-9064-5245


References

[1] Ekert AK1991Phys. Rev. Lett. 67 661

[2] Bennett CH, BrassardG, CrépeauC, Jozsa R, Peres A andWoottersWK1993Phys. Rev. Lett. 70 1895

[3] Bennett CH, BrassardG, Popescu S, Schumacher B, Smolin J A andWoottersWK1996 Phys. Rev. Lett. 76 722

[4] HorodeckiM,Horodecki P andHorodecki R 1998Phys. Rev. Lett. 80 5239

[5] Anderson PW1958Phys. Rev. 109 1492

[6] BaskoDM,Aleiner I L andAltshuler B L 2006Ann. Phys., NY 321 1126

[7] AltmanE andVosk R 2015Annu. Rev. Condens.Matter Phys. 6 383

[8] Nandkishore R andHuseDA2015Annu. Rev. Condens.Matter Phys. 6 15

[9] SchreiberM,Hodgman S S, Bordia P, LueschenHP, FischerMH,VoskR, AltmanE, SchneiderU andBloch I 2015 Science 349 842

[10] Bordia P, LuschenHP,Hodgman S S, SchreiberM, Bloch I and SchneiderU 2016Phys. Rev. Lett. 116 140401

[11] Choi J-y,Hild S, Zeiher J, Schauss P, Rubio-Abadal A, Yefsah T, Khemani V,HuseDA, Bloch I andGross C 2016 Science 352 1547

[12] Smith J, Lee A, RichermeP,Neyenhuis B,Hess PW,Hauke P,HeylM,HuseDAandMonroe C2016Nat. Phys. 12 907

[13] OganesyanV andHuseDA2007Phys. Rev.B 75 155111

[14] Atas YY, Bogomolny E,GiraudO andRouxG 2013Phys. Rev. Lett. 110 084101

[15] Berkelbach TC andReichmanDR2010Phys. Rev.B 81 224429

[16] PekkerD, Refael G, AltmanE,Demler E andOganesyanV 2014Phys. Rev.X 4 011052

[17] Agarwal K, Gopalakrishnan S, KnapM,MüllerM andDemler E 2015Phys. Rev. Lett. 114 160401

[18] HuseDA,Nandkishore R,OganesyanV, Pal A and Sondhi S L 2013Phys. Rev.B 88 014206

[19] Bahri Y, Vosk R, AltmanE andVishwanathA 2015Nat. Commun. 6 7341

[20] Bauer B andNayakC 2013 J. Stat.Mech. 2013P09005

[21] ChandranA, KhemaniV, LaumannCR and Sondhi S L 2014Phys. Rev.B 89 144201

[22] LuitzD J, LaflorencieN andAlet F 2015Phys. Rev.B 91 081103

[23] Li X, Ganeshan S, Pixley JH and Sarma SD 2015Phys. Rev. Lett. 115 186601

[24] Baygan E, Lim SP and ShengDN2015Phys. Rev.B 92 195153

[25] ŽnidaričM,ProsenT and Prelovšek P 2008Phys. Rev.B 77 064426

[26] Kjäll J A, Bardarson JH and Pollmann F 2014Phys. Rev. Lett. 113 107204

[27] Bardarson JH, Pollmann F andMoore J E 2012Phys. Rev. Lett. 109 017202

[28] SerbynM, PapićZ andAbaninDA2013Phys. Rev. Lett. 110 260601

[29] DengD-L, Li X, Pixley JH,WuY-L and Sarma SDas 2017Phys. Rev.B 95 024202

[30] HuangY, ZhangY-L andChenX 2017Ann. Phys. 529 1600318

[31] ChenX, ZhouT,HuseDA and Fradkin E 2017Ann. Phys. 529 1600332

[32] FanR, Zhang P, ShenH andZhaiH 2017 Sci. Bull. 62 707

[33] SerbynM,KnapM,Gopalakrishnan S, PapićZ, YaoNY, LaumannCR, AbaninDA, LukinMDandDemler EA 2014Phys. Rev. Lett.

113 147204

[34] Bahri Y, Vosk R, AltmanE andVishwanathA 2015Nat. Commun. 6 7341

[35] Peres A 1996Phys. Rev. Lett. 77 1413

[36] HorodeckiM,Horodecki P andHorodecki R 1996Phys. Lett.A 223 1

[37] PlenioMB2005Phys. Rev. Lett. 95 090503

[38] FuchsGD, BurkardG, Klimov PV andAwschalomDD2011Nat. Phys. 7 789

[39] Fukuhara T,Hild S, Zeiher J, Schauß P,Gross C, EndresM andBloch I 2015Phys. Rev. Lett. 115 035302

[40] Jurcevic P, LanyonBP,Hauke P,Hempel C, Zoller P, Blatt R andRoosC F 2016Nature 511 202

[41] Martinez EA et al 2016Nature 534 516

[42] Bera S and Lakshminarayan A 2016Phys. Rev.B 93 134204

[43] Iemini F, RussomannoA, RossiniD, Scardicchio A and FazioR 2016Phys. Rev.B 94 214206

[44] DeTomasi G, Bera S, Bardarson JH and Pollmann F 2017Phys. Rev. Lett. 118 016804

[45] FriesdorfM,Werner AH, BrownW, Scholz VB and Eisert J 2015Phys. Rev. Lett. 114 170505

[46] Kim IH,ChandranA andAbanin1DA2014 Logarithmic entanglement lightcone inmany-body localized systems arXiv:1412.3073

[47] HuseDA,Nandkishore R andOganesyanV 2014Phys. Rev.B 90 174202

12

New J. Phys. 20 (2018) 053015 JWang et al

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevB.81.224429
https://doi.org/10.1103/PhysRevX.4.011052
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevLett.115.186601
https://doi.org/10.1103/PhysRevB.92.195153
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevB.95.024202
https://doi.org/10.1002/andp.201600318
https://doi.org/10.1002/andp.201600332
https://doi.org/10.1016/j.scib.2017.04.011
https://doi.org/10.1103/PhysRevLett.113.147204
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1038/nphys2026
https://doi.org/10.1103/PhysRevLett.115.035302
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature18318
https://doi.org/10.1103/PhysRevB.93.134204
https://doi.org/10.1103/PhysRevB.94.214206
https://doi.org/10.1103/PhysRevLett.118.016804
https://doi.org/10.1103/PhysRevLett.114.170505
http://arxiv.org/abs/1412.3073
https://doi.org/10.1103/PhysRevB.90.174202

	1. Introduction
	2. Model
	3. Results
	3.1. Entanglement evolution
	3.2. Logarithmic light-cone
	3.3. Effects of disorder and interaction strength
	3.4. Non-maximally entangled state

	4. Discussion
	5. Summary
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	References

