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Abstract

The Einstein—Podolsky—Rosen (EPR) pair of qubits plays a critical role in many quantum protocol
applications such as quantum communication and quantum teleportation. Due to interactions with
the environment, an EPR pair can lose its entanglement and no longer serve as a useful quantum
resource. On the other hand, it has been suggested that introducing disorder into environment might
help prevent thermalization and improve the preservation of entanglement. Here, we theoretically
investigate the time evolution of quantum entanglement of an EPR pair in a random-field XXZ spin
chain model in the Anderson localized (AL) and many-body localized (MBL) phase. We find that the
entanglement between qubits decreases and approaches a plateau in the AL phase, but shows a power-
law decrease after some critical time determined by the interaction strength in the MBL phase. Our
findings shed light on applying AL/MBL to improve quantum information storage, and can be used as
apractical indicator to distinguish the AL and MBL phase.

1. Introduction

An Einstein—Podolsky—Rosen (EPR) pair is a pair of qubits which are in a maximally entangled state. Due to their
perfect quantum correlations, EPR pairs lie at the heart of many important proposals for quantum
communication and computation, such as quantum teleportation [1, 2]. In reality, however, due to the
unavoidable decoherence induced by coupling to the surrounding environment, an EPR pair might become a
state p that losses entanglement after a certain time, making this qubit pair no longer useful as a quantum
resource. One of the main tools to overcome the decoherence is a protocol named entanglement distillation
[3,4]. This method can be used to transform N, copies of less entangled states p back into a smaller number m of
approximately pure EPR pairs by using only local operations and classical communication (LOCC), where the
ratio m/N,depends on the amount of entanglement left in p. Therefore, it is of great interest to design quantum
information storage devices that can keep a strong quantum entanglement for a long time to improve the
distillation efficiency. In this work, we study the possibility of preserving quantum entanglement in a localized
environment by introducing strong disorder.

The idea that disorder can help protect initial correlations and information is first proposed by Anderson in
1958. He focused on the behavior of non-interacting particles experiencing a random potential, which is now
named as Anderson localization (AL) [5]. In AL, the diffusion of a particle’s wave-packet in a disordered
environment is absent, implying the initial information of the positions is ‘remembered’. Extending this concept
to an interacting system, namely many-body localization (MBL), has attracted many people’s interest including
Anderson himself. Recently, this field has attracted significant attention [6—8], partially due to the rapid progress
in ultracold atomic experiments that has made quantum isolated many-body systems with tunable interaction
and disorder available, including ultracold atoms in optical lattices [9—11] and ion traps [12]. These
experimentally available systems constitute promising platforms for exploring the AL and MBL phases and
stimulated a series of theoretical studies. Many remarkable properties of these localized phases have since been
theoretically predicted: Poisson distributions of the energy gap [ 13, 14], absence of transportation of charge,
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spin, mass or energy even at high temperature [15-17], protecting quantum order and discrete symmetry that
normally only exists in the ground state [ 18—21], and existence of a mobility edge [22—24]. In particular,
quantum entanglement has been discovered to play an important role in identifying different phases: energy
eigenstates in localized phases have an area-law bipartition entanglement entropy, in contrast to the volume-law
entropy of a thermalized state [25, 26]. In addition, after a sudden (global or local) quench, the entanglement
shows a fast power-law spreading in a thermal phase, but only a slow logarithmic spreading in an MBL phase and
no spreading at all in an AL phase [27-29]. The slow entanglement spreading in the localized phases is restricted
by a variant of the Lieb—Robinson bound on the information light-cone, which can in principle be observed via
out-of-time-order correlations (OTOC) [30-32]. This slow-spreading of entanglement also suggests that the
local correlations might be maintained for along time in alocalized environment, which has a potential
application in quantum information storage. Indeed, it has been shown that deep in the localized phase, the
quantum coherence of local degrees of freedom, e.g. a single qubit, can maintain for a very long time [33, 34].
However, to the best of our knowledge, whether disorder can also help to protect quantum entanglement
between qubits has never been directly studied. (The difference between behaviors of decoherence and
entanglement in alocalized environment is discussed in appendix C.)

In this work, we focus on studying the time evolution of the quantum entanglement between an EPR pair
shared by two observers, namely Alice and Bob, and coupled to alocalized environment. The rest of the paper is
organized as follows. In section 2, the details of our model set-up to study this problem is outlined. The
numerical results are reported in section 3 and an analysis of these results using £-bit model are present in
section 4. A summary of our study is given in section 5.

2. Model

As a concrete example, we conduct our analysis on a prototype Hamiltonian that has been studied extensively in
the MBL literature: a one-dimensional s = 1/2 spin chain XXZ Hamiltonian with nearest neighbor interactions,

L/
H=> J(s{si1 + s/sl.) + Asfsfo) + hisf, (1)
i-1

where Jand A are the coupling constant, and 4; are random fields uniformly distributed over [—h, h]. The
parameter L’ that determines the upper limit of the summation can be used to conveniently implement open
boundary condition or to decouple the last spin. The total magnetization S, = ¥;s is a good quantum number,
and hence we will restrict our calculation for S, = 0 hereafter (unless otherwise specified). We want to
emphasize here that the spin—spin interacting Hamiltonian is chosen not only because its localized phase has
been well studied, but also because in some cases, the main source of decoherence for qubits is from their
interaction with unwanted environment spins. We also remark here that the Hamiltonian in equation (1) can be
mapped onto a Fermi—-Hubbard model using a Jordan—Wigner transformation, where ] is equivalent to the
hopping coefficient and A is equivalent to the interaction strength. Thus, with strong enough disorder /4 the spin
chain is expected to be in the AL (MBL) phase for A = 0 (A= 0).

We prepare an initial state in the form of |U'(0)) = |EPR)y3 ® |NEEL)g (unless otherwise specified), where
the subscript A stands for Alice’s spin, B stands for Bob’s, and E stands for all the other spins serving as an
environment. The environment is prepared in a Néel state mimicking a high-temperature environment and is
initially not entangled with the EPR pair of the spins A and B. We then study the time evolution of this state under
the Hamiltonian in equation (1) using exact diagonalization, obtaining the reduced density matrix p of the spin
pair A and B by tracing out all the environment spins and calculating quantum entanglement measurements that
are usually averaged over many realizations of disorder (typically 1000 times). The details of numerical
calculation are given in appendix A. The quantum entanglement measurement we focus on here is the
logarithmic negativity is given by Sy = log,(N + 1), where the negativity N, is a measure related to the Peres—
Horodecki criterion: N = 23, max (0, — ;) [35, 36]. Here, 1; is the eigenvalues of p” that is the partial
transpose of p. We would like to remark here that the logarithmic negativity, even though lacks convexity, isa
full entanglement monotone that does not increase on average under a general positive partial transpose
preserving operation as well as LOCC [37]. In addition, the logarithmic negativity serves as the upper bound of
distillable entanglement that limits the amount of nearly maximally entangled qubit pairs that can be
asymptotically distilled from N, copies of p [3, 4].

In our current set-up, two scenarios can be studied: in the first scenario shown in figure 1(a), Bob is isolated
from the environment, which resembles a quantum communication or quantum teleportation situation; in the
second scenario illustrated in figure 1(b), both Alice and Bob are in contact with the same environment
mimicking a quantum calculation realization. To be specific, we usually put Alice’s (Bob’s) spin at the left (right)
end of the chain, the initial state can thus be expressed explicitly as
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(a) Scenario 1 e

(h) Scenario 2

Alice

Figure 1. A sketch of the two scenarios studied here. (a) The first scenario, where both Alice and Bob’s spins are immersed in the same
disordered environment. (b) The second scenario, where Bob is isolated from the environment that Alice experiences.

o) = =

where the subscript gives the site number of the corresponding spin,and ¢ = 2,3...,L — 1, where Lis the
number of sites in the spin chain. In scenario one, the last spin (Bob’s spin) is decoupled from the system

[L’ = L — 2inequation (1)] and experiences no on-site potential (15, = 0); in scenario two, Bob’s spin is
coupled to the spin chain, and weset L’ = L — 1 to implement the open boundary condition. Our numerical
results show that the entanglement decreases in both scenarios and their evolution has similar qualitative
behavior. The decrease of entanglement between Bob and Alice’s spin can be understood by the monogamy
properties of entanglement, i.e., a given spin that is maximally entangled with another spin cannot be entangled
with any other spins. This implies that if Alice’s spin is entangled with other spins in the spin chain, it can no
longer form an EPR pair with Bob’s spin. The spreading of entanglement in the spin chain causes the decrease of
entanglement between Alice and Bob’s spins. In addition, Bob’s spin is completely decoupled from Alice’s spin
in scenario one; while in scenario two, Bob’s spin is usually very far away from Alice’s spin with no presence of
long-range interaction. Hence, there is no or very little direct entanglement generation between Alice and Bob’s
spins in both scenarios, and the evolution of entanglement is mostly determined by the spreading of
entanglement in the spin chain, which explains the similarity of entanglement evolution in the two scenarios.
Hereafter, we focus on discussing the logarithmic negativity for scenario one. These discussion and conclusions
are however applicable for other entanglement measurements such as concurrence and entanglement of
formation in both scenarios. These details are discussed in appendix B.

IhellT. Il +UhellT.. L), 2

3. Results

3.1. Entanglement evolution

Figure 2 shows our main result, the logarithmic negativity between Alice and Bob as a function of time in
scenario one, with disorder strength h = 3] for different numbers of spins L (including Alice and Bob’s spins)
and A = 0 (10 ?) for the AL (MBL) phases. Initially, the entanglement is prepared at maximum Sx(0) = 1. At
around t &~ 1/J, the entanglement in both AL and MBL phases shows a power-law decay following some
oscillations, which has been recognized as the diffusion of an initial state to the size of the localization length.
Afteracritical time ¢, ~ 1/A, the entanglement in the MBL and AL phases shows dramatically different
behavior. The entanglement in AL phases converges to a constant value independent of the spin chain size L,
where all curves for different L are visually overlapping. In contrast, the entanglement in the MBL phases shows a
power-law decay ~¢t~ ¥, with v > 0, which is emphasized by the linear behavior on alog-log scale in figure 2. Due
to the finite size of our system, the entanglement in the MBL phases will eventually also saturate to some constant
value after a significant time. Nevertheless, as illustrated in the inset of figure 2, the final saturated values are
shown to decrease exponentially as a function of spin chain size ~exp (— L), where (3is a constant.

From these observations, one can expect that the entanglement in AL phase will never reduce to zero, but
become a constant depending only on disorder strength even in the thermodynamic limit L — oo. On the other
hand, no matter how small the interaction strength A is, the entanglement will be dissipated after an infinitely
long time in the thermodynamic limit. However, this dissipation is very slow if the disorder is strong enough. In
addition, the entanglement of the AL phase and MBL phases only becomes different after the critical time .. If A
is small, the entanglement in the MBL phase can still be preserved before ,.
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Figure 2. Logarithmic negativity in AL (A = 0J)and MBL (A = 10 %) phases as a function of time for disorder strength i = 3 and
different spin chain length L in scenario one. The dashed line helps to highlight the power-law decay behavior in the MBL phases. The
inset shows the final saturation values of entanglement Sy (co) in MBL phases as a function of L, where the error bar shows the
variance from averaging over different disorder realizations. The dashed line shows a exponential fit of Sy (co) ~ exp(—L).

We can conclude that the AL phase is ideal for creating quantum storage devices to preserve quantum
entanglement between a qubit pair. On the other hand, if a weak interaction strength A is unavoidable in the
system, the MBL phase can still be applied to preserve entanglement with an expiration time ¢.. After carrying out
an entanglement distillation [3, 4], the qubit pair is then ready for quantum communication or teleportation. We
also wish to emphasize here that the preservation of entanglement between two qubits in a localized environment
is, of course, not better than in a completely decoupled environment. However, in a realistic situation where
coupling between the qubit pair and the environment cannot be eliminated, our study provides a generic way of
preserving entanglement without a specific fine tuning of the Hamiltonian but simply introducing strong enough
disorder into the environment. For example, the main source of decoherence for nitrogen-vacancy (NV) centers in
diamond are their interaction with randomly distributed C nudlear spins [7]. We note that the NV centers have
already been applied to make quantum memory [38], therefore our proposal to introduce disorder in nearby spins
can be regarded as an improvement of the quantum memory.

Our results can also be directly applied to identify the localized phase being AL or MBL. Most previous such
studies have focused on studying the bipartite entanglement, i.e. dividing the system into two sub-systems, of an
initial product state after a global quench or an energy eigenstate after alocal quench [27-29]. The experimental
observation of bipartite entanglement in principle can be very challenging for a large system, and may even be
impossible in the thermodynamic limit. On the other hand, measuring entanglement between local degrees of
freedom in an optical lattice [39] and trap ions [40, 41] has been recently explored, motivating the studies of
entanglement between local sites, where the entanglement between local degrees of freedom is more
experimentally accessible [42—44]. These studies usually focus on the case where the initial state is a product state
and a temporary entanglement generated due to initial diffusion. The AL and MBL features are analyzed by the
decay of this temporary entanglement that is decreasing exponentially as a function of distances between sites in
the deep localized phase. Therefore, these studies are usually limited to entanglement between nearest few sites.
Our methods, using an initial prepared EPR pair, can in principle overcome these limitations and be
experimentally accessible.

3.2. Logarithmic light-cone

Our study also gives an interesting insight into the nature of entanglement spread in MBL phases. The power-law
decay and the saturated values of entanglement in MBL phases suggest that we can define a saturation time scale
t,, where the entanglement in MBL phases is saturating, as v log (t;) ~ L, which resembles the logarithmic light-
cone found in previous bipartite entanglement studies [27-29]. This logarithmic light-cone can be understood
from the modified Lieb—Robinson bound of information spreading (in this case entanglement spreading) in
systems with short-range interactions [45]. One convenient and common way to describe the Lieb—Robinson
bound is to compare the time evolution of a local observable A (at site i4) under the full Hamiltonian H with its
time evolution under a truncated Hamiltonian Hy, which only includes interactions contained in a region of
distance no more than L. Under certain assumptions, a modified Lieb—Robinson bound
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Figure 3. Color plot of AS{ in scenario one defined in the main text. The red color indicates a large value of AS{, which is
constrained by alogarithmic light-cone.

|A(t) — AD(1)| < ate /v = ge~(L-v1o8D/v hagbeen proposed for MBL systems [46], where a, v > 0 areall
constants, A(t) = ((0)| ef*'Ae~H]¢)(0)) and AL (¢) = ((0)] e’ Ae~ 1|4/ (0)). The underlying physics is
clear: at time t the degrees of freedom outside the light-cone is not entangled with the degrees of freedom at i4.
Therefore, the time evolution of observable A can be approximated by only considering the effects of the degrees
of freedoms within the light-cone.

Even though entanglement is technically not an observable, we study the quantity AS{ = SE=19 — s in
scenario one under the same spirit as Lieb—Robinson bound. Here, we choose to study the total Hamiltonian H
with 16 spins. Since Bob’s spin is completely decoupled from the spin chain, the truncated Hamiltonian Hy only
includes spins that are within the distance L to Alice’s spin at the leftmost site, which is equivalent to a spin chain
Hamiltonian with only L spins. The quantity AS{’ can be interpreted as the difference of entanglement
evolution between a full spin chain of L = 16 and a truncated spin chain of L < 16 near Alice’s spin. The results
are shown in figure 3, where one can directly see that the significant differences are constrained within a
logarithmic light-cone. This is direct evidence that entanglement is spreading logarithmically in an MBL phase
as suggested by previous OTOC studies [30-32].

3.3. Effects of disorder and interaction strength

We further take a qualitative analysis of the effects of interaction strength A and disorder strength / on the decay
of entanglement. Figure 4 shows the entanglement decay for different A, confirming that entanglement in the
AL and MBL phases only become different abruptly after the critical time ¢, ~ 1/A. Furthermore, the saturated
value in the MBL phases does not vary appreciably for different A. In fact, the logarithmic entanglement for

t > t.isauniversal function of tA as shown by the inset of figure 4. Interestingly, the average two-site
entanglement of a spin chain that is initially prepared in a product state also decays in time as a power-law in the
MBL phase. However, the power-law exponent is not universal and displays a clear dependence on the
interaction strength [43]. We believe that this is due to the average two-site entanglement including
entanglement from neighbor sites that are directly coupled by the Ising interaction. The Ising interaction not
only causes the spread of entanglement but also directly generate entanglement between the neighbor sites. In
contrast, Bob’s spin is completely decoupled from Alice’s spin (and all the other spins in the chain) in our
scenario one, therefore the decay of entanglement between Alice and Bob only reflects the spread of
entanglement in the spin chain. Therefore, we conclude that the spread of entanglement is universal and
independent of A, while the generation of entanglement between neighbor sites by Ising interaction depends on
the interaction strength.

Finally, figure 5(a) shows the entanglement decay for different h, where the decay rate becomes slower and
the saturated value becomes larger for a stronger disorder. As a result of the competition of these two effects, the
saturation time becomes longer, suggesting that a stronger disorder is beneficial for storing EPR pairs. Our
numerical results also show that the decrease of entanglement at infinite long time 1 — Sy (c0) and the decay
index vboth have a power-law dependence on k, as shown in figures 5(b) and (). This analysis can be interpreted
as a stronger disorder and weaker interaction is beneficial for preserving quantum entanglement, which is
consistent with our expectation.
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Figure 4. Entanglement decay for different interaction strength A in scenario one. Here, the size of spin chain L = 12and h = 3]. The
inset shows the long-time behavior of entanglement as a universal function of tA.
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Figure 5. (a) Entanglement decay for different disorder strength i with L = 12and A = 10 %Jin scenario one. The red thin (blue
thick) curves represent AL (MBL) phases for h = 2], 3], 4], 5], 6] from bottom to top. (b) The saturated value 1 — Sy (c0) as a function
of h, the red circles (blue squares) represent AL (MBL) phase, where the solid lines are power-law fit 1 — Sy (c0) ~ h°. (c) The symbols
are the decay index v as a function of i, and the solid line is a power-law fit.

3.4. Non-maximally entangled state
Previous subsections focus on the situation where Alice and Bob’s spin form a maximally entangled EPR pair
initially. However, a perfect EPR pair might be challenging to prepare and fragile to manipulate. In this
subsection, we show that the entanglement evolution is also qualitatively similar for non-maximally entangled
initial state, and hence ensure the robustness of our scheme of preserving entanglement and distinguishing
AL/MBL phases. We first study the case of non-maximally entangled state, |[¥(0)) = |®,)ap ® |NEEL),
where | &, a8 = /1)) + Bl11)and|af? + |8]> = 1. Theinitial negativity and logarithmic negativity is
therefore given by N (0) = 2|a|8|and Sy (0) = log,(2|a||3] + 1), respectively. When o = 3 = 1/+/2,the
system reduced to the EPR pair case. We can also study the case where the initial state is a mixed state p(0) =
pap(0) ® |NEEL)gs (NEEL|, where we choose py5(0) = py |EPR)apas (EPR| + (1 — py)Iap/4. pas(0) canbe
regarded as the convex combination of a maximally entangled state, |[EPR)sp, and a maximally mixed state, Ixp.
The initial negativity and logarithmic negativity can also be given analytically as N(0) = (3pg — 1)/2and
Sn(0) = log,(3p; /2 + 1/2), respectively. When py = 1, psp(0) reduces to an EPR pair, and when p, < 1/3,
pap(0) becomes separable.

Figures 6 and 7 show the time evolution for different initial pure | ®, }s5 and mixed state pap(0), respectively.
These results show that the quantitative behavior of the entanglement evolution are quite similar regardless of
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Figure 6. Logarithmic negativity Sy as a function of time for L = 12, disorder strength 4 = 3 and interaction strength A = 0] (10~%])
for AL (MBL) phases in scenario one. Different curves are correspond to different initial states determined by parameter cv. The thin
(thick) curves correspond to the AL (MBL) phases.
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Figure 7. Logarithmic negativity Sy as a function of time for L = 10, disorder strength i = 3 and interaction strength A = 0] (10™%))
for AL (MBL) phases in scenario one. Different curves correspond to different initial states determined by parameter pg. The thin
(thick) curves correspond to the AL (MBL) phases.

whether the initial state is maximally entangled or whether it is pure. For t > ¢ the entanglement has a power-
law decay in the MBL phase and approaches to a constant value in the AL phase. While the power-law exponent
in the MBL phase and the constant value in the AL phase depend on the details of Hamiltonian, for the purpose
of identifying AL/MBL phases, our scheme is robust with respect to the different initial states. We also remark
here that, if the initial state p,p(0) is separable, i.e. p, < 1/3, Alice and Bob’s spin will always remain separable in
scenario one (not shown in the figures here). This can be understood by realizing that Bob’s spin is not coupled
to Alice’s spin or any other spins in the spin chain. If they are initially separable, there is no mechanism to create
entanglement between them.

4, Discussion

In this section, we intend to understand the power-law decay of entanglement in another perspective by studying
the same physics in an effective phenomenological model, i.e., the Z-bit model [47]. In the deep localized regime,
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Figure 8. Logarithmic negativity Sy as a function of time for the £-bit model. The thick solid curves correspond to { = 1, W = 3 with
different L showing the finite size effect. The thin curves are all for L = 22 with different (and W as shown in the figure.

the system possesses an extensive number of locally conserved quantum numbers (‘constants of motion’). One
can in principle construct local operators corresponding to these conserved quantum numbers and define them
aslocal pseudospins {7;}, namely £-bits (localized-bits), in contrast to the p-bits {s;} (physical spins). One
intuitive way to construct 7; is to suitably dress s; at the same site with nearby p-bits so that the Hamiltonian can
be written in the form,

HKZZIL‘T?—FZT{]‘T?T;—F“': 3)
i i,]

where h; are random fields and ]:'j =W e~1i=71/¢ are interaction terms, with #; and Wi;both assumed to be
random variables uniformly distributed in the range [ W, W], and (is a constant that should be determined by
the localization length. Further terms in H, only include n > 2 products of 7;’s, but no terms involving 77 or 7/
may appear. For simplicity, the higher order terms will be neglected and are irrelevant for our purposes. The
dynamic of Z-bits under H, is clear: all £-bits precess about the z-axes of their Bloch sphere with conserving 73’s.
The rate of precession is however determined by all 7;’s (with the effects of #-bits at long distance suppressing
exponentially), which leads to dephasing.

Inspired by [43], we study the #-bit model numerically to see the effects of dephasing. The precise form of the
mapping between {7;} and {s;} is not obvious, but in general, an EPR pair in p-bits cannot be directly mapped to
an EPR pair in #-bits. Nevertheless, we focus here on the explanation of power-law decay in MBL phase that
exists regardless of the form of initial state as long as there is entanglement. Therefore, we choose to study the
evolution of entanglement of an initial EPR pair in Z-bits |[¥(0)) = |EPR)xg ® | ), where

|®o)e = @ cos(¢)IT) + e sin(g)|1)] 4

with 6;and ¢;assumed to be random variables uniformly distributed in the range of [0, 7/2] and [0,27],
respectively. Similar to the scenario one we studied before, we assume Alice (Bob) have the leftmost (rightmost)
¢-bit, and Bob’s £-bit is completely decoupled from all the other #-bits (including Alice’s). The calculation is
averaged over 1000 distinct initial states (different realizations of {6;} and { ¢;}), local disorder h; and interaction
terms W

Figure 8 shows the power-law decay of entanglement in the £-bit model, where the final saturated constant is
a finite size effect. Itis also interesting to see that the power-law exponent seems to be independent of Wbut only
determined by (.

5. Summary

In summary, we have studied the time evolution of quantum entanglement of an EPR pair coupling to a
localization environment. This study allows us to explore the possibility and limitation of applying localization
phase to preserve quantum entanglement between qubit pairs. Our results can also be regarded as an
experimentally accessible protocol to discriminate AL and MBL phases, and understand the nature of
entanglement propagation in these systems.
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Figure 9. Concurrence as a function of time for disorder strength i = 5 and interaction strength A = 0 (107?]) for AL (MBL) phases
in scenario two. The results for AL phases with different spin chain length L are almost overlapping each other, and the results for
different MBL phases are indicated in the figure.
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Figure 10. Entropy of formation as a function of time for disorder strength i = 5 and interaction strength A = 0J(10~) for AL
(MBL) phases in scenario two. The results for AL phases with different spin chain length L are almost overlapping each other, and the
results for different MBL phases are indicated in the figure.
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Appendix A. Numerical methods

Since we are interested in the dynamic properties of the system in the thermodynamic limit at a very long time,
ideally we would like to study systems with infinite size that evolve for infinite long time. But in reality, we can
only work with finite size systems in a finite time and extrapolate our expectation to infinite size and time.
Obviously, we would like to study the largest system that evolves for long enough time. The long-time limit
makes propagation method such as split-operator or Crank—Nicolson method, where the accuracy propagation
is limited by finite step size. Therefore, we use the conventional exact diagonalization method, where we

9
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Figure 11. Negativity as a function of time for disorder strength i = 5 and interaction strength A = 0] (10~>J) for AL (MBL) phases
in scenario two. The results for AL phases with different spin chain length L are almost overlapping each other, and the results for
different MBL phases are indicated in the figure.

diagonalized the Hamiltonian and get all the eigenstates |1/3) and eigenenergies E 5. The time evolution of the
quantum state |1 (¢)) is then described by a projected wavefunction

[Y(®) = > (sl (0)) e iEat,
<

where the accuracy is then only limited by the machinery accuracy of |1)3) and Ej;, allowing us to evolve our system to
very long time. However, the exact diagonalization for all eigenpairs is limited by the system size and computation
power. In the future, we intend to apply the more advanced time-evolving block-decimation technique that based on
matrix product state and density matrix renormalization group to access larger systems.

Appendix B. Quantum entanglement measurements

Itis well known that von Neumann entropy is not a valid entanglement measurement if the collective states are in
mixed states. However, several entanglement measurements have been found for a pair of qubits, including
concurrence, negativity and their close relatives: the entropy of formation and logarithmic negativity. These
entanglement measurements are ‘good’ in the following sense: (i) for a maximally entangled state, i.e. an EPR pair,
these measurements reach their maximum values (equal one in our definitions); (ii) for collective separable states,
these measurements vanish; (iii) is a continuous function of density matrices of the two-qubit states. Notice that these
measurements, however, do not necessarily give same ordering for different entangled states.
Let us first give the definition of the entanglement measurements mentioned above. Denoting
the collective state for two selected qubits by a density matrix p, the concurrence is given by
C = max(y N — A — A — \4), where \;’s are the eigenvalues of pp in descending order
and p = o ® ?p*o? ® o’. Concurrence is monotonically related to the entanglement of formation
by the Wootters formula Sy = h[(1 + /1 — C? )/2], where h(x) = —xlog,x — (1 — x)log,(1 — x).
Negativity is a measure related to the Peres—Horodecki criterion: N = 23", max (0, —p,), where 1/s are
the eigenvalues of p" who is the partial transpose of p. The logarithmic negativity is then given by Sy = log,(N + 1).
We show the time evolution of logarithmic negativity between a pair of qubits that initially prepared to be as
an EPR pair in scenario one in the main text. Here, in the figures 9—12, we present results of other entanglement
measures in scenario two and show that these measurements are qualitatively similar, and serve the same role in
our analysis. Therefore, the discussions and conclusions of logarithmic negativity in scenario one are also
applicable for all measurements in scenario two.

Appendix C. Quantum decoherence

Inspired by [33], we also study the decoherence of a spin in both AL and MBL phase. Without loss of generality,
we initialized the second spin to the left in the chain (namely spin A) in a superposition state
[+) = (1) + |1))/~/2, and all the other spins in a Nel’s state. The quantum decoherence D can be quantified

10
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Figure 12. Logarithmic negativity as a function of time for disorder strength & = 5 and interaction strength A = 0J (10~J) for AL
(MBL) phases in scenario two. The results for AL phases with different spin chain length L are almost overlapping each other, and the
results for different MBL phases are indicated in the figure.
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Figure 13. Quantum decoherence as a function of time for disorder strength i = 5 and interaction strength A = 0J (10 >J) for AL
(MBL) phases. The results for AL phases with different spin chain length L are almost overlapping each other. The results for different
MBL phases with different spin chain length L = 8, 10, 12, 14, 16 are indicated in the figure from top to bottom, where the results for
L = 12, 14, 16 are almost on top of each other, showing a fast saturation with regard to L.

JWanget al

by the absolute value of the off-diagonal density matrix element of spin A, which is then at the maximum value of
0.5 initially. The dynamical evolution of quantum coherence can be studied similarly to the spin echo scheme in
[33]. However, instead of focusing on the canceling of time evolution by applying a time-reversal m-pulse, we study
the decoherence directly by first applying a 7/2-pulse to the spin A at an initial time, and another 7/2-pulse before
measuring the decoherence D. The result is present in figure 13. One key difference between the behavior of
quantum decoherence and quantum entanglement is the fact that quantum decoherence in both AL and MBL
phase decrease and saturated to a finite value in the thermodynamic limit L — oo, where quantum entanglement
will eventually vanish in MBL phase. This can be understood as the quantum coherence is not sensitive to the
dephasing in the system, and hence cannot distinguish the differences between AL and MBL phase.
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