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Abstract. This paper deals with the early results of a new model of pedestrian flow, conceived

within a measure-theoretical framework. The modeling approach consists in a discrete-time

Eulerian macroscopic representation of the system via a family of measures which, pushed
forward by some motion mappings, provide an estimate of the space occupancy by pedestrians

at successive time steps. From the modeling point of view, this setting is particularly suitable

to treat nonlocal interactions among pedestrians, obstacles, and wall boundary conditions. In
addition, analysis and numerical approximation of the resulting mathematical structures, which

is the main target of this work, follow more easily and straightforwardly than in case of standard
hyperbolic conservation laws, also used in the specialized literature by some Authors to address

analogous problems.

1. Introduction

In the last decades, the modeling of crowd motion and pedestrian flow has drawn the attention
of applied mathematicians, because of an increasing number of applications, in engineering and
social sciences, dealing with this or similar complex systems. First studies on pedestrian behavior,
dating back to the sixties, were aimed at providing guidelines for the design of walkway infras-
tructures in urban areas, and yet nowadays crowd-structure interaction is the object of scientific
investigations (see e.g., Venuti et al. [17] and the main references therein). More recently, man-
agement and optimization of pedestrian fluxes in large and crowded environments, like airports,
stations, shopping centers, stadiums, have motivated new efforts toward more accurate experi-
mental investigations (see e.g., Helbing et al. [8, 10]) and a more targeted mathematical modeling
of human walking attitudes in bounded areas, with special emphasis on the concepts of “walking
program” of pedestrians and of pedestrian-pedestrian, pedestrian-obstacle interactions.

The existing literature on mathematical modeling of human crowds is especially concerned with
models at the microscopic scale, in which pedestrians are described individually in their motion
by a set of ordinary differential equations. Problems are usually set in two-dimensional domains
delimiting the walking area under consideration, and the presence of obstacles within the domain,
as well as of targets that pedestrians aim at, is possibly taken into account. The basic modeling
framework relies on classical Newtonian laws of point mechanics: Pedestrians are assimilated to
rigid disks of fixed, possibly different, radii, with a velocity, or alternatively an acceleration, that
takes into account both the desired direction of motion and a superimposed perturbation due to
the presence of other pedestrians in the surroundings (Helbing and Johansson [7], Maury and Venel
[15]). In practice, pedestrians are assumed to move mainly according to a desired velocity, i.e., the
velocity they would have in the absence of other people, so as to get a desired target and avoid at
the same time intermediate obstacles. The desired velocity is however modified by the necessity to
fulfill some local geometrical constraints of maximal congestion. More complicated strategies to
determine the direction of motion may involve the minimization of some ‘walking cost’, that each
pedestrian evaluates on the basis of the current configuration of the system in her/his neighborhood
and of her/his prediction about the motion of other pedestrians (Hoogendoorn and Bovy [12]).

A different approach to the problem, however not yet as much developed in the specialized
literature, consists in using partial differential equations at the macroscopic scale, that is in de-
scribing the evolution in time and space of pedestrian density rather than following each subject
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individually. The starting point is the analogy with classical fluid dynamics: An Eulerian point
of view is adopted, appealing to the conservation of mass of pedestrians supplemented by either
suitable closure relations linking the velocity of the latter to their density (see e.g., Hughes [13])
or an analogous balance law for the momentum (see e.g., Bellomo and Dogbé [2]). Again, typical
guidelines in devising this kind of models are the concepts of preferred direction of motion and
discomfort at high densities. In the framework of scalar conservation laws, a macroscopic one-
dimensional model has been proposed by Colombo and Rosini [5], resorting to some common ideas
to vehicular traffic modeling (e.g., fundamental diagrams), with the specific aim of describing the
transition from normal to panic conditions.

Microscopic models allow an accurate description of the behavior of each single agent of the
system, but they usually require a large number of ordinary differential equations to be dealt with
simultaneously, as many as the number of pedestrians considered in the model. This often makes
it difficult, for practical purposes, to recover macroscopic information on the system from the
knowledge of the microscopic state, hence to investigate the relevant global features possibly also
in connection with control and optimization problems. On the other hand, macroscopic models
existing in the literature heavily rely on the fluid dynamics analogy, hence they use mathematical
tools proper of hyperbolic conservation laws, which however might not be the most appropriate
ones to address the behavior of pedestrians. For instance, hyperbolic equations require the impo-
sition of boundary conditions in a technically tricky way, which may not correspond to the actual
modeling needs. Moreover, crowd motion is definitely not one-dimensional: A two-dimensional
description is inevitable in order to catch the fundamental aspects of the system, but it is known
that multidimensional hyperbolic equations generate additional analytical and numerical difficul-
ties, leading to an increase of technical complexity in handling the final product.

Bearing all above in mind, we propose to adopt a different macroscopic point of view, based
on a measure-theoretical framework which has recently been introduced by Canuto et al. [4] for
coordination problems (rendez-vous) of multiagent systems.

Given a two-dimensional spatial domain Ω ⊂ R2, possibly containing obstacles understood as
internal boundaries, the basic idea is to describe the space occupancy by pedestrians at time n
via a measure µn, that is, roughly speaking, a mapping that to each subset E of Ω associates
a real nonnegative number µn(E) representing an estimate, in macroscopic averaged terms, of
the amount of people contained in E. The whole mass of pedestrians is then obtained as µn(Ω),
and its conservation in time is possibly achieved by requiring µn(Ω) = µ0(Ω) for all n > 0. If
vn = vn(x) is the velocity field at time n of pedestrians located at a point x ∈ Ω, the dynamics of
the system is described by a family of mappings {γn}n≥0 such that γn(x) − x = vn(x)∆t, which
entails the following evolution for the measure µn (push forward):

µn+1(E) = µn(γ−1
n (E)), ∀E ⊆ Ω.

This is nothing but a formal mathematical statement of the simple idea that the amount of people
contained in a spatial region E at time n > 0 is related to the analogous amount at the initial time
n = 0 along the trajectories of the motion of pedestrians themselves. In this context, we recall
that a measure theoretical approach for mass transportation problems has been proposed also by
Buttazzo et al. [3], focusing in particular on concentration and congestion effects. Specifically,
the Authors claim that the latter may be applied to the modeling of crowd dynamics in panic
situations.

The construction of the velocity vn is the main modeling task. The framework we use easily
allows to duly incorporate the concept of desired velocity, as well as to model interactions among
pedestrians, possibly accounting for averaged non-local effects due to the surrounding crowding.
By naturally tracing, for fixed x ∈ Ω, the displacements of pedestrians, the mapping γn(x) de-
scribes the system under an essentially Lagrangian point of view, which is, in a sense, a more
natural way to look at the motion of the agents. On the other hand, the push forward of the
measure µn finally refers to an Eulerian handling of the system, and takes thus advantage of a
fixed geometry without the need for resorting to the concept of evolving reference configuration.
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The paper is organized into three more sections that follow this Introduction. In Sect. 2 the
modeling framework by time-evolving measures is introduced for generic d-dimensional continu-
ous systems. After a first parallelism with the classical mass conservation equation of continuum
mechanics, the theory focuses on discrete time push forward, which is shown to represent an ex-
plicit time discretization of a conservation law for a family of continuous-time-evolving measures.
Well posedness and spatial approximation of the discrete time model are addressed. In addition,
a computational scheme for its numerical treatment is derived, with a related convergence and
error analysis. In Sect. 3 the above theoretical framework is specifically applied to pedestrian
flow. From the modeling point of view, this setting proves to be useful in extending the idea of
macroscopic mass to cases, like in fact human crowds, in which mass and mass density may not be
conceptually defined in the straightforward sense of continuum mechanics. It may be questioned
that this problem is actually common to many other classical and nonclassical systems, ranging
from gas dynamics to vehicular traffic, for which, despite the essential granular nature of the mat-
ter under consideration, the continuum approach has been successfully used. Nevertheless, in the
case of pedestrian flow the measure theoretical approach allows to deal with nonlocal interactions
among pedestrians, obstacles and more generally wall boundary conditions, and numerical ap-
proximations more effectively than standard hyperbolic conservation laws. Finally, Sect. 4 draws
some conclusions and briefly sketches research perspectives.

2. Time-evolving measures theoretical framework

Many real world systems can be mathematically described at the macroscopic scale, usually
invoking conservation or balance laws of some gross quantities. As a matter of fact, in modern
applications dealing with life and social sciences, e.g., biological systems, vehicular traffic, pedes-
trian flow, often the only conservation principle which is reasonable to resort to is the conservation
of mass, because the evolution of the system involves complex behavioral aspects which need not
preserve other classical mechanical quantities, like linear momentum or energy.

In the physical space Rd (d = 1, 2, 3 for applications), the mass can be viewed as a Radon
positive measure µ : B(Rd) → R+, i.e., a mapping from the Borel σ-algebra B(Rd) to the real
nonnegative line, whose countable additivity furnishes the mathematical counterpart of the prin-
ciple of additivity of the mass. The Lebesgue measure Ld on Rd formalizes instead the concept of
volume. If one assumes the continuum hypothesis, stating that the mass µ is absolutely continuous
with respect to Ld (written µ � Ld), namely that every body with zero volume has also zero
mass, then Radon-Nikodym theorem implies the existence of a function ρ ∈ L1

loc(Rd), ρ ≥ 0 a.e.
in Rd, called the mass density, such that dµ = ρ dx.

In continuum mechanics, for a mass density ρt evolving in time1 the principle of conservation
of the mass is stated in Lagrangian form as

d

dt

∫
Γt(E)

ρt(x) dx = 0, ∀E ∈ B(Rd), (2.1)

where Γt is the motion mapping, which describes the motion of the points of Rd under the action
of a certain velocity field Vt as

Γ̇t(x) = Vt(Γt(x)),

supplemented by the further condition Γ0(x) = x. In practice, Γt(x) is the position occupied at
time t by the point initially located at x. Using Reynolds theorem, Eq. (2.1) can be formally
converted in Eulerian form and rewritten as the well-known conservation law for the density ρt:

∂ρt
∂t

+∇ · (ρtVt) = 0. (2.2)

1Throughout this section, the subscript t does not denote the partial derivative with respect to time. We use

the notation ρt(x), instead of the more classical ρ(t, x) (and similarly for other functions), to emphasize the idea

that the density should be regarded as a function of x ∈ Rd parameterized by t > 0.
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Equivalence between Eqs. (2.1) and (2.2), however, holds for smooth ρt and Vt only, as passing
from Eq. (2.1) to Eq. (2.2) requires some manipulations which are not valid if the involved
functions are not smooth.

As a natural generalization of Eq. (2.2) to the case in which a mass density need not be
present, one can assume that a family of time-evolving measures µt : B(Rd)→ R+, t > 0, is given,
satisfying

∂µt
∂t

+∇ · (µtVt) = 0. (2.3)

This partial differential equation has to be meant in the sense of measures as follows: For every
infinitely differentiable test function η with compact support in Rd, i.e., η ∈ C∞0 (Rd),

d

dt

∫
Rd

η(x) dµt(x) =

∫
Rd

∇η(x) · Vt(x) dµt(x). (2.4)

In particular, a family of measures {µt}t>0 is said to be a solution to Eq. (2.3) if for all η ∈ C∞0 (Rd)
the mapping

t 7→
∫
Rd

η(x) dµt(x)

is absolutely continuous and satisfies Eq. (2.4). Notice that a basic requirement for the right-hand
side of Eq. (2.4) to be well defined is Vt ∈ (L1(Rd, µt))d for all t > 0, i.e.,∫

Rd

|Vt(x)| dµt(x) < +∞, ∀ t > 0.

Let us denote by suppµt the support of the measure µt, and let us assume that an open set
Ω ⊂ Rd exists such that suppµt ⊂⊂ Ω for all t > 0. We can then rewrite Eq. (2.4) by integrating
on Ω only:

d

dt

∫
Ω

η(x) dµt(x) =

∫
Ω

∇η(x) · Vt(x) dµt(x), ∀ η ∈ C∞0 (Ω). (2.5)

In addition, there exist an open set U ⊂ Ω and a test function ηU ∈ C∞0 (Ω) such that suppµt ⊂ U
for each t > 0, ηU ≡ 1 on suppµt, and ηU ≡ 0 on Ω \U , whence Eq. (2.5) with the choice η = ηU
gives d

dtµt(suppµt) = 0. However, µt(suppµt) = µt(Ω) for all t > 0, thus finally

d

dt
µt(Ω) = 0, (2.6)

which states that no matter is flowing through the boundary ∂Ω at any time: The measure of Ω
is not varying, hence the whole mass remains concentrated within it. Condition suppµt ⊂⊂ Ω for
all t > 0 compares therefore with a classical homogeneous Neumann boundary condition for the
PDE (2.2).

2.1. Push forward and time discretization. When dealing with a discrete time evolution of
the system, one can fix a time step ∆t > 0 and trace the mass by a sequence of positive measures
{µn}n>0, µn : B(Rd)→ R+ each n, via the following recurrence relation (push forward):

µn+1 = γn#µn, (2.7)

where γn : Rd → Rd is the one-step motion mapping (briefly termed motion mapping in the sequel
for simplicity). More specifically,

γn(x) = x+ vn(x)∆t, (2.8)

with vn : Rd → Rd a velocity field, so that γn(x) is the position at the (n+ 1)-th time step of the
point which at the n-th time step is located in x.

The push forward (2.7) has to be understood formally as

µn+1(E) = µn(γ−1
n (E)), ∀E ∈ B(Rd), (2.9)

which shows that µn+1 is unaffected by the values that γn possibly takes outside suppµn. On the
other hand, suppµn+1 = γn(suppµn), hence if there exists a set Ω ⊆ Rd such that γn(Ω) ⊆ Ω for
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all n, and furthermore an initial measure µ0 : B(Rd) → R+ is prescribed with suppµ0 ⊆ Ω, then
suppµn ⊆ Ω for all n > 0, whence we get, analogously to Eq. (2.6), the conservation of the mass
of Ω:

µn(Ω) = µ0(Ω), ∀n > 0.

The definition of push forward given by Eq. (2.9) is equivalent to∫
Rd

η(x) dµn+1(x) =

∫
Rd

η(γn(x)) dµn(x) (2.10)

for every bounded and Borel function η : Rd → R. In particular, if η ∈ C∞0 (Rd) we can expand

η(γn(x)) = η(x+ vn(x)∆t) = η(x) + ∆t∇η(x) · vn(x) +O(∆t2)

and then plug this expression into Eq. (2.10) to get

1

∆t

∫
Rd

η(x) dµn+1 −
∫
Rd

η(x) dµn

 =

∫
Rd

∇η(x) · vn(x) dµn +O(∆t),

which, at least for µn-uniformly bounded vn, can be viewed as an explicit time discretization of
Eq. (2.4) up to identifying vn(x) = Vn∆t(x). Again, if suppµn ⊆ Ω for all n > 0 then Eq. (2.10)
can be rewritten by integrating on Ω only:∫

Ω

η(x) dµn+1(x) =

∫
Ω

η(γn(x)) dµn(x), (2.11)

and the same Taylor expansion performed above provides now an explicit time discretization of
Eq. (2.5) for test functions η ∈ C∞0 (Ω).

Proposition 1. The push forward (2.7) of the measure µn is the direct time discretization of the
conservation law

d

dt
µt(Γt(E)) = 0, ∀E ∈ B(Rd). (2.12)

Proof. To see this, discretize the motion mapping Γt by the family of one-step motion mappings
{γn}n>0 as Γn+1 = γn ◦ · · · ◦ γ0, then approximate the time derivative in Eq. (2.12) above as

µn+1(Γn+1(E))− µn(Γn(E))

∆t
= 0.

Setting Ẽ := Γn+1(E), and consequently Γn(E) = γ−1
n (Ẽ), yields

µn+1(Ẽ) = µn(γ−1
n (Ẽ)),

whence we recover formally the relation µn+1 = γn#µn (cf. also Eq. (2.9)) or, equivalently, Eqs.
(2.10), (2.11). �

Remark. The Lagrangian mass conservation law (2.1) is a particular case of Eq. (2.12) for the
measure dµt = ρt dx. It is worth noticing that, unlike classical procedures to derive the pointwise
Eulerian mass conservation equation (2.2), or analogously one of its weak forms (2.4), (2.5), from
Eq. (2.1), the time discretization allows very few regularity of the involved fields in order to attain
to Eqs. (2.10), (2.11) from Eq. (2.12).

In order to deal with problems posed in a fixed bounded domain Ω ⊂ Rd, from now on we con-
centrate on motion mappings γn : Ω→ Ω such that γn(Ω) ⊆ Ω. This way, given an initial measure
µ0 supported in Ω, all measures µn deduced from the recurrence relation (2.7) are supported in
Ω as well, hence we can simply think of them as defined on the Borel σ-algebra B(Ω) and refer
directly to Eq. (2.11) whenever necessary. Notice that the measure of Ω is conserved in this case,
indeed µn+1(Ω) = µn(γ−1

n (Ω)) = µn(Ω) and the claim easily follows by induction. In particular,
if µ0(Ω) < +∞ then Ω will have a finite measure for all successive times n > 0.

We begin by stating some basic properties of the motion mappings.

Assumption 1. For each n ∈ N, we assume that the motion mapping γn
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(1) is Borel, i.e., γ−1
n (E) ∈ B(Ω) for all E ∈ B(Ω);

(2) satisfies
Ld(γ−1

n (E)) ≤ CLd(E), ∀E ∈ B(Ω), (2.13)

for a certain constant C > 0.

Let us briefly comment on property (2) of Assumption 1. Given a Borel set E ⊆ Ω, Eq. (2.13)
allows to control the Lebesgue measure of the inverse image of E by the Lebesgue measure of E
itself. From a different point of view, it requires that γn does not map Lebesgue non-negligible
subsets of Ω into Lebesgue negligible sets. Indeed, if A ⊆ Ω is such that Ld(A) > 0, it is
impossible to have Ld(γn(A)) = 0, for Eq. (2.13) implies Ld(γn(A)) ≥ C−1Ld(A) > 0 (take
formally E = γn(A)).

Property (2) is for instance satisfied if the following holds true:

|x− y| ≤ Λ|γn(x)− γn(y)|, ∀x, y ∈ Ω (2.14)

for a certain constant Λ ≥ 0. In this case, a suitable constant is C = Λd, indeed Eq. (2.14) entails
on the one hand Ld(γ−1

n (E)) ≤ ΛdLd(γn(γ−1
n (E))), while on the other hand it suffices to observe

that γn(γ−1
n (E)) ⊆ E, thus Ld(γn(γ−1

n (E))) ≤ Ld(E). We claim that the relation (2.14) holds if,
for instance, the velocity vn is Lipschitz continuous on Ω with Lipschitz constant 0 ≤ L < ∆t−1:

|vn(x)− vn(y)| ≤ L|x− y|, ∀x, y ∈ Ω.

In fact, in such a case we have

|γn(x)− γn(y)| = |(x− y) + ∆t(vn(x)− vn(y))|
≥ |x− y| −∆t|vn(x)− vn(y)|
≥ (1− L∆t)|x− y|,

and if L fulfills the previous constraints we can take Λ = (1− L∆t)
−1 ≥ 1.

Another possible motion mapping complying with property (2) is

γn(x) = x+ ∆t

M∑
i=1

ani χEi
(x),

where {Ei}Mi=1 is a pairwise disjoint partition of Ω, i.e., IntEi ∩ IntEj = ∅ each i 6= j and
∪Mi=1Ei = Ω, χEi is the characteristic function of Ei, and ani ∈ Rd are constant, so that the

velocity vn turns out to be the piecewise constant function vn(x) =
∑M
i=1 a

n
i χEi(x). Such a γn is

a measurable piecewise translation on Ω with the following property: For any E ∈ B(Ω), it results

Ld(γ−1
n (E)) =

M∑
i=1

Ld(γ−1
n (E) ∩ Ei) =

M∑
i=1

Ld(E ∩ γn(Ei)) ≤MLd(E),

due to the invariance of Lebesgue measure under translations. A possible constant for Eq. (2.13)
is thus C = M , the number of elements of the partition, although it may not be the optimal (i.e.,
the smallest) one. For instance, in case of constant velocity vn(x) = a ∈ Rd in Ω, which gives
a linear transport γn(x) = x + a∆tχΩ(x), the sets γn(Ei) are pairwise disjoint and the last sum
in the computation above equals Ld(E ∩ γn(Ω)) ≤ Ld(E), so that Eq. (2.13) holds now more
precisely with C = 1 regardless of M .

If the initial measure µ0 is absolutely continuous with respect to Ld, a natural question is
whether the same is true for all other measures µn recursively generated by the push forward.
Property (2) of the motion mappings turns out to be designed precisely for this purpose, indeed
we have:

Theorem 2. If µ0 � Ld then µn � Ld for all n > 0.

Proof. We proceed inductively on n. Assume µn � Ld for a certain n and consider E ∈ B(Ω)
such that Ld(E) = 0. Then Ld(γ−1

n (E)) ≤ CLd(E) = 0, whence

µn+1(E) = µn(γ−1
n (E)) = 0,

i.e., µn+1 � Ld. Owing to µ0 � Ld, we finally get by induction the thesis. �
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When a density ρn ∈ L1(Ω), ρn ≥ 0 a.e. in Ω, exists for the measures µn, Eq. (2.11) rewrites
as ∫

Ω

η(x)ρn+1(x) dx =

∫
Ω

η(γn(x))ρn(x) dx (2.15)

for all bounded and Borel functions η : Ω → R. The new unknowns of the problem are now the
ρn’s, for which we can state the following properties.

Theorem 3. Let ρ0 ∈ L1(Ω) be given, ρ0 ≥ 0 a.e. in Ω. Then there exists a unique sequence
{ρn}n>0 ⊂ L1(Ω), ρn ≥ 0 a.e. in Ω, solving Eq. (2.15) with ρ0 as initial datum, and moreover

‖ρn‖1 = ‖ρ0‖1, ∀n > 0.

If, in addition, ρ0 ∈ L1(Ω) ∩ L∞(Ω) then also ρn ∈ L1(Ω) ∩ L∞(Ω) with

‖ρn‖∞ ≤ Cn‖ρ0‖∞, ∀n > 0.

Proof. Existence of a sequence {ρn}n>0 ⊂ L1(Ω), ρn ≥ 0 a.e. in Ω, solving Eq. (2.15) is implied
by Theorem 2 if one understands ρ0 as the density of µ0 with respect to Ld.

(i) To obtain uniqueness, assume first that ρn+1, ρ
′
n+1 ∈ L1(Ω) are such that∫

Ω

η(x)ρn+1(x) dx =

∫
Ω

η(x)ρ′n+1(x) dx =

∫
Ω

η(γn(x))ρn(x) dx,

that is ∫
Ω

η(x)(ρn+1(x)− ρ′n+1(x)) dx = 0

for all bounded and Borel functions η : Ω→ R. Confining the attention to the continuous
η compactly supported in Ω, i.e., η ∈ C0(Ω), we see that, owing to Riesz representation
theorem, this relation defines the null functional in the dual space (C0(Ω))′. Therefore
(ρn+1 − ρ′n+1) dx must be the null measure, which implies ρn+1(x) = ρ′n+1(x) for a.e.
x ∈ Ω, whence the L1-uniqueness of the density at the (n + 1)-th time step. Proceeding
now inductively from ρ0, we get the uniqueness in L1(Ω) of the sequence of densities ρn.

(ii) When estimating the L1-norm of the ρn’s we can take advantage of their nonnegativity to
discover, from Eq. (2.15) with η = χΩ:

‖ρn+1‖1 =

∫
Ω

ρn(x) dx = ‖ρn‖1.

Thus, by induction, ‖ρn‖1 = ‖ρ0‖1 each n > 0 as desired.
(iii) In order to prove the last statement of the theorem, we consider a pairwise disjoint partition

{Ei}Mi=1 of Ω and construct the following step function:

s(x) =

M∑
i=1

αiχEi
(x), αi =

1

Ld(Ei)

∫
γ−1
n (Ei)

ρn(x) dx

for every Ei such that Ld(Ei) 6= 0. Notice that

‖s‖1 =

M∑
i=1

αiLd(Ei) =

M∑
i=1

∫
γ−1
n (Ei)

ρn(x) dx =

∫
γ−1
n (Ω)

ρn(x) dx = ‖ρn‖1,

and moreover αi ≥ 0, therefore s ∈ L1(Ω), s ≥ 0 a.e. in Ω. If Ld(Ei) = 0 for some i,
then the corresponding coefficient αi can be arbitrarily defined without affecting s as an
element of L1(Ω).
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(iv) Set

m := max
i=1, ...,M

Ld(Ei).

We claim that, for m → 0+, s converges pointwise almost everywhere in Ω to ρn+1. For
this we observe, first of all, that, taking η = χEi

in Eq. (2.15), the coefficients αi can be
rewritten as

αi =
1

Ld(Ei)

∫
Ei

ρn+1(x) dx.

Then we fix x ∈ Ω and notice that there exists a unique index 1 ≤ i = i(x) ≤M such that
x ∈ Ei(x), because the partition is pairwise disjoint. Thus s(x) = αi(x) and

|ρn+1(x)− s(x)| =

∣∣∣∣∣∣∣ρn+1(x)− 1

Ld(Ei(x))

∫
Ei(x)

ρn+1(y) dy

∣∣∣∣∣∣∣
≤ 1

Ld(Ei(x))

∫
Ei(x)

|ρn+1(x)− ρn+1(y)| dy.

As m → 0+, Ei(x) shrinks to x and Lebesgue differentiation theorem implies that the
right-hand side of the above inequality tends to zero, therefore

lim
m→0+

|ρn+1(x)− s(x)| = 0 for a.e. x ∈ Ω,

which gives the desired pointwise convergence.
(v) Assume ρn ∈ L1(Ω) ∩ L∞(Ω), then

αi ≤
Ld(γ−1

n (Ei))

Ld(Ei)
‖ρn‖∞ ≤ C‖ρn‖∞, ∀ i = 1, . . . , M,

hence s ∈ L∞(Ω) with s(x) ≤ C‖ρn‖∞ for all x ∈ Ω. Consequently, in view of the
pointwise convergence, also ρn+1(x) ≤ C‖ρn‖∞ for a.e. x ∈ Ω, which says ρn+1 ∈ L∞(Ω)
with

‖ρn+1‖∞ ≤ C‖ρn‖∞.
Proceeding inductively from ρ0 yields finally ρn ∈ L∞(Ω) with the desired estimate on
the L∞-norm. �

2.2. Spatial approximation. We turn now our attention to the construction of a spatial approx-
imation of the push forward (2.15), which will result in a computational scheme for the numerical
treatment of the problem

Find {ρn}n>0 ⊂ L1(Ω) ∩ L∞(Ω), ρn ≥ 0 a.e. in Ω for all n > 0, such that∫
Ω

η(x)ρn+1(x) dx =

∫
Ω

η(γn(x))ρn(x) dx, ∀ η : Ω→ R bounded and Borel
(2.16)

for a prescribed initial datum ρ0 ∈ L1(Ω) ∩ L∞(Ω), ρ0 ≥ 0 a.e. in Ω. Theorem 3 gives the well
posedness of this problem, i.e., existence and uniqueness of the solution, with suitable estimates
on the L1 and L∞-norms in terms of the corresponding norms of the initial datum.

To be definite, we consider as domain Ω a (hyper)cube in Rd, that we partition by a family of

nested pairwise disjoint grids {Ehj }
Mh
j=1 made in turn of (hyper)cubes with edges of constant length

h > 0, so that Ld(Ehj ) = hd for each j:

Mh⋃
j=1

Ehj = Ω, Int(Ehi ) ∩ Int(Ehj ) = ∅ ∀ i 6= j.

The nesting of the grids implies that, given 0 < h′′ < h′, for all 0 ≤ j ≤ Mh′′ there exists
0 ≤ i ≤ Mh′ such that Eh

′′

j ⊆ Eh
′

i . Essentially the same construction described below may be in
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principle repeated for domains and/or grid elements of different shapes, up to possible technicalities
in the practical implementation of the resulting numerical scheme.

One of the most natural ways to approximate Problem (2.16) is to introduce the following

piecewise constant functions over the grid {Ehj }
Mh
j=1:

Pnh (x) =

Mh∑
j=1

ρnj,hχEh
j
(x), n ≥ 0,

such that Pnh (x) ≡ ρnj,h for all x ∈ Ehj , and to replace ρn, ρn+1 in Eq. (2.15) by Pnh , Pn+1
h

respectively. Notice that each Pnh is integrable over Ω, with

‖Pnh ‖1 = hd
Mh∑
j=1

|ρnj,h|.

In addition, one can in general expect that the true function γn, which operates the push
forward from the time step n to the time step n + 1, is not known exactly: Most frequently, an
approximation gnh : Ω→ Ω of it is available, resulting from some discretization of the velocity vn.
In the sequel, we will consider specifically

gnh(x) = x+ unh(x)∆t,

where unh is piecewise constant over the grid {Ehj }
Mh
j=1:

unh(x) =

Mh∑
j=1

unj,hχEh
j
(x), unj,h ∈ Rd.

If the velocity field vn is continuous in Ω, so that its pointwise values make sense, then we define

unj,h = vn(xj),

xj being the center of Ehj . Otherwise, assuming vn ∈ (L1(Ω))
d
, we take the approximate velocity

field unh to be defined by

unj,h =
1

hd

∫
Eh

j

vn(x) dx,

which, owing to Lebesgue differentiation theorem, converges to vn in (L1(Ω))
d

as the grid is refined,
i.e., when h → 0+. Notice that in both cases unh converges pointwise to vn for h → 0+ (up to
possibly passing to subsequences and discarding Lebesgue negligible subsets in the second case).

Besides this approximation property, we further require:

Assumption 2. Let h, ∆t > 0 be such that

∆t max
j=1, ...,Mh

‖unj,h‖ ≤ h, (2.17)

where ‖ · ‖ is any norm in Rd.

Equation (2.17) reminds of the classical CFL condition arising for the stability of numerical
schemes designed to approximate hyperbolic conservation laws. In the present context, it imposes
a limitation on the maximum displacement of any grid cell Ehi produced by gnh , so that when
computing

Ld((gnh)−1(Ehi )) =

Mh∑
j=1

Ld((gnh)
−1

(Ehi ) ∩ Ehj ) =

Mh∑
j=1

Ld(Ehi ∩ gnh(Ehj ))

we see that there is a fixed maximum number, say c, of non-empty intersections Ehi ∩ gnh(Ehj ) for
i, j running from 1 to Mh, hence

Ld((gnh)−1(Ehi )) ≤ cLd(Ehi ) = chd.
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In addition, gnh being a piecewise translation on Ω, the measure gnh#Ld is absolutely continuous
with respect to Ld, and its density rnh ∈ L1(Ω) satisfies, for a.e. x ∈ Ω, rnh(x) ≥ 0 and:

rnh(x) = lim
R→0

Ld((gnh)−1(BR(x)))

Ld(BR(x))
= lim
R→0

∑Mh

j=1 Ld(BR(x) ∩ gnh(Ehj ))

Ld(BR(x))
.

For R sufficiently small and for a.e. x ∈ Ω the ball BR(x) is fully contained into one of the grid
cells, thus in view of Eq. (2.17) we have

rnh(x) ≤ lim
R→0

cLd(BR(x))

Ld(BR(x))
= c

and finally

Ld((gnh)−1(E)) =

∫
E

rnh(x) dx ≤ cLd(E), ∀E ∈ B(Ω), (2.18)

which compares with the analogous property of γn stated by Assumption 1.
Bearing all of this in mind, a numerical scheme is obtained by imposing that the Pnh ’s satisfy

Eq. (2.15) with the choice η = χEh
i
, i = 1, . . . , Mh, under the action of the mapping gnh : This

gives ∫
Eh

i

Pn+1
h (x) dx =

∫
(gnh )−1(Eh

i )

Pnh (x) dx,

whence, using the specific representation of Pnh , Pn+1
h , the following scheme is derived:

ρn+1
i,h =

1

hd

Mh∑
j=1

ρnj,hLd((gnh)
−1

(Ehi ) ∩ Ehj ), i = 1, . . . , Mh and n ≥ 0. (2.19)

It is customary for the sequel to define the measures {λnh}n≥0 such that

dλnh := Pnh dx.

Notice that Eq. (2.19) does not correspond to the push forward of λnh by gnh , i.e., λn+1
h 6= gnh#λnh,

indeed the measure gnh#λnh is in general not piecewise constant on the grid {Ehj }
Mh
j=1, even for piece-

wise constant λnh and for a piecewise translation gnh , while λn+1
h is forced to be so by construction.

However, the scheme (2.19) enjoys some nice properties that we briefly list below:

(i) It is positivity-preserving, in the sense that, given a discretization P 0
h of the initial density

ρ0 such that ρ0
j,h ≥ 0 for all j, it results ρnj,h ≥ 0 for all j and all n > 0. This is consistent

with the expected nonnegativity of the true densities ρn’s.
(ii) It is conservative, indeed

‖Pn+1
h ‖1 = hd

Mh∑
i=1

ρn+1
i,h =

Mh∑
j=1

ρnj,h

Mh∑
i=1

Ld((gnh)
−1

(Ehi ) ∩ Ehj )

=

Mh∑
j=1

ρnj,hLd((gnh)
−1

(Ω) ∩ Ehj ) = hd
Mh∑
j=1

ρnj,h = ‖Pnh ‖1,

hence

‖Pnh ‖1 = ‖P 0
h‖1, ∀n > 0,

in accordance with the analogous property stated by Theorem 3 for the ρn’s.
(iii) It is boundedness-preserving, in the sense that if the initial datum ρ0 is discretized in such

a way that P 0
h ∈ L∞(Ω) uniformly in h, i.e., there exists a constant B0 ≥ 0, independent

of h, such that

‖P 0
h‖∞ = max

j=1, ...,Mh

|ρ0
j,h| ≤ B0,

then Pnh ∈ L∞(Ω) uniformly in h as well, with

‖Pnh ‖∞ ≤ cnB0, ∀n > 0.



TIME-EVOLVING MEASURES AND MACROSCOPIC MODELING OF PEDESTRIAN FLOW 11

This follows by induction from Eqs. (2.19) and (2.18), whence we get

‖Pn+1
h ‖∞ = max

i=1, ...,Mh

|ρn+1
i,h | ≤ max

i=1, ...,Mh

‖Pnh ‖∞
hd

Ld((gnh)
−1

(Ehi )) ≤ c‖Pnh ‖∞,

and is again consistent with both the boundedness of the true densities ρn claimed by
Theorem 3 and the related estimate on their L∞-norm.

Given any piecewise constant function Ph ∈ L1(Ω) ∩ L∞(Ω) on the grid {Ehj }
Mh
i=1:

Ph(x) =

Mh∑
j=1

ρj,hχEh
j
(x), ρj,h ≥ 0 ∀ j = 1, . . . , Mh,

and defined the measure dλh = Ph dx, let us denote by gnh]λh the measure whose density with
respect to Ld is the function

(gnh]Ph)(x) =

Mh∑
i=1

 1

hd

Mh∑
j=1

ρj,hLd((gnh)
−1

(Ehi ) ∩ Ehj )

χEh
i
(x).

Notice that, using this notation, we can rewrite the scheme (2.19) compactly as λn+1
h = gnh]λ

n
h.

From the previous reasonings we know that, in general, (gnh]λh)(E) 6= (gnh#λh)(E) for E ∈ B(Ω),
however:

Lemma 4. For all grid elements {Ehk }
Mh

k=1 it results

(gnh]λh)(Ehk ) = (gnh#λh)(Ehk ).

Proof. (i) We preliminarily observe that gnh#λh � Ld, indeed let E ∈ B(Ω) be such that
Ld(E) = 0, then

(gnh#λh)(E) = λh((gnh)
−1

(E)) =

∫
(gnh )−1(E)

Ph(x) dx

≤ ‖Ph‖∞Ld((gnh)
−1

(E)) ≤ ‖Ph‖∞cLd(E) = 0.

The density gnh#Ph ∈ L1(Ω)∩L∞(Ω) of gnh#λh with respect to Ld is given, for a.e. x ∈ Ω,
by

(gnh#Ph)(x) = lim
R→0

(gnh#λh)(BR(x))

Ld(BR(x))
=

Mh∑
j=1

ρj,h lim
R→0

1

Ld(BR(x))

∫
BR(x)

χgnh (Eh
j )(y) dy

=

Mh∑
j=1

ρj,hχgnh (Eh
j )(x).

(ii) Given any grid element Ehk , 1 ≤ k ≤Mh, we compute:

(gnh]λh)(Ehk ) =

∫
Eh

k

(gnh]Ph)(x) dx =

Mh∑
j=1

ρj,hLd(Ehk ∩ gnh(Ehj ))

=

∫
Eh

k

(gnh#Ph)(x) dx = (gnh#λh)(Ehk )

and we have the thesis. �

From this result we can derive some stability properties of the scheme.
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Theorem 5 (One-step stability). Let µ : B(Ω) → R+ be a measure supported in Ω, with density
ρ ∈ L1(Ω) ∩ L∞(Ω) with respect to Ld. Assume moreover that γn : Ω → Ω is a diffeomorphism.
Then, for h > 0 sufficiently small, there exist two constants A, B ≥ 0 such that

Mh∑
j=1

∣∣(γn#µ)(Ehj )− (gnh]λh)(Ehj )
∣∣ ≤ A‖ρ− Ph‖1 +Bh.

Proof. (i) We begin by observing that∣∣(γn#µ)(Ehj )− (gnh]λh)(Ehj )
∣∣ ≤ ∣∣(γn#µ)(Ehj )− (γn#λh)(Ehj )

∣∣
+
∣∣(γn#λh)(Ehj )− (gnh]λh)(Ehj )

∣∣ ,
and further that, owing to Lemma 4,

=
∣∣(γn#µ)(Ehj )− (γn#λh)(Ehj )

∣∣
+
∣∣(γn#λh)(Ehj )− (gnh#λh)(Ehj )

∣∣ .
Set

I1,j :=
∣∣(γn#µ)(Ehj )− (γn#λh)(Ehj )

∣∣ , I2,j :=
∣∣(γn#λh)(Ehj )− (gnh#λh)(Ehj )

∣∣ .
(ii) It is an easy consequence of Theorem 2 that γn#µ is absolutely continuous with respect

to Ld. Let γn#ρ ∈ L1(Ω) ∩ L∞(Ω) be its density, then∫
E

(γn#ρ)(x) dx =

∫
γ−1
n (E)

ρ(x) dx =

∫
E

ρ(γ−1
n (y))|det (γ−1

n )′(y)| dy, ∀E ∈ B(Ω),

where (γ−1
n )′ is the Jacobian matrix of γ−1

n . From the arbitrariness of E we get then

(γn#ρ)(x) = ρ(γ−1
n (x))|det (γ−1

n )′(x)|, for a.e. x ∈ Ω.

(iii) We estimate now I1,j . Since γn is a diffeomorphism, there exist two constants Λ+, Λ− > 0
such that

‖(γn)′(x)‖ ≤ Λ+, ‖(γ−1
n )′(x)‖ ≤ Λ−, for all x ∈ Ω,

whence

I1,j ≤
∫
Eh

j

∣∣ρ(γ−1
n (x))− Ph(γ−1

n (x))
∣∣ ∣∣det (γ−1

n )′(x)
∣∣ dx

≤ Λd−

∫
γ−1
n (Eh

j )

|ρ(x)− Ph(x)| |det γ′n(x)| dx ≤ Λd−Λd+

∫
γ−1
n (Eh

j )

|ρ(x)− Ph(x)| dx.

and finally
Mh∑
j=1

I1,j ≤ A‖ρ− Ph‖1

for A = Λd−Λd+.
(iv) The estimate on I2,j requires a bit trickier reasoning as it involves the comparison between

the push forward operated by the true motion mapping γn and the one operated by its
approximation gnh . By a procedure analogous to that used in the proof of Lemma 4 to
compute the density of gnh#λh, it is straightforward to see that the density of γn#λh can
be also written as

(γn#Ph)(x) =

Mh∑
j=1

ρnj,hχγn(Eh
j )(x)|det (γ−1

n )′(x)|,
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whence

I2,j ≤
Mh∑
i=1

ρi,h

∫
Eh

j

∣∣∣χγn(Eh
i )(x)|det (γ−1

n )′(x)| − χgnh (Eh
i )(x)

∣∣∣ dx
≤ ‖Ph‖∞

Mh∑
i=1

[
Λd−Ld(γn(Ehi ) ∩ Ehj \ gnh(Ehi ))

+

∫
γn(Eh

i )∩gnh (Eh
i )∩Eh

j

|det (γ−1
n )′(x)− 1| dx+ Ld(gnh(Ehi ) ∩ Ehj \ γn(Ehi ))

]
.

Recall the formula det (γ−1
n )′(x) = (det γ′n(y))

−1
for x = γn(y) and denote I ∈ Rd×d the

identity matrix. We have γ′n(y) = I+∆tv′n(y), with furthermore ‖v′n(y)‖ ≤ L all y ∈ Ω for
a certain constant L > 0 (due to the smoothness of vn), whence | tr v′n(y)| ≤ Ld (tr v′n(y)
being the trace of v′n(y)) all y ∈ Ω and finally

det γ′n(y) = 1 + ∆t tr v′n(y) + o(∆t) (∆t→ 0).

Thus we conclude, for ∆t → 0, det γ′n(y) ∼ 1 + K∆t for a constant K ∈ R. It follows

(det γ′n(y))
−1 ∼ 1−K∆t, therefore, for ∆t sufficiently small, |(det γ′n(y))

−1− 1| ≤ |K|∆t,
which allows to specialize the previous estimate of I2,j as

I2,j ≤ ‖Ph‖∞C∗
Mh∑
i=1

[
Ld(γn(Ehi )4gnh(Ehi ) ∩ Ehj )

+ ∆tLd(γn(Ehi ) ∩ gnh(Ehi ) ∩ Ehj )
]
,

where C∗ = max {Λd−, |K|, 1} and 4 denotes the symmetric difference of two sets. Sum-
ming over j further yields

Mh∑
j=1

I2,j ≤ ‖Ph‖∞C∗
Mh∑
i=1

[
Ld(γn(Ehi )4gnh(Ehi )) + ∆tLd(γn(Ehi ) ∩ gnh(Ehi ))

]
.

It is now simple to obtain

Ld(γn(Ehi ) ∩ gnh(Ehi )) ≤ Ld(gnh(Ehi )) = hd,

whereas in order to estimate the Lebesgue measure of γn(Ehi )4gnh(Ehi ) we rely on the
following argument. Given x ∈ Ehi , the maximum distance between the points γn(x) and
gnh(x) is estimated as |γn(x) − gnh(x)| = ∆t|vn(x) − vn(xj)| ≤ L∆th, therefore, by taking
x ∈ ∂Ehi , we see that the set γn(Ehi ) \ gnh(Ehi ) is fully contained into the gap between
the (hyper)cube gnh(Ehi ) with edge size h and the concentric (hyper)cube with edge size
h+ 2L∆th. This entails, for ∆t small (say ∆t < 1):

Ld(γn(Ehi ) \ gnh(Ehi )) ≤ (h+ 2L∆th)d − hd = O(∆thd).

Conversely, the set gnh(Ehi )\γn(Ehi ) is fully contained into the gap between the (hyper)cube
gnh(Ehi ) with edge size h and the concentric (hyper)cube with edge size h−2L∆th (assuming
∆t < (2L)−1 for consistency). Consequently:

Ld(gnh(Ehj ) \ γn(Ehj )) ≤ hd − (h− 2L∆th)d = O(∆thd),

whence finally Ld(γn(Ehj )4gnh(Ehj )) = O(∆thd), which allows to complete the estimate of∑
j I2,j as (consider that Mhh

d = Ld(Ω))

Mh∑
j=1

I2,j ≤ ‖Ph‖∞C∗∗∆t,

C∗∗ being a new cumulative constant independent of either h, ∆t or n. Considering that
condition (2.17) forces the order of magnitude of the time step ∆t to be dictated by the
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order of the grid size h, the previous relation implies finally
∑
j I2,j ≤ Bh for a suitable

constant B ≥ 0.
(v) Collecting the results so far obtained we ultimately have

Mh∑
j=1

∣∣(γn#µ)(Ehj )− (gnh]λh)(Ehj )
∣∣ ≤ Mh∑

j=1

(I1,j + I2,j) ≤ A‖ρ− Ph‖1 +Bh

and the claim of the theorem follows. �

Theorem 5 applied to the measures {µn}n≥0 and {λnh}n≥0 gives the stability of the numerical
scheme (2.19) with respect to the push forward (2.7) at one time step:

Mh∑
j=1

∣∣µn+1(Ehj )− λn+1
h (Ehj )

∣∣ ≤ A‖ρn − Pnh ‖1 +Bh.

This amounts to controlling the total variation of the error µn+1 − λn+1
h over the grid cells (left-

hand side) by the L1-distance of the densities of the same measures at the previous time step and
the size of the grid (right-hand size). By slightly modifying the argument used in this proof we
can also obtain a stability over several time steps.

Theorem 6 (Multistep stability). Let γn be like in Theorem 5 and assume that vn is uniformly
bounded in time over Ω. Then, for h > 0 sufficiently small, there exist a constant An ≥ 0 such
that

max
j=1, ...,Mh

∣∣µn(Ehj )− λnh(Ehj )
∣∣ ≤ max

j=1, ...,Mh

∣∣µ0(Ehj )− λ0
h(Ehj )

∣∣+Anh
d.

Proof. We proceed inductively on n and consider∣∣µn+1(Ehj )− λn+1
h (Ehj )

∣∣ ≤ ∣∣(γn#µn)(Ehj )− (γn#λnh)(Ehj )
∣∣

+
∣∣(γn#λnh)(Ehj )− (gnh#λnh)(Ehj )

∣∣ .
(i) The second term at the right-hand side is estimated like I2,j in the proof of Theorem

5. In particular, owing to condition (2.17) along with the uniform boundedness of the
velocity vn on Ω, only a finite constant number of intersections γn(Ehi )4gnh(Ehi ) ∩ Ehj ,

γn(Ehi )∩ gnh(Ehi )∩Ehj are nonempty when i runs from 1 to Mh, whence, for h sufficiently
small, ∣∣(γn#λnh)(Ehj )− (gnh#λnh)(Ehj )

∣∣ ≤ ‖Pnh ‖∞C∗hd+1,

where C∗ is a constant independent of both h and n, and ‖Pnh ‖∞ ≤ cnB0.
(ii) The first term at the right-hand side coincides with I1,j in the proof of Theorem 5, but

we need here a different estimate for it. Specifically, we write∣∣(γn#µn)(Ehj )− (γn#λnh)(Ehj )
∣∣ ≤ ∣∣µn(Ehj )− λnh(Ehj )

∣∣
+

∫
γ−1
n (Eh

j )4Eh
j

|ρn(x)− Pnh (x)| dx,

then estimate∫
γ−1
n (Eh

j )4Eh
j

|ρn(x)− Pnh (x)| dx ≤ (Cn‖ρ0‖∞ + cnB0)Ld(γ−1
n (Ehj )4Ehj ).

The maximum distance between a point x ∈ Ω and its image γn(x) is

|x− γn(x)| ≤ ∆t|vn(x)| ≤ ∆tV,

where V ≥ ‖vn‖∞ comes for the uniform in time boundedness of the velocity vn on Ω.
Therefore, if ∆t is chosen in such a way that ∆tV ≤ h then condition (2.17) is fulfilled and
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in addition, thinking now of x ∈ ∂γ−1
n (Ehj ), the inverse image γ−1

n (Ehj ) is fully contained

into the (hyper)cube centered at xj (the center of Ehj ) with edge size h+ 2∆tV , whence

Ld(γ−1
n (Ehj ) \ Ehj ) ≤ (h+ 2∆tV )d − hd = O(hd).

On the other hand, we have

Ld(Ehj \ γ−1
n (Ehj )) ≤ Ld(Ehj ) = hd

so that finally Ld(γ−1
n (Ehj )4Ehj ) = O(hd) and for h small this term dominates over the

previous one.
(iii) Owing to the above estimates, we can find a constant an > 0, which essentially depends

on n through the powers of C and c, such that∣∣µn+1(Ehj )− λn+1
h (Ehj )

∣∣ ≤ ∣∣µn(Ehj )− λnh(Ehj )
∣∣+ anh

d,

hence taking the maximum over j = 1, . . . , Mh and then summing telescopically over n
we get the thesis with An =

∑n−1
i=0 ai. �

The quantities
∣∣µn(Ehj )− λnh(Ehj )

∣∣, j = 1, . . . , Mh, can be interpreted as the localization error
of the measure µn produced by the measure λnh over the grid cells; in other words, they say how
much the cell-by-cell distribution of the measure λnh is a reliable approximation of the distribution
of µn. We incidentally notice that the cell-by-cell distribution of λnh is actually the most visible
outcome when looking at the result of a numerical simulation. Theorem 5 guarantees stability, in
a single time step, of the total variation of the localization error, but requires for this the stronger
information on the L1-distance between the exact and the approximate densities. Theorem 6
yields instead the uniform stability of the localization error over several time steps with respect
to the grid size, starting from the initial error produced by the discretization of µ0.

2.3. Nonlinear fluxes. In this subsection we briefly comment on how the previous theory applies
when the velocity field vn depends explicitly on the measure µn, vn = vn[µn], which gives rise
to a nonlinear flux µnvn[µn]. As a matter of fact, this structure turns out to be quite relevant
for a wide range of applications, including pedestrian flow that we will address later, where the
dynamics is strongly influenced by the current configuration of the system.

Given the density ρ0 ∈ L1(Ω), ρ0 ≥ 0 a.e. in Ω, of µ0 with respect to Ld, let us focus on the
existence of the densities {ρn}n>0 in case of motion mappings γn = γn[µn] explicitly depending
on the µn’s. The first step consists in assuming that, for a certain n > 0, the measure µn is
absolutely continuous with respect to Ld, with density ρn ∈ L1(Ω), ρn ≥ 0 a.e. in Ω. Next one
checks whether, in view of this hypothesis, property (2) of Assumption 1 is actually satisfied. If
this is the case, then Theorem 2 implies µn+1 � Ld with density ρn+1 ∈ L1(Ω), ρn+1 ≥ 0 a.e. in
Ω, thus one concludes by induction that µn � Ld for each n ≥ 0 as desired. In practice, this is
nothing but the same reasoning scheme applied in Subsect. 2.1 to prove Theorem 2, with the only
difference that property (2) of Assumption 1 on γn is not assumed to hold a priori, but is checked
a posteriori as a consequence of the inductive hypothesis µn � Ld. Notice that uniqueness of
the ρn’s along with L1 and possibly L∞ estimates now follow straightforwardly, because the proof
of Theorem 3 does not rely on any specific structure of the motion mapping γn, except that it
satisfies Eq. (2.13).

As far as the spatial approximation of the µn’s is concerned, one has to take into account that
the approximate motion mapping gnh now depends on λnh because so does the approximate velocity
field unh. Basically, one tries to mimic the true velocity vn[µn] by unh[λnh], setting

unj,h[λnh] = vn[λnh](xj) or unj,h[λnh] =
1

hd

∫
Eh

j

vn[λnh](x) dx

and then reconstructing

unh[λnh](x) =

Mh∑
j=1

unj,h[λnh]χEh
j
(x).
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By inspecting the proof of Theorems 5, 6 we see that a relevant part of the error estimate
involving I2 relies on the Lipschitz estimate of the velocity vn within each grid cell Ehj :

|γn(x)− gnh(x)| ≤ L∆th, ∀x ∈ Ehj .

When the motion mappings γn, gnh depend on the measures µn, λnh, some considerations on the
localization error produced by the scheme in a single time step might still be developed if the
velocity vn is such that

|vn[µn](x)− vn[λnh](xj)| = O
(
h+ ‖ρn − Pnh ‖L1(Eh

j )

)
, ∀x ∈ Ehj . (2.20)

We refrain from going into this issue, we simply point out that, as we will see more in detail in
the application to pedestrian flow (cf. Sect. 3.2), an estimate of this form is more easily proved
when γn, g

n
h depend on µn, λ

n
h through ρn, P

n
h , respectively, in a non local way.

3. Macroscopic modeling of pedestrian flow

In this section we address the application of pedestrian flow using the time-evolving measure
framework previously developed. Pedestrians in motion within a given walking area are an essen-
tially discrete system, in which each person plays the role of an isolated agent moving in interaction
with other surrounding agents, usually with the aim of reaching a particular destination. As such,
this system should be conceptually described at the microscopic scale, i.e., by a system of ordinary
differential equations tracing the evolution in time of the position of each single pedestrian. The
possible coupling of these ODEs should reflect the interactions among pedestrians, namely the
influence that each one of them has on the motion of the others. Some microscopic models of
pedestrian flow are currently available in the literature, generally regarding pedestrians as rigid
particles, whose motion is formally regulated by classical Newtonian laws of point mechanics:

v̇i(t) = Fi(t),

where vi is the velocity of the i-th pedestrian, Fi an overall force acting on her/him, while the
index i runs from 1 to the total number of pedestrian considered in the model. However, the force
field Fi usually invokes nonclassical dynamic concepts, resorting mainly to the ideas of preferred
direction of motion and of comfort/discomfort due to the distance from or the proximity to other
pedestrians. Therefore, the Fi’s have not to be understood strictly as mechanical actions exerted
by pedestrians on each other. For instance, Helbing and coworkers [9, 10] introduce the concept of
social (or behavioral) force, which measures the internal motivation of the individuals in performing
certain movements. Specifically, in their model pedestrians are regarded as points, and two main
factors contribute to the definition of the social force Fi acting on the i-th individual:

(i) A relaxation toward a desired velocity, i.e., the velocity that the i-th individual should
possess in order to reach her/his destination as comfortably as possible.

(ii) A repulsive effect from neighboring pedestrians located too close, i.e., within the so-called
private sphere of the i-th pedestrian, or from walls and borders found in the walking area.

Essentially the same guidelines underlie the microscopic model of pedestrian flow by Maury and
Venel [15]. The only difference is that pedestrians are now regarded as rigid disks, hence the
repulsive effect among them is meant here as a geometrical constraint to avoid that disks step over
one another. An alternative formulation, still relying on a microscopic description of the system,
is instead used by Hoogendoorn and Bovy [11, 12], who propose a theory of pedestrian behavior
based on the concepts of walking task and walking cost. Basically, they assume that pedestrians
are feedback-oriented controllers, who plan their movements on the basis of some predictions they
make on the behavior of the other individuals. Predictions are dictated by a sort of cooperative
or non-cooperative game theory; in either case, they are affected by a limited in time and space
predictive ability of the walkers. Each pedestrian behaves so as to minimize her/his individual
estimated walking cost, which is expressed by a suitable functional depending on the predicted
positions of the other people.

A different approach to the description of the system uses instead partial differential equations
and the theory of (possibly multidimensional) conservation laws. In this case, it is assumed that
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pedestrians moving within a given walking area have a continuous distribution in space, so that
it makes sense to introduce their density ρ = ρ(t, x) and to invoke some conservation principles,
e.g. the conservation of mass and possibly also of linear momentum, in order to get an equation,
or a system of equations, satisfied by ρ. Colombo and Rosini [5] propose a one-dimensional model
built on a Cauchy problem for the nonlinear hyperbolic conservation law

∂tρ+ ∂xf(ρ) = 0, x ∈ R, t > 0,

which reminds of the Lighthill-Whitham-Richards (LWR) model of vehicular traffic (see Lighthill
and Whitham [14], Richards [16]). The main difference is that the density of pedestrians exhibits
two characteristic maximal values R, R?, with 0 < R < R?, at both of which the flux f vanishes.
In normal situations ρ ranges in the interval [0, R], where the flux is nonnegative, either strictly
concave or with at most one inflection point, and has precisely one local maximum point. When
the density grows above its “standard” maximum value, i.e., for ρ ∈ (R, R?], it is assumed that,
unlike vehicular traffic, pedestrians can still move but feel overcompressed, hence their flux is
less effective than before and they enter a panic state. In this region, the function f features
a trend similar to that described for ρ ∈ [0, R], but with a local maximum value strictly less
than the previous one. As illustrated in [5, 6], this allows to define a concept of solution to the
above conservation law in which non-classical shocks are admitted, i.e., shocks complying with
the Rankine-Hugoniot condition but possibly violating entropy criteria. As a consequence, the
classical maximum principle for nonlinear hyperbolic equations, stating that the solution ρ(t, x)
remains confined within the same lower and upper bounds of the initial datum for all x ∈ R and
all t > 0, no longer holds true and the model is able to describe the transition of pedestrians
to panic even starting from an initial density entirely bounded below the standard maximum R.
The resulting fundamental diagram, i.e., the mapping ρ 7→ f(ρ), agrees well with experimental
observations reported by Helbing et al. in [8].

Bellomo and Dogbé [2] refer instead to a two-dimensional setting, in which the walking area
is represented by a bounded domain Ω ⊂ R2 with possible inlet and outlet regions along the
boundary ∂Ω. The motion of pedestrians is described by a system of two partial differential
equations invoking the conservation of mass and the balance of linear momentum:{

∂tρ+∇ · (ρv) = 0

∂tv + (v · ∇)v = F [ρ, v],

where F is a material model for the acceleration of the individuals depending in general in a
functional way on the density ρ and the velocity v. The above equations are formally inspired by
the classical fluid dynamics models of continuum mechanics, however the force (per unit mass) F
contains non-classical contributions accounting for:

(i) A relaxation toward a desired velocity, that makes pedestrians point in the direction of a
certain target they want to reach.

(ii) A local crowding estimate, based on the pointwise values of ∇ρ possibly taken along the
direction of the desired velocity, which might induce pedestrians to deviate from their
preferred path in order to avoid areas of high density.

(iii) A pressure-like term, possibly regarded as a material quantity as in the celebrated Aw-
Rascle model of vehicular traffic [1], which models the reaction of pedestrians to the
presence of other individuals in the surrounding environment.

Additional topics, like e.g. the existence of a limited visibility zone for each pedestrian when trying
to evaluate the minimal crowding direction, are also discussed. In particular, special attention is
paid to the characterization of the panic state and to the transition to it from regular conditions:
The Authors of [2] suggest that pedestrians entering a panic state tend to follow chaotically other
individuals, dropping any specific target, and therefore are mostly attracted toward areas of high
density rather than seeking the less congested paths.

As anticipated in the Introduction, the usually large amount of coupled ODEs to be handled
simultaneously required by microscopic models is a drawback if not from the computational point
of view, thanks to the increasing power of modern calculators, certainly for analytical purposes.
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Among others, we like to mention here the chance to recover a global overview of the system
from the knowledge of its microscopic state, possibly in connection with control and optimization
issues. Macroscopic models are more suited to this, but those currently available in the literature
have to face several other difficulties due to their intrinsic hyperbolic nature. First of all, the
most natural settings for pedestrian flow problems are two-dimensional: One-dimensional models
are essentially explorative, but they are unlikely to provide effective mathematical tools to deal
with real applications. However, it is well known that the theory of multi-dimensional systems
of nonlinear hyperbolic equations is much more complicated under both the analytical and the
numerical point of view, therefore a sound mathematical mastery of such models may hardly be
achieved. Secondly, the imposition of boundary conditions may be tricky in hyperbolic models,
because on the one hand one is forcedly driven by the characteristic velocities in defining the
inflow and the outflow portion of the boundary, while on the other hand it must be guaranteed
that pedestrians do not enter or exit the domain from any point of the boundary other than the
prescribed inlet and outlet regions. This issue gets even more complicated in presence of obstacles,
which have to be understood as internal boundaries to the walking area. We notice, however, that
the most interesting problems for applications generally do not concern pedestrian motion in free
spaces, but precisely in areas scattered with obstacles (e.g., pillars, bottlenecks, narrow passages,
see Helbing et al. [10]), sometimes used to force the flow of crowds in specific directions.

A time-evolving measures approach to the modeling of pedestrian flow may help overcome
some of the difficulties just outlined. If one understands the mapping µn as a mathematical tool
to evaluate the degree of space occupancy by pedestrians, then it is perfectly natural to address
the problem from a macroscopic, even Eulerian, point of view in spite of the intrinsic Lagrangian
granularity of the system: Given a certain walking area Ω ⊆ R2, the number µn(E) is simply a
measure of the crowding of the subset E ⊆ Ω at time n. In addition, as shown by the discussion
of Sect. 2, there are basically no differences in the one- or two-dimensional theory, therefore
one can immediately tackle realistic problems without the need for conceiving preliminary one-
dimensional approximations of them. Finally, the imposition of at least the most common no-flux
boundary condition, including hence the treatment of internal obstacles to the walking area, is
quite straightforward, for in principle it simply requires to guarantee that suppµn ⊆ Ω for all n.
Notice that if O ⊆ Ω is, e.g., an obstacle, then it might be sufficient to impose µn(O) = 0, which
translates the idea that pedestrians cannot occupy the area covered by O. Then any other subset
E of Ω is automatically measured by taking the presence of the obstacle into account, indeed,
assuming conveniently that µn is complete, it results µn(E ∩O) = 0, thus µn(E) = µn(E \O).

3.1. Nonlocal flux. The mathematical structure depicted by Eqs. (2.7), (2.8) requires as major
modeling task to devise the velocity vn at the n-th time step as a function of x ∈ Ω and possibly also
of the current distribution µn of pedestrians. Following some ideas proposed by Maury and Venel
[15] in the frame of microscopic models of crowd motion, we distinguish two main contributions
to the overall velocity of pedestrians:

vn[µn](x) = vd(x) + νn[µn](x).

The desired velocity vd = vd(x) is the velocity a pedestrian would have in the absence of other
surrounding pedestrians. This component of the total velocity describes the preferred direction of
motion toward specific targets, possibly taking into account the presence of intermediate obstacles
within the domain Ω. Therefore, it is not affected by the actual crowding of the environments,
but it specifically depends on the geometry of the walking area (in this sense, it is a sort of field
velocity).

Assume the target of pedestrians is a certain location x0 ∈ Ω̄ representing, e.g., an aggregation
point inside the walking area or a door along its boundary (as illustrated in Fig. 1). The simplest
case is when Ω is star-shaped with respect to x0, so that from any point x ∈ Ω there exists a
straight path to x0. Then the desired velocity at x is readily defined as a vector pointing to x0,
namely

vd(x) = pd(x)
x0 − x
|x0 − x|

, (3.1)



TIME-EVOLVING MEASURES AND MACROSCOPIC MODELING OF PEDESTRIAN FLOW 19

Ω

R
x

x0

vd
(x

)

Figure 1. The desired velocity vd toward the target x0 and the interaction neigh-
borhood BR(x) for a pedestrian located in x ∈ Ω.

where pd : Ω → R+ is a scalar nonnegative function representing the magnitude of vd (in other
words, the desired speed of pedestrians).

When the domain Ω is scattered with obstacles, one has to take into account that some points
x ∈ Ω cannot be directly connected to x0 by straight paths. For such points Eq. (3.1) must be
duly modified, for instance by identifying several intermediate targets to be preliminarily reached,
so as to bypass obstacles before pointing to x0 (see Fig. 2). The definition of these intermediate
targets is clearly not unique, and might be related to some strategy of walking optimization, for
instance the minimization of the total length of the path from x to x0. The interested reader is
referred to Maury and Venel [15] for further details. In this early application to pedestrian flow we
refrain from going too much into this issue, deferring to a forthcoming work a deeper investigation
of this modeling aspect.

The interaction velocity νn = νn[µn](x) expresses the deviation of pedestrians from their pre-
ferred path due to the presence of other surrounding pedestrians. In particular, we assume that
interactions among pedestrians are effective only within a finite distance R > 0, defining a neigh-
borhood of interaction BR(x) for each point x ∈ Ω:

BR(x) = {y ∈ Ω : ‖y − x‖ ≤ R}.

The specific shape of this neighborhood depends on the R2-metric used in the above definition.
If, for instance, ‖ · ‖ is the Euclidean norm then BR(x) is the closed ball centered at x with radius
R (see Fig. 1). Instead, by taking ‖ · ‖ to be the ∞-norm the neighborhood of interaction results
in a square centered at x with side 2R.

Resorting to the idea of nonlocal interactions among agents proposed by Canuto et al. [4] for
rendez-vous problems, we assume that pedestrians interact in a nonlocal way with all subjects
comprised within their neighborhood of interaction. The main difference with respect to the
above-cited rendez-vous is that in this case, at least under normal, i.e., no panic conditions,
instead of aiming at aggregating they carefully try to bypass highly congested surrounding areas.
We propose two different ways in which this behavior can be modeled, both based on the detection,
by a weighted average, of a suitable point x? ∈ BR(x). In the first case, x? is the center of mass
of pedestrians in the neighborhood BR(x):

x? =
1

µn(BR(x))

∫
Ω

yχBR(x)(y) dµn(y),
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v d
(x
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Figure 2. A point x ∈ Ω that cannot be directly linked to the target x0 ∈ ∂Ω due
to the presence of an intermediate obstacle O ⊂ Ω. In this case, an intermediate
target x′0, coinciding with a corner of O, is identified, whence the actual target is
then accessible. The desired velocity at x points to x′0, while the desired velocity
at x′0 finally points to x0.

which can be thought of as an indicator of the area of highest crowd concentration within BR(x).
Pedestrians trying to steer clear of this zone are driven away from x?, hence their interaction
velocity can be given the form:

νn[µn](x) = pν [µn](x)(x− x?)

= pν [µn](x)
1

µn(BR(x))

∫
Ω

(x− y)χBR(x)(y) dµn(y), (3.2)

pν [µn] : Ω → R+ being a nonnegative function related to the intensity of the interaction. The
superposition of vd(x) and νn[µn](x) may finally lead pedestrians to deviate from their preferred
path in order to avoid local jams (see Fig. 3, left).

In the second case, x? is instead a point of low crowding within the neighborhood of interaction,
which can be computed as a sort of “inverse center of mass”. In practice, it should average out
the neighboring locations y ∈ BR(x), emphasizing those with low pedestrian density ρn(y):

x? =

∫
Ω

yχBR(x)(y)(ω ◦ ρn)(y) dy

∫
Ω

χBR(x)(y)(ω ◦ ρn)(y) dy

,

where ω : R+ → R+ is a nonnegative nonincreasing weight function. Once this point has been
defined, pedestrians locally deviate toward it, hence we put

νn[µn](x) = pν [µn](x)(x? − x)

= pν [µn](x)

∫
Ω

(y − x)χBR(x)(y)(ω ◦ ρn)(y) dy

∫
Ω

χBR(x)(y)(ω ◦ ρn)(y) dy

. (3.3)
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vd(x)

vn[µn](x)

x νn[µn](x)
x

⋆

x

x
⋆

vn[µn](x)
vd(x)

νn[µn](x)

Figure 3. Construction of the velocity vn[µn](x) when x? is the center of mass
of pedestrians (left) or a point of low crowding (right) in BR(x).

Notice that, unlike Eq. (3.2), in Eq. (3.3) the dependence of νn on µn is achieved through ρn,
which explicitly requires that a density for the measure µn be defined with respect to L2 for all
n > 0. Again, the superposition of vd(x) and νn[µn](x) make pedestrians modify their direction
of motion looking for uncrowded surrounding areas (see Fig. 3, right).

In the sequel we will concentrate on the form of νn[µn] provided by Eq. (3.3), the case of
Eq. (3.2) requiring, at least for µn � L2, essentially the same calculations up to the use of the
boundedness of the density ρn claimed by Theorem 3. In more detail, the case that we will be
able to analyze theoretically is when

pd(x) = α|x0 − x|, pν [µn](x) = β

∫
Ω

χBR(x)(y)(ω ◦ ρn)(y) dy,

for α, β ≥ 0, which gives rise to

vn[µn](x) = α(x0 − x) + β

∫
Ω

(y − x)χBR(x)(y)(ω ◦ ρn)(y) dy. (3.4)

As a consequence, the motion mapping γn depends on the measure µn, therefore the theory
presented in Sect. 2 applies to the present model provided the discussion made in Subsect. 2.3
holds for the velocity vn[µn] resulting from Eq. (3.4).

Let us prove that γn complies with property (2) of Assumption 1 by showing that vn[µn] is
Lipschitz continuous in Ω. This is self-evident for the desired velocity vd(x) = α(x0 − x), while,
as far as the interaction velocity νn[µn] is concerned, we compute, for x1, x2 ∈ Ω,

|νn[µn](x2)− νn[µn](x1)| = β

∣∣∣∣∣∣
∫
Ω

y
(
χBR(x1)(y)− χBR(x2)(y)

)
(ω ◦ ρn)(y) dy

+

∫
Ω

(
x2χBR(x2)(y)− x1χBR(x1)(y)

)
(ω ◦ ρn)(y) dy

∣∣∣∣∣∣
≤ βω(0)

CΩ

∫
Ω

|χBR(x1)(y)− χBR(x2)(y)| dy

+

∫
Ω

|x2χBR(x2)(y)− x1χBR(x1)(y)| dy

 ,
where CΩ > 0 is a constant related to the boundedness of Ω, such that |x| ≤ CΩ for all x ∈ Ω,
and where we have used ω(s) ≤ ω(0) for all s ≥ 0, together with the inductive hypothesis ρn ≥ 0
a.e. in Ω, the weight ω being nonincreasing on [0, +∞). Notice that for any two sets A, B and
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any two real numbers a, b it results

|aχA(x)− bχB(x)| =


|a| if x ∈ A \B
|b| if x ∈ B \A
|a− b| if x ∈ A ∩B
0 otherwise,

thus in particular, when a = b = 1, |χA(x)−χB(x)| = χA4B(x), where A4B = (A \B)∪ (B \A)
is the symmetric difference of the sets A and B. Therefore we can carry the previous computation
on as

|νn[µn](x2)− νn[µn](x1)| ≤ βω(0)[CΩL2(BR(x1)4BR(x2)) + |x2|L2(BR(x2) \BR(x1))

+ |x1|L2(BR(x1) \BR(x2)) + |x2 − x1|L2(BR(x1) ∩BR(x2))].

Assuming that the neighborhoods of interaction are closed balls with respect to the Euclidean
metric in R2 and invoking the invariance of the Lebesgue measure under translations, it is basically
a plane geometry task to see that

L2(BR(x1)4BR(x2)) is

{
= 2πR2 if |x2 − x1| ≥ 2R

≤ 4R|x2 − x1| if |x2 − x1| < 2R,

thus globally

L2(BR(x1)4BR(x2)) ≤ 4R|x2 − x1|. (3.5)

From this we deduce immediately

L2(BR(x1) \BR(x2)) = L2(BR(x2) \BR(x1)) =
1

2
L2(BR(x1)4BR(x2)) ≤ 2R|x2 − x1|,

whence finally, using further L2(BR(x1) ∩BR(x2)) ≤ πR2,

|νn[µn](x2)− νn[µn](x1)| ≤ βω(0)R(8CΩ + πR)|x2 − x1|

which yields the Lipschitz continuity of the interaction velocity of pedestrians. Analogous calcu-
lations can be repeated for square-shaped neighborhoods of interaction.

Owing to the above results, we conclude that vn[µn] is Lipschitz continuous in Ω as it is the
algebraic sum of two Lipschitz continuous functions. The reasonings of Subsect. 2.1 entail then
that γn complies with Eq. (2.13), hence in view of Theorems 2, 3 we have proved:

Proposition 7. Let µ0 � L2 with density ρ0 ∈ L1(Ω) ∩ L∞(Ω), ρ0 ≥ 0 a.e. in Ω, and let the
velocity field (3.4) be given. Then:

(i) µn � L2 for all n > 0.
(ii) There exists a unique sequence {ρn}n>0 ⊂ L1(Ω) ∩ L∞(Ω), ρn ≥ 0 a.e. in Ω, such that

dµn = ρn dx each n > 0, solving Eq. (2.7) (or, equivalently, Eq. (2.15)) with ρ0 as initial
datum.

We can therefore speak of density of pedestrians (in the sense of Radon-Nikodym theorem),
and recover the measure µn as

µn(E) =

∫
E

ρn(x) dx, ∀E ∈ B(Ω)

each n ≥ 0. Remember that the µn-measure of the subsets of Ω, more than the pointwise values of
the density ρn, is in principle the actual meaningful macroscopic information describing the space
occupancy by the crowd.
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Figure 4. The grid cell Eij with side h and its center xij .

3.2. Numerical approximation. Spatial approximation of Problem (2.16) can be carried out
by fixing preliminarily the walking area to be, for instance, the square Ω = [0, 1]× [0, 1] ⊂ R2. Let
us partition Ω by a uniform orthogonal grid, made of square elements of side h, that we denote
by {Eij}Mi, j=1 (from now on we drop the index h for notational convenience). In this specific
two-dimensional application, it is useful to identify each element of the grid by a couple of indices
i, j, which locate the center xij of the cell as

xij =

(
2i− 1

2
h,

2j − 1

2
h

)
, i, j = 1, . . . , M,

see Fig. 4, and to deal consequently with a double-indexed numerical density Pn:

Pn(x) =

M∑
i, j=1

ρnijχEij (x), n ≥ 0.

In particular, the numerical scheme (2.19) rewrites as

ρn+1
ij =

1

h2

M∑
l,m=1

ρnlmL2(Eij ∩ gn[λn](Elm)), i, j = 1, . . . , M, n ≥ 0, (3.6)

where we have used the invariance of L2 under the (piecewise) translation gn[λn] to get

L2((gn[λn])−1(Eij) ∩ Elm) = L2(Eij ∩ gn[λn](Elm)).

The dependence of the approximate motion mapping gn on the measure dλn = Pn dx amounts
naturally to a dependence of the measures L2(Eij ∩ gn[λn](Elm)) on the coefficients {ρnij}Mi, j=1

of Pn. Notice however that the form (3.6) of the scheme is more convenient for implementation
purposes than the generic form (2.19), as it does not require to determine the inverse images of
the grid cells with respect to the mapping gn. Rather, we incidentally notice that their images
are straightforwardly obtained by translation as gn[λn](Elm) = Elm + unlm[λn]∆t.

According to the discussion of Subsect. 2.3, gn complies with property (??) of Assumption 2
provided at each time step the CFL condition (2.17) is satisfied. In more detail, for every fixed
pair of indices (i, j) the intersection Eij ∩gn[λn](Elm) is nonempty for at most nine adjacent pairs
of indices (l, m), namely

(l, m) = (i, j), (i± 1, j), (i, j ± 1), (i± 1, j ± 1),
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Figure 5. The intersection between Eij and gn(Ei+1,j+1), which is nonempty
only if the horizontal and vertical components U1, U2 of the velocity uni+1,j+1 are
both negative. In this case, the Lebesgue measure (area) of the intersection is
L2(Eij ∩ gn(Ei+1,j+1)) = U−1 U

−
2 ∆t2.

so that, denoting by U1, U2 the horizontal and vertical component, respectively, of unlm[λn], the
coefficients L2(Eij ∩ gn[λn](Elm)) of the above scheme can be duly computed as (cf. Fig. 5)

L2(Eij ∩ gn[λn](Elm)) = [U+
1 ∆tδl,i−1 + (h− |U1|∆t)δli + U−1 ∆tδl,i+1]

× [U+
2 ∆tδm,j−1 + (h− |U2|∆t)δmj + U−2 ∆tδm,j+1].

In this formula, δrs is the Kronecker delta:

δrs =

{
1 if r = s

0 if r 6= s,

whereas

U+ = max (U, 0), U− = max (−U, 0)

are the positive and negative part, respectively, of U .
With respect to the discussion proposed in Subsect. 2.3, let us compute, from the definition of

vn given by Eq. (3.4):

vn[µn](x)− vn[λn](ξ) = α(ξ − x) + β

∫
Ω

(y − x)χBR(x)(y)(ω ◦ ρn)(y) dy

− β
∫
Ω

(y − ξ)χBR(ξ)(y)(ω ◦ Pn)(y) dy
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whence, adding and subtracting repeatedly several terms,

|vn[µn](x)− vn[λn](ξ)| ≤ α|ξ − x|+ β

∣∣∣∣∣∣
∫
Ω

(y − x)(χBR(x)(y)− χBR(ξ)(y))(ω ◦ ρn)(y) dy

+

∫
Ω

(y − x)χBR(ξ)(y)(ω ◦ ρn − ω ◦ Pn)(y) dy

+(ξ − x)

∫
Ω

χBR(ξ)(y)(ω ◦ Pn)(y) dy

∣∣∣∣∣∣
≤ α|ξ − x|+ 2βCΩ[ω(0)L2(BR(x)4BR(ξ)) + Lω‖ρn − Pn‖1]

+ βω(0)L2(Ω)|ξ − x|,

where we have assumed that the weight function ω is Lipschitz continuous with Lipschitz constant
Lω > 0. Using Eq. (3.5) we further obtain

≤ [α+ 8βCΩω(0) + βL2(Ω)ω(0)]|ξ − x|+ 2βCΩLω‖ρn − Pn‖1
=: C ′|ξ − x|+ C ′′‖ρn − Pn‖1,

which is precisely an estimate of the form (2.20).

4. Conclusions and research perspectives

In this paper we have addressed the modeling of pedestrian flow problems from a macroscopic
point of view, resorting to classical measure theoretical methods and specifically to the concept of
discrete-time evolving measures.

The main idea consists in describing the space occupancy by pedestrians through a positive
measure µn, parameterized by a discrete time index n ∈ N, which evolves according to the recursive
push forward equation µn+1 = γn#µn. Here, γn(x) = x+vn(x)∆t is the so-called motion mapping,
expressing the space displacement during a time step ∆t under the effect of a velocity field vn.
Given a walking area Ω ⊆ R2, the number µn(E) represents, for every measurable E ⊆ Ω, a
measure, in macroscopic averaged terms, of the crowding of the area E or, in other words, an
estimate of the amount of people contained in E. Hence, the point of view on the system finally
provided by the sequence of measures {µn}n>0 is essentially Eulerian, in spite of the Lagrangian
description of the motion yielded by the mappings {γn}n>0.

The first part of the work (cf. Sect. 2) has been devoted to a theoretical study, for generic
d-dimensional systems, of the mathematical structures just outlined. In particular, we have first
shown that the discrete-time push forward can be formally derived from an explicit time discretiza-
tion of the classical mass conservation equation of continuum mechanics (cf. Proposition 1). Then
we have addressed specifically the question of the existence and uniqueness of a density ρn for the
measure µn with respect to the Lebesgue measure Ld (cf. Theorems 2, 3), so as to be able to speak
of density of pedestrians at least in the sense of Radon-Nikodym theorem. Notice that if, on the
one hand, measuring the space occupancy by µn makes perfectly sense in a macroscopic frame,
claiming as a modeling assumption that pedestrians can be physically described by a continuously
distributed density may be, on the other hand, more hardly acceptable and more difficult to jus-
tify. This issue is actually common to many other nonclassical systems, for which the concepts
of mass and mass density are not as straightforward as in standard continuum mechanics. The
theory we have developed in this paper provides, as a by-product, a possible methodology that,
starting from reasonably meaningful macroscopic concepts, may help in gaining, at least in the
abstract, a pointwise density for the system under consideration.

The existence of a density is useful for the numerical treatment of the equations of the model,
indeed approximating ρn as a mapping on Rd is undoubtedly more practical than approximating
µn as a set mapping defined on some σ-algebra of Rd. In the paper we have proposed a numerical
scheme to discretize, at each time step, the push forward of the µn’s over a suitable space grid in
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Figure 6. Desired velocity in presence of two obstacles O1, O2. The field is
generated by a potential attracting pedestrians toward the target x0.

the domain Ω. In addition, we have studied the error produced by the numerical solution both in
a single step of push forward and on the true density ρn, on the basis of the level of refinement of
the space grid compared to the discrete time step ∆t. The scheme has proved to be robust and
efficient in providing potentially accurate approximations of the true solution (cf. Theorems 5,
6), as well as in preserving some interesting theoretical features of the latter, e.g., nonnegativity,
integrability, and local in time boundedness.

As mentioned above, the existence of a density is often also helpful in order to look conceptually
at the system from a point of view close to that of classical continuum mechanics, even when, like
in the case of pedestrian flow, the dynamics is mainly dictated by nonclassical evolution rules.
In the second part of the work (cf. Sect. 3) we have been concerned with the application of the
time-evolving measures theory to the modeling of crowd motion. In particular, we have proposed
a form of the velocity of pedestrians inspired by two main guidelines, somehow common to several
microscopic models of pedestrian flow already available in the specialized literature: (i) The will of
pedestrians to reach specific targets within the walking area, bypassing at the same time obstacles
possibly present along their paths (desired velocity); (ii) The tendency of pedestrians, at least in
normal, i.e. no panic, conditions, to look for uncrowded areas in their neighborhoods, in order
not to stay too close to one another (interaction velocity). Notice that the simultaneous presence
of Eulerian and Lagrangian aspects in the description of the system allows to duly incorporate
microscopic viewpoints, namely the motion mapping γn and consequently the construction of the
velocity vn, within a global macroscopic perspective on the system provided by the measures µn.

At present, our treatment of the desired velocity is mainly illustrative. In particular, we are
assuming that pedestrians aim at one specific target, for instance an aggregation point or a door
along the wall, that they can reach either directly or by possibly avoiding, in a simple manner,
a single intermediate obstacle within the walking area (cf. Fig. 2). However, it is plain that the
most interesting problems concern the flow of people in areas scattered with obstacles, like e.g.,
pillars, bottlenecks, narrow passages, therefore we are currently scheduling a forthcoming work
in which we will further investigate this modeling aspect, relying on the essentially geometrical
nature of the desired velocity field. As an anticipation, we observe that it is for instance possible
to generate smooth fields from a potential u : Ω→ R, which attracts pedestrians toward a target
x0 ∈ ∂Ω, by solving the elliptic problem{

−∆u = 0 in Ω
u = g on ∂Ω,
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where g vanishes on all external and internal boundaries of Ω but the one containing x0, and then
setting vd(x) = ∇u(x) (see Fig. 6).

Concerning the interaction velocity, the main characteristic is that it accounts for nonlocal
effects within a certain finite-radius neighborhood around pedestrians. In practice, each individual
is assumed to have her/his walking program influenced, in average, by all people comprised in some
neighborhood of interaction, in such a way that she/he can possibly agree to deviate locally from
her/his preferred path in order to bypass crowded areas, looking preferentially for free space. In
the present work we have shown that a nonlocal average structure of the interaction velocity fits
well in the proposed time-evolving measures theoretical framework (cf. Proposition 7). From the
modeling side, this proposal deserves further investigation and development in order to provide a
simple but accurate description of the interactions among pedestrians, which will be in turn the
object of the above-announced subsequent work.
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