
 Open access  Journal Article  DOI:10.1007/S10514-010-9202-3

Time-extended multi-robot coordination for domains with intra-path constraints
— Source link 

E. Gil Jones, M. Bernardine Dias, Anthony Stentz

Institutions: Willow Garage, Carnegie Mellon University

Published on: 01 Jan 2011 - Autonomous Robots (Springer US)

Topics: Motion planning

Related papers:

 A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems

 Market-Based Multirobot Coordination: A Survey and Analysis

 A comprehensive taxonomy for multi-robot task allocation

 Sold!: auction methods for multirobot coordination

 Consensus-Based Decentralized Auctions for Robust Task Allocation

Share this paper:    

View more about this paper here: https://typeset.io/papers/time-extended-multi-robot-coordination-for-domains-with-
1ktziwhmxq

https://typeset.io/
https://www.doi.org/10.1007/S10514-010-9202-3
https://typeset.io/papers/time-extended-multi-robot-coordination-for-domains-with-1ktziwhmxq
https://typeset.io/authors/e-gil-jones-1zkxorggye
https://typeset.io/authors/m-bernardine-dias-35yjoq10hn
https://typeset.io/authors/anthony-stentz-1nklxuuba5
https://typeset.io/institutions/willow-garage-3il7i5sh
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/journals/autonomous-robots-hqf6dxrz
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/papers/a-formal-analysis-and-taxonomy-of-task-allocation-in-multi-37udlnz144
https://typeset.io/papers/market-based-multirobot-coordination-a-survey-and-analysis-54mewq3cve
https://typeset.io/papers/a-comprehensive-taxonomy-for-multi-robot-task-allocation-2bdvvwtkef
https://typeset.io/papers/sold-auction-methods-for-multirobot-coordination-4kyen6pxfc
https://typeset.io/papers/consensus-based-decentralized-auctions-for-robust-task-1piputm5m3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/time-extended-multi-robot-coordination-for-domains-with-1ktziwhmxq
https://twitter.com/intent/tweet?text=Time-extended%20multi-robot%20coordination%20for%20domains%20with%20intra-path%20constraints&url=https://typeset.io/papers/time-extended-multi-robot-coordination-for-domains-with-1ktziwhmxq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/time-extended-multi-robot-coordination-for-domains-with-1ktziwhmxq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/time-extended-multi-robot-coordination-for-domains-with-1ktziwhmxq
https://typeset.io/papers/time-extended-multi-robot-coordination-for-domains-with-1ktziwhmxq


Time-extended Multi-robot Coordination for

Domains with Intra-path Constraints

E. Gil Jones M. Bernardine Dias Anthony Stentz

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA, USA

Email: egjones,mbdias,axs@cs.cmu.edu

Abstract— Many applications require teams of robots to co-
operatively execute complex tasks. Among these domains are
those where successful coordination solutions must respect con-
straints that occur on the intra-path level. This work focuses on
multi-agent coordination for disaster response with intra-path
constraints, a compelling application that is not well addressed
by current coordination methods. In this domain a group of
fire trucks agents attempt to address a number of fires spread
throughout a city in the wake of a large-scale disaster. The
disaster has also caused many city roads to be blocked by
impassable debris, which can be cleared by bulldozer robots.
A high-quality coordination solution must determine not only a
task allocation but also what routes the fire trucks should take
given the intra-path precedence constraints and which bulldozers
should be assigned to clear debris along those routes.

This work presents two methods for generating time-extended
coordination solutions – solutions where more than one task is
assigned to each agent – for domains with intra-path constraints.
While a number of approaches have employed time-extended
coordination for domains with independent tasks, few approaches
have used time-extended coordination in domains where agents’
schedules are interdependent at the path planning level. Our
first approach uses tiered auctions and two heuristic techniques,
clustering and opportunistic path planning, to perform a bounded
search of possible time-extended schedules and allocations.
Our second method uses a centralized, non-heuristic, genetic
algorithm-based approach that provides higher quality solutions
but at substantially greater computational cost. We compare our
time-extended approaches with a range of single task allocation
approaches in a simulated disaster response domain.

I. INTRODUCTION

Research efforts in robotics have increasingly turned to-

wards using teams of robots to collectively address tasks. A

team of robots acting together can often outperform single

robot solutions in terms of quality and robustness; however,

employing multiple robots requires coordinating robot efforts.

Research in multi-robot systems has centered around domains

where tasks can be addressed by single robots in isolation –

we call these independent task domains. Some approaches to

coordination in independent task domains exclusively reason

about instantaneous allocation, where each agent is assigned

only a single task at a time [4]. Other approaches use time-

extended allocation, where agents are assigned a set of tasks

to accomplish over a period of time [3] [1]. Reasoning about

time-extended allocation can improve performance, as agents

can discover synergies and dependencies between tasks. This

increased performance comes at a cost, however, as time-

extended coordination introduces substantial challenges for

task allocation. For one thing, agents must determine the order

in which to perform a number of tasks, a potentially difficult

problem that can adversely affect performance if done poorly.

Additionally, there are exponentially more potential multi-task

assignments than single-task assignments, making it infeasible

to consider all possible multi-task allocations and orderings.

The problem of determining high-quality time-extended

allocations becomes even more difficult in domains where

constraints introduce coupling between agents’ schedules; in

these domains it can no longer be assumed that agents can

independently and accurately determine their fitness for tasks.

We are particularly interested in domains where the coupling

between agents’ schedules occurs at the path planning level.

Specifically, we focus on domains where intra-path constraints

prevent agents from moving freely within the environment, and

where other agents can provide assistance to the constrained

agents to permit passage. The presence of intra-path con-

straints makes it necessary for agents to recruit assistance in

order to determine which paths to take through an environment

and form accurate fitness estimates for tasks.

One domain where agents’ schedules are coupled due

to intra-path constraints is precedence-constrained disaster

response, a compelling domain that we argue is not well-

addressed by existing coordination techniques. In this domain

a team of robots capable of extinguishing fires operates in

a city that has been ravaged by a disaster of significant

proportions. These fire truck agents are tasked with moving

to various locations around the city to extinguish fires. In

addition to causing fires the disaster has rendered many

roads impassable; they are covered with debris and wreckage,

creating obstacles around which the bulky fire extinguishing

robots cannot navigate. Suppose that there is another group

of bulldozer robots in the team that are designed to move

freely in rough terrain, and can clear roads of wreckage and

debris. We assume that the goal of the team is to maximize a

global objective function value that is computed as a sum over

time-decreasing rewards offered for extinguishing fires. As in

independent task domains, to formulate a high-quality multi-

agent plan a coordination solution must allocate fire fighting

tasks to fire trucks. Unlike in independent task domains a



coordination solution must also allocate debris-clearing tasks

to bulldozers so that fire trucks can quickly and easily move

to task locations. Determining time-extended assignments of

fires and debris piles requires reasoning about the routes that

fire trucks will take and the allocation of intra-path constraint

satisfaction duties to bulldozers, adding substantial complexity

to the already difficult problem of multi-agent task allocation.

In previous work we made some strides in adapting market-

based approaches to domains with intra-path constraints [6].

We used a novel method, tiered auctions, and a number of

domain-specific bounding methods to efficiently search the

space of task allocations, path plans, and intra-path constraint

satisfaction duties. One deficiency of this previous work was

that we considered only instantaneous assignment for fire

trucks, assigning a single fire to each fire truck at a time.

Considering only instantaneous fire truck assignment aids

in bounding and helps to drastically decrease the size of

the search space; however, it may result in an unacceptable

loss in solution quality. Time-extended allocation has been

shown to substantially improve performance in domains with

independent tasks [1]; we believe that reasoning about time-

extended allocation can also offer significant performance

increases for domains with intra-path constraints.

Efficiently determining high quality time-extended solutions

for domains with intra-path constraints is an open research

question that is not well addressed by existing approaches to

multi-agent coordination. Some previous work has explicitly

considered domains where tasks are interrelated by precedence

and simultaneity constraints [9] [8]. Other work has explicitly

addressed domains where tasks require the joint efforts of

multiple agents [15] [14] [12]. While these approaches support

reasoning about precedence constraints and interdependent

agent schedules, none of these approaches extensively explore

time-extended allocation or are well suited for efficiently

searching a space of possible routes and associated task as-

signment problems. Work in genetic algorithms for multi-agent

coordination has been widely studied in vehicle routing [11]

and for scheduling in both job-shop [10] and multi-processor

[2] contexts, but has not been extensively applied to domains

that require multi-robot task allocation, scheduling, and path

planning. Shima et al. use a genetic algorithm to do time-

extended allocation of tasks that may involve precedence con-

straints to a set of unmanned air vehicles [13]. Their problem

domain does not involve precedence constraint consideration

in path planning, however, and they demonstrate their work

only in scenarios that involve a maximum of 10 tasks, making

the scope much smaller than in our scenarios. Koes et al. use

an MILP-based formulation for a search and rescue domain

with similar elements to our disaster response domain [7].

While this MILP-based technique could give optimal solutions

in our domain the algorithm complexity grows exponentially

in the number of tasks and intra-path constraints, making it

impractical for any but the smallest problems.

The central contributions of this paper are two novel meth-

ods for time-extended coordination in domains with intra-path

constraints, each of which strikes a different balance between

computation time and solution quality. In the first method,

we extend tiered auctions to time-extended allocation using

two heuristic techniques, clustering and opportunistic path

planning, to efficiently search the immense space of multi-

task assignments. This approach improves on the solutions

achieved by our previous instantaneous assignment approach

but takes somewhat more time to determine the coordination

solution. Our second method is a centralized genetic algorithm

(GA)-based approach which searches in the full space of

coordination solutions, including possible routes for agents,

using randomized evolutionary methods. This approach can

determine higher quality solutions than time-extended tiered

auctions if allowed sufficient running time, but takes orders of

magnitude more computation time to do so.

In the next section we describe particular characteristics of

the disaster response with intra-path constraints domain. We

then detail our methods for time-extended coordination and

evaluate their performance in a simulated disaster response

domain. We finally conclude and suggest future work.

II. DOMAINS ASSUMPTIONS

For the purposes of this work we suppose that the goal of

the disaster response domain is to maximize the sum of time-

decreasing rewards offered for extinguishing fires at affected

buildings. When a fire occurs at a building the entire value

of the building is put at risk - the building’s value becomes

the maximum reward offered for addressing the fire. Fires can

be of differing magnitudes, where the magnitude governs the

linear rate of decay of the building value. The building value

is exhausted when the linear decay causes the value to reach

zero - no reward can be obtained from extinguishing the fire

once the value reaches zero, though no associated penalties are

levied. By these assumptions the reward for extinguishing a

particular fire is the affected building value less the linear rate

of decay multiplied by the number of cycles that have passed

since fire onset. In this work the maximum task rewards and

linear decay values will be drawn from independent normal

distributions. We assume that other performance metrics, such

as resource usage, makespan, or number of tasks addressed

are not relevant - only maximizing the sum of individual fire

rewards. Note that by these assumptions intra-path constraint

satisfaction has no intrinsic value to the objective function,

and is only useful in allowing access to fire locations.

We assume that each agent has full knowledge of the

domain map including debris pile locations, that all fire reward

characteristics, locations, and durations are known precisely,

and that agents can reliably communicate. While handling

greater uncertainty in domain knowledge is certainly a goal

for future work, in this work we focus on a low-uncertainty

environment; even in domains with low uncertainty the size

of the coordination search space offers substantial challenges.

We model the fire trucks as operating on a graph-based

representation of our road network - at any given time fire

trucks either occupy nodes or are traveling along road edges

between nodes. Those nodes can represent intersections, debris

piles, or fires. Bulldozers are not restricted to the road network;



they must avoid buildings but are otherwise can move freely.

We model bulldozers as operating in an occupancy grid-based

representation of the environment.

III. TIME-EXTENDED COORDINATION USING TIERED

AUCTIONS

In this section we first describe our background work in

tiered auctions for instantaneous allocation in domains with

intra-path constraints. We then discuss how we use cluster-

ing and opportunistic path planning to enable tractable and

efficient time-extended coordination.

A. Background

Market-based techniques have most frequently been applied

to domains with independent tasks. One such approach is

our work in a fire-fighting disaster response domain with

independent tasks [5]. Our approach used a single tier of

auctions; agents determine their task bids in isolation without

consulting other agents. To employ a market-based approach

in domains with intra-path constraints we needed a market

mechanism that would allow agents to assess their fitness for

tasks given that schedule quality depends on the schedules of

other agents. Efficiency was the primary goal in system design,

as the coupling of intra-task constraints and path planning

causes a combinatorial explosion in problem complexity.

In order to allow agents to reason about intra-path con-

straints during the bidding process we added a second tier

of auctions to the standard single-tier auction [6]. At the top

auction tier fire allocation is determined; in order to bid on

fires in those auctions fire trucks search through the space

of possible routes, holding second-tier sub-auctions to solicit

bulldozer involvement in clearing debris piles to satisfy intra-

path constraints. To make the process tractable we structure

the auction sequence and route search to permit extensive

bounding of the search space.

In our approach during an auction cycle a central Dis-

patcher/Auctioneer holds auctions periodically to allocate fire

fighting tasks. Fire trucks bid on the auctions based on

determining the routes to tasks that will allow them to achieve

the most reward in terms of the objective function for the task

- by our assumptions this is equivalent to searching for the

fastest route to the fire. Determining the fastest route to a

particular task requires searching the space of possible routes

and assigning bulldozers to clear debris piles along those

routes. Debris piles are allocated using a series of sequential

single item sub-auctions, where bulldozers bid based on adding

debris clearing requirements to the end of their schedules.

Bulldozers can potentially be assigned clearing duties in many

different sub-auctions associated with different fire trucks,

different fires, and different routes, though only a single set of

assignments corresponding to the fastest route to a single fire

will actually be adopted at the end of an auction cycle. Once

fire trucks have bid the D/A awards a single fire to the truck

that submitted the highest bid for any fire; that truck can then

task bulldozers with clearing duties associated with the fastest

route. The auction cycle repeats for any idle fire trucks.

Having each fire truck consider each possible route to every

unallocated fire during an auction cycle would be prohibitively

time consuming. We limit the search by having agents only

consider routes that could potentially improve on the best bid

submitted thus far. Additionally, we limit the search to routes

that need to pass through fewer debris piles than a parameter

NumDebrisCons; this serves to limit the search to paths

which are more likely to yield fast passage and to limit over-

exploitation of bulldozer resources.

As a final design consideration, we noted during testing that

agents seeking to strictly maximize reward independent of time

considerations tended to make somewhat inefficient decisions -

going to a fire a long distance away that yielded slightly higher

reward, for instance, rather than addressing a much closer

fire. While this strategy is effective for maximizing the reward

obtained for a single task, it doesn’t take into account that the

value available for all other tasks is constantly decaying. We

determined that agents can obtain more reward over all tasks

by trying to concentrate the reward they receive in a given

duration and moved to using a model where agents seek to

maximize their average reward per time cycle.

B. Methods

While our previous work in tiered auctions for domains

with intra-path constraints achieved a substantial performance

increase over single-tiered market-based approaches, consider-

ing only instantaneous allocations can limit the quality of the

produced solutions. At the same time, the space of possible

multi-task allocations is exponentially larger than the space

of single-task allocations, making maintaining efficiency and

tractability difficult. In our approach we attempt to heuristi-

cally determine the multi-task assignments that are most likely

to yield good performance given the presence of intra-path

constraints. We use two central observations in constructing

our heuristics for determining likely multi-task assignments.

First, we note that addressing a set of intra-path constraints

that allow a fire truck to reach one task along a particular route

may allow the agent to reach not only the target task but also

other tasks near the target task. To exploit this observation we

developed a clustering algorithm to group tasks that are located

near each other and that are separated by only a few debris; any

route from an agent’s current location that allows the agent to

reach some cluster member will also allow easy access to the

other cluster tasks. Second, we note that along many potential

routes to a cluster there may be fires that can be addressed

with little or no delay to tasks later in the schedule. In fact,

it may even result in higher average reward to take a slower

path to a task if it allows an agent to address additional fires.

We call this heuristic opportunistic path planning, and invoke

it during route search. In the rest of this section we describe

our two heuristic techniques for time-extended allocation and

how they are incorporated into the tiered auction framework.

1) Clustering on Shared Preconditions: Our approach to

clustering is to group together tasks that are spatially near

each other and that are separated by a small number of debris;

these tasks will then be auctioned as a group rather than



being auctioned individually. In our implementation clustering

occurs at the auctioneer level. When initiating task auctions

the DA runs a clustering algorithm over all unassigned tasks.

The algorithm iteratively creates a new cluster centered at an

unassigned fire task. It then runs a breadth-first search from

the selected fire task node. The BFS considers all unassigned

fire tasks connected by edges with a total length less than a

distance parameter ClusterDistance and that are separated

by fewer debris than a parameter ClusterDebrisMax; all

such fire nodes that have not been assigned to another cluster

are included in the new cluster. A clustering of a number of

tasks is shown in Figure 1.

Fig. 1. Output of the clustering algorithm with ClusterDistance = 2.5

and ClusterDebrisMax = 5 on a disaster response scenario in a five-by-
seven road network with 100 fire tasks (squares) and 100 debris (short lines
that run perpendicular to the roads). Clusters are grouped by color.

There are a few important differences between the tiered

auction for task clusters and the procedure described in Section

III-A. First, the DA offers a cluster of tasks in each task auction

instead of just a single task. Second, the fire trucks must now

assess the reward that can be obtained from addressing a set

of tasks rather than a single task. To do this the agent must

determine a route to the cluster, the order in which to address

cluster tasks, and the routes to take between cluster tasks.

Selecting the optimal ordering of tasks within a cluster so as

to maximize average reward is a difficult problem; we use

a heuristic based on shortest path distance. When bidding

on a task cluster a fire truck first sorts the cluster tasks

based on each task’s shortest path distance from the truck’s

current location without considering debris. It then selects the

task with the shortest distance as its initial target and run

the route searching sub-auction process with this task as the

goal, producing an efficient fire truck route and corresponding

bulldozer assignments. Next the closest task to the initial target

task is selected as the next cluster task to address. The route

and bulldozer assignments that were previously determined

are passed into the route-searching sub-auction process along

with the new target fire. Note that debris may lie between

cluster tasks, so the new route search may involve assigning

additional debris piles to the ends of the bulldozer schedules

associated with previous route searches. The new search is

explicitly linked to previous searches to enable bulldozers

to form accurate bids given that they may have assignments

associated with previous cluster tasks. The process continues

until the fire truck has a route that includes all fires in a

given cluster. The fire truck then bids for the cluster based

on the average reward accumulated for all cluster fires. The

DA assigns all relevant cluster tasks to the agent with the

highest bid for any cluster, repeating the auction if any agents

remain untasked. The winning fire truck adopts the schedule

associated with the winning bid and informs the bulldozers

they should begin executing their assigned duties.

2) Opportunistic Path Planning: We next focus on our

second heuristic approach to time-extended coordination -

opportunistic path planning. In all of our tiered auction work

described thus far the goal of route planning has been to

determine which route will allow the fire truck to reach and

extinguish a target fire as quickly as possible. In opportunistic

path planning the goal of route search is instead to determine

the route to the target fire that will allow the fire truck to

accumulate the greatest average reward, where reward can

come both from addressing the target fire and from attending to

additional fires along or near the route. In many cases taking

a somewhat more indirect route to a target fire may result

in higher average reward. We use two different techniques

to identify unallocated fires along particular routes that can

be opportunistically added to the route. The first technique

reasons about adding nodes that lie directly along the node

sequence that constitutes the route. The second technique

reasons about adding tasks that require slight deviations from

the route. When considering whether to add a task assignment

it must be determined whether or not the added reward

achieved by addressing tasks along the route outweighs the

reward lost by delaying the completion of tasks later in the

route.

a) On-path tasks: The on-path segment of our oppor-

tunistic path planning approach reasons only about tasks that

lie directly along the route being evaluated. In this algorithm

we start the evaluation at the first node in the route. If this

node is an unassigned fire we create a new route schedule

that is an exact copy of the current route schedule except

that the new schedule will include a stop at the unassigned

task for the required duration to address the task. The rewards

for the schedules are then compared; whichever schedule has

the higher per-cycle average reward is adopted. The search

continues until the end of the route schedule.

b) Off-path tasks: The off-path segment of our oppor-

tunistic path planning approach reasons about adding tasks

that do not lie precisely along the given route but require

only a slight deviation from the current route. We note that

the primary points where a truck can potentially beneficially

deviate from the route lie at the beginning of the route

and at each intersection. Thus at each of these points we

run a distance-limited breadth-first search; the search will

continue until the distance limit parameter OppMaxDistance

is reached or debris is encountered. When the search finds

an unassigned fire a new route schedule is created with the

additional required detour to reach the candidate fire and return



to the route. If this new route schedule achieves greater average

reward we adopt it; otherwise it is discarded. The process

continues until no additions can improve the route.

c) Usage: Opportunistic path planning is used during the

route planning portion of the cluster auction. Each route under

consideration is passed first to the on-path method and then to

the off-path method. The resulting schedule is then passed to

the sub-auctioning routine so that a final average reward can

be determined. If the route becomes part of a winning bid then

the fire truck informs the D/A of all the unassigned fires it is

claiming. A plan determined using opportunistic path planning

and clustering is shown in Figure 2.

Fig. 2. An example from our simulator of a route determined using clustering
and opportunistic path planning. Filled-in squares are fires that are scheduled
to be addressed. Small green boxes are bulldozers with their associated paths.
The square-within-a-square is the fire truck agent.

3) Bounding for Time-extended Allocation: In Section III-

A we noted that a primary bounding technique used in tiered

auctions with instantaneous allocation was designed to limit

search to routes that could potentially improve on the best

task bid. This method no longer is applicable in the time-

extended approach, as determining a bound on the potential

reward associated with a fire is impossible when opportunistic

path planning is being used. Instead we use a method we call

g-value bounding. The g-value bound for a particular fire is the

time that the fastest route thus far discovered has taken to reach

the site of a fire including any extra time taken for addressing

additional fires or time spent waiting for debris piles to be

cleared. The search for routes to a particular fire will terminate

when the remaining potential routes are longer than the current

minimum g value. The general intuition is that if a relatively

fast path to a fire has been found then it is not necessarily

effective to explore increasingly indirect paths, even though

some high-value indirect paths go unconsidered. A g-value

multiplier parameter can be set that will explore paths that are

some factor larger than the real g-value bound, but in practice

this does not seem to raise overall system performance and

can greatly increase running time.

IV. TIME-EXTENDED COORDINATION USING GENETIC

ALGORITHMS

Our time-extended tiered auction approach is designed to

quickly converge to a desirable coordination solution; this

solution will in all likelihood be a local maximum in terms

of performance. Our genetic algorithm approach, on the other

hand, operates in the full space of possible coordinated plans

and can converge to a global objective maximum if given

sufficient time. Our GA approach is most appropriate for

situations where a centralized solution is possible, where

computation time is virtually unlimited, and where maximiz-

ing solution quality is paramount. We chose to use genetic

algorithms as our randomized non-heuristic algorithm for two

main reasons. First, they have been successfully used in both

the vehicle routing literature [11], which involves elements of

path planning and in job-shop scheduling [10], which involves

precedence constraints. Second, some approaches, such as

simulated annealing, focus on a single solution hypothesis,

but genetic algorithms simultaneously maintain many disparate

hypotheses, making searching large coordination spaces easier.

Our GA approach consists of the following algorithm,

invoked at time zero:

1) Initialize the population of N genomes.

2) For a preset M generations:

a) Evaluate genomes in terms of fitness.

b) Select genomes for seeding the next generation.

c) Crossover selected genomes.

d) Apply mutation operators to genomes.

3) Take single highest fitness genome from any generation

and use it to set agent schedules.

We will next describe our encoding of a problem solution

into a genome as well as each of the above genetic algorithm

components in more detail.

A. Encoding

The choice of encoding is a very important part of design-

ing a genetic algorithm. The encoding needs to represent a

complete solution to a given instance of a problem. In our

case we need to specify the full sequence of actions taken

by both the fire trucks and the bulldozers. We can represent

fire trucks’ actions as an ordered sequence of nodes that the

fire truck will visit; this sequence can be turned into a full

schedule using the methods we will discuss in Section IV-

C. In addition to a node sequence each fire truck entry in a

genome has a Boolean work vector, with an entry indicating

whether the truck will attempt to address a fire as it passes.

Note that we explicitly represent the routes that fire trucks but

only implicitly represent the assignment of fire trucks to fires -

determining which fires will be addressed by particular trucks

only occurs during the evaluation phase. As bulldozers are

not restricted to the road network the node sequence for each

bulldozer needs only consist of a sequence of debris nodes

that each will be assigned to clear.

B. Initialization

We use a random method to initialize genomes, both to

seed the first generation and to introduce new individuals into

the population in subsequent generations to maintain diversity.

In this method for each fire truck in the agent population we

select a random fire node and determine a shortest path to that



fire node independent of debris considerations. That shortest

path node sequence becomes each fire truck’s initial entry

in the genome. Work vectors are initialized such that trucks

will attempt to address all fires on the route. We initialize

bulldozers using a simple market-based algorithm that seeks

to minimize makespan; the market-based method leads to

substantially higher initial population quality than randomly

dividing debris clearing responsibilities among agents. This

method insures that each debris is assigned to only a single

bulldozer and that all debris are assigned to some bulldozer.

C. Fitness Evaluation

The next main component of our GA is the evaluation

method - this method must take a genome and determine

a fitness value for the genome. In our case the value we

want is the total objective function score obtained given that

the agents follow the sequences of actions specified by the

genome. To determine this value we must simulate the actions

of agents in the domain to turn the sequences into schedules,

as we cannot determine completion times for tasks without

considering how agents’ routes or sequences interact. We use

an event-driven deterministic simulation method that produces

the exact objective score yielded by agents following the

sequences indicated in the genome.

D. Selection

We use three methods to select individuals to populate

subsequent generations. The first method we use is a binary

tournament method. In this method two members of the

genome are randomly selected, and the member with the

higher fitness is put into the reproduction pool. In this method

higher fitness individuals generally are selected but a tour-

nament may involve two low fitness individuals, maintaining

diversity. The second method is“Hall-of-fame” (HOF) selec-

tion. We maintain a list of a set size of the distinct genomes

with the highest fitness that have existed in any generation

during the search - this is the “Hall-of-fame.” During HOF

selection we pick a random individual from the hall and put

it in the reproduction pool. The HOF method means that we

spend a substantial portion of our time exploring promising

hypotheses. Finally, we also can add a randomly generated

genome to the pool.

E. Crossover

We do crossover for both fire truck node sequences and

bulldozer node sequences. We pair each genome in the selected

pool with another node such that each genome has a single

partner. Fire truck and bulldozer crossover then occur with

some probability. For fire truck crossover we need a method

to swap some portion of two agents’ node sequences. While

work in genetic algorithms for vehicle routing uses somewhat

heuristic approaches that attempt to insert sub-routes in benefi-

cial points in agents’ schedule [11], we chose to use a simple

non-heuristic approach, leaving other approaches for future

work. In our method we select a single fire truck in each

parent genome for crossover. We select a random crossover

point in each sequence and divide the schedules into front and

back portions. For each parent we then create a new sequence

consisting of its own front portion and the other parent’s back

portion, with a shortest path segment connecting the two.

Corresponding work vectors are crossed over appropriately.

Bulldozer crossover is more complicated, as we want to

preserve the genome property that all remaining debris tasks

are assigned to one and only one bulldozer. To this end we

used the crossover algorithm discussed in Mesghouni et al. in

their work on genetic algorithms for job-shop scheduling [10].

F. Mutation

Each of the mutation operators acts on a single genome in

isolation. We use four different mutation vectors that operate

on the fire truck node sequences, a mutation operator for

the fire truck work vectors, and three mutation operators for

bulldozer sequences.

Fig. 3. Examples of the fire truck mutations: Append (upper left), Redirect
(upper right), Reduce (lower right), and Lengthen (lower left). The square is
the agent’s location, the solid line the unaffected part of the original sequence,
the smaller dashed line the replaced sub-sequence, the larger dashed line the
new portion of the sequence, and the circle a randomly selected target node.

1) Fire Truck Mutation Operators: We could not find

examples in the literature of mutator operators applied directly

to agent routes. Our primary goal for our mutation operators

was to have sufficient richness to take any route and mutate

it into any other route in some finite number of steps. Each

operator directly alters the path of a single fire truck, either

adding to the end of a route (Append), shortening a sub-

sequence in the current route (Reduce), expanding a sub-

sequence of the current route (Lengthen), or altering the end-

point of the route (Redirect). These operations are illustrated

in Figure 3. Work vector mutation consists of, with some

probability, switching each entry.

2) Bulldozer Mutation Operators: We chose to use three

standard mutation operators from the job-shop scheduling lit-

erature [10]: swapping task order in a single agent’s schedule,

swapping two tasks between two different agents’ schedules,

and reassigning a task from one agent to another. All mutation

operations preserve the unique assignment of debris.

V. EXPERIMENTS AND RESULTS

In this section we describe our experimental setup and then

present our comparisons of our time-extended approaches and

several competing instantaneous allocation approaches.



A. Experimental Setup

Our simulation is designed to directly compare the different

approaches. To make the comparison as accurate as possible

we have agents in the different approaches operate on exactly

the same domain instance: agents begin in the same locations,

randomly generated debris are identically located, and the

same set of fires must be addressed. This simulation method

runs all agents within a single thread of computation.

We run all experiments in the seven-by-five road network

shown in Figure 1, with a team consisting of three fire trucks

and 12 bulldozers. 100 fires are distributed randomly, with

initial reward values drawn from a normal distribution of

N(3000, 250) that linearly degrades at a rate drawn from

N(25, 5) units/cycle. Fires have zero duration, allowing trucks

to extinguish fires immediately upon arrival; debris pile require

ten cycles of bulldozer effort to clear. In our experiments we

set four debris frequency levels of 0, 10, 200, 300; at the 300

debris level this translates to an average of over five debris

per segment. In all cases debris are randomly scattered on the

road network. For each debris frequency level we tested on

ten randomly generated distinct domain instances.

B. Approach Specifications

We use two instantaneous allocation approaches that do not

consider intra-path constraints during allocation to establish a

baseline of performance. The first approach we call Indepen-

dent Tasks. In this approach both fire trucks and bulldozers are

assigned to move to the location of the nearest fire and nearest

debris, respectively, taking the shortest path. We take care that

assignments are unique. In this method there is no explicit

coordination between agents. In our second baseline approach

we use the “Allocate-then-coordinate” (ATC) approach as

described in our previous work [6], where fires are assigned

based on shortest path bids; after assignment trucks use the

route sub-auction procedure described in Section III-A to find

the fastest path to their assigned fire. The final two market-

based approaches we compare are tiered auctions with instan-

taneous fire truck assignment (TA-IA) and tiered auctions with

time-extended fire truck assignment (TA-TE). For both tiered

auction approaches a value of 8 is set for NumDebrisCons.

For the TA-TE approach we set ClusterDistance = 2.5,

ClusterDebrisMax = 5, and OppMaxDistance = 6.0. In

order to make sure that bulldozers are productively occupied

even if not tasked by a fire truck we add an Idle behavior to

all market-based approaches - if bulldozers are not tasked by

fire trucks to clear particular debris they will be assigned to

debris piles using the same method taken in the Independent

Tasks approach. We test with three different parametrizations

of genetic algorithms: 5000 population, 200 optimization

generations; 10,000 population, 400 generations; and 20,000

population, 400 generations.

C. Results

We illustrate solution quality in Figures 4 and 5. Figure 4

shows approach reward averaged in proportion to an absolute

upper bound on available reward. Performance differences are
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Fig. 4. Approach performance in a simulated emergency response domain.
Standard deviations are shown as error bars. Values are shown as a proportion
of an upper bound of available reward, where the bound is the summed reward
of all issued tasks if they were addressed immediately.

clearer in Figure 5, where we plot how the approaches perform

as an averaged proportion of the reward achieved by the best

performer, GA-20000. TA-TE outperforms TA-IA by 24%

averaged over the trials with debris, exceeding the performance

of the baseline instantaneous allocation approaches by an

even larger margin. Genetic algorithms with a population of

20,000 outperform TA-TE by 7% over the trials with debris.

With a population of 10,000 the GA achieves roughly similar

performance to TA-TE, and with a population of 5,000 and

fewer generations TA-TE outperforms the GA approach by

7% averaged over the trials with debris.

Total time taken to produce coordination solutions is shown

in Figure 6. Time-extended tiered auctions use substantially

more computation time than do tiered auctions with instan-

taneous allocation except at the 300 debris level, where

restrictive bounding makes the time-extended approach more

efficient. All three settings of genetic algorithms use orders

of magnitude more computation than any of the market-based

approaches, underscoring that the heuristic techniques offers

a good balance between performance and computation.

VI. CONCLUSION AND FUTURE WORK

We have shown two different methods for improving perfor-

mance in a precedence-constrained domain by reasoning about

time-extended allocation. Our time-extended tiered auction

system uses two heuristics methods to allocate groups of tasks

that share preconditions; this approach substantially outper-

forms a tiered auction approach that uses only instantaneous

allocation though may require additional computation time.

We also present a genetic algorithm approach to time-extended

coordination, the first we know of that uses genetic algorithms
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Fig. 5. Average proportion of reward achieved versus the performance of
the GA-20000 approach on a per trial basis.

in a domain where allocation and path planning are coupled.

The genetic algorithm approach with a sufficiently large pop-

ulation achieves better performance than time-extended tiered

auctions at a cost of much greater computation time.

There are many avenues of future work that we would

like to consider. First, we would like to extend our work to

domains with higher uncertainty. One form of uncertainty we

are particularly interested in addressing is dynamic task issue,

where tasks at new locations are constantly being discovered.

Time-extended coordination in such domains is especially

difficult, as a balance must be struck between planning into the

future and reacting to new information. We also are interested

in extending this work to other forms of intra-path constraints,

particularly those that involve simultaneity.
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