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ABSTRACT Phonocardigraphy (PCG) is the graphical representation of heart sounds. The PCG signal

contains useful information about the functionality and the condition of the heart. It also provides an early

indication of potential cardiac abnormalities. Extracting cardiac information from heart sounds and detecting

abnormal heart sounds to diagnose heart diseases using the PCG signal can play a vital role in remote patient

monitoring. In this paper, we have combined different signal processing techniques and a deep learning

method to denoise, compress, segment, and classify PCG signals effectively and accurately. First, the PCG

signal is denoised and compressed by using a multi-resolution analysis based on the Discrete Wavelet

Transform (DWT). Then, a segmentation algorithm, based on the Shannon energy envelope and zero-

crossing, is applied to segment the PCG signal into four major parts: the first heart sound (S1), the systole

interval, the second heart sound (S2), and the diastole interval. Finally, Mel-scaled power spectrogram and

Mel-frequency cepstral coefficients (MFCC) are employed to extract informative features from the PCG

signal, which are then fed into a classifier to classify each PCG signal into a normal or an abnormal signal by

using a deep learning approach. For the classification, a 5-layer feed-forward Deep Neural Network (DNN)

model is used, and overall testing accuracy of around 97.10% is achieved. Besides providing valuable

information regarding heart condition, this signal processing approach can help cardiologists take appropriate

and reliable steps toward diagnosis if any cardiovascular disorder is found in the initial stage.

INDEX TERMS Classification, deep neural network, denoising, discrete wavelet transform, phonocardio-

gram, segmentation, Shannon energy envelope, TensorFlow, murmur, zero-crossing.

I. INTRODUCTION

Phonocardiography (PCG) is an automatic computer-aided

diagnosis tool that is the graphical depiction of heart

sounds. It provides information about the time duration,

frequency, and other important parameters of heart sounds

to determine the functionality and the current condition

of the heart valves [1]. Identifying pathological symp-

toms by hearing heart sounds through a stethoscope is

a very difficult skill and may take a long time to gain

proficiency. Moreover, the human ear has the limitation

in hearing heartbeats. So, we need more objective tools

like PCG to extract informative characteristics of heart

sounds that cannot be detected by the human ear. PCG

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

helps to analyze heart sounds and to detect abnormal-

ities in the heart, thereby improving overall diagnosis

efficiency.

A normal PCG recording usually consists of two funda-

mental heart sounds called the first heart sound (S1) and

the second heart sound (S2), which are generated due to the

closure of the atrioventricular valves and semilunar valves,

respectively. The interval from the starting point of S1 to

the starting point of S2 is called the systole interval, and the

interval from the starting point of S2 to the starting point of

S1 is called the diastole interval [1], [2]. The diastole interval

is usually longer than the systole interval [3]. Beside S1 and

S2, two extra heart sounds known as the third and fourth heart

sound (S3 and S4) can appear in both normal and pathological

conditions. S3 appears just after S2, and S4 appears just

before S1 [2].

160882
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2250-7067
https://orcid.org/0000-0002-2804-9215
https://orcid.org/0000-0003-1625-6548


M. T. H. Chowdhury et al.: Time-Frequency Analysis, Denoising, Compression, Segmentation, and Classification of PCG Signals

TABLE 1. The four basic heart sounds and their frequency range.

FIGURE 1. A pathological PCG signal.

Table 1 shows the four basic heart sounds and their prop-

erties. Aside from these heart sounds, different kinds of

murmurs may also be present in the PCG signal, which are

produced due to turbulent flow of blood across the valves

and are related to cardiac diseases. Murmurs usually have a

higher frequency when compared to normal heart sounds [4].

Fig. 1 shows a PCG signal with murmurs and S3 with refer-

ence to S1 and S2.

While recording, PCG signal is usually interrupted by

different kinds of noise and unnecessary information that may

cause inaccurate clinical diagnosis. So, before segmentation,

it is required to remove these redundant pieces of information

from the PCG signal to evaluate the proper functionality

of the heart. Fourier transform (FT) and Short-time Fourier

transform (STFT) are commonly used tools for examin-

ing stationary signals, but they show limited performance

in examining non-stationary signals, as they are unable to

provide simultaneous time and frequency localization [5].

Non-stationary signals, like PCG, can be analyzed properly

by using DWT, as DWT provides very good time-frequency

localization [5]. By using a multi-resolution analysis tech-

nique based on DWT, the PCG signal can be decomposed into

different sub-bands having different frequency ranges. The

required sub-bands containing valuable clinical information

can be picked up for further analysis. The other sub-bands,

which contain murmurs, noise, or other unnecessary infor-

mation, can be discarded [6], [7].

The location and duration of the four basic heart sounds,

systole, and diastole intervals are important parameters to

determine the cardiac function of a person [8]. To extract

these important characteristics from the PCG signal, it is

required to segment the PCG signal properly [9]. For seg-

mentation, the normalized average Shannon energy is used

to detect the components of the PCG signal by calculating

the envelope of its energy [10], [11]. Different methods are

available in scientific literature to detect the envelope of

signals such as absolute value of signals, energy of sig-

nals, Shannon entropy, Shannon energy, and so on. The

absolute value gives the same weight to all of the com-

ponents, therefore it is difficult to separate high amplitude

signals from low amplitude signals using this procedure.

The energy (square) gives weight to high amplitude rather

than low amplitude signals. The Shannon entropy gives more

weight to low-intensity rather than high-intensity signals.

Overall, the Shannon energy gives a better result when com-

pared to the other methods by giving emphasis on the signals

having medium intensity, which reduces the impact of low

amplitude signals more than high amplitude signals. Thus,

it is possible to detect the difference of the envelope inten-

sity of the high and low amplitude sounds [10], [11]. Then,

the zero-crossing algorithm can be used to detect the starting

and stopping points of the basic heart sounds in the PCG

signal [12]. Based on this information, the duration of each

heart sound, systole, and diastole intervals can be obtained.

Due to the significance of the PCG signal to detect cardiac

abnormalities, different automatic PCG classification models

have been developed using deep learning approaches such as

Deep Neural network (DNN), Convolutional Neural Network

(CNN), Recurrent Neural Network (RNN), Long Short-Term

Memory (LSTM), Gated Recurrent Unit (GRU), and so on.

All of these classificationmodels use feature extractionmeth-

ods to remove redundant features and to increase the classi-

fication accuracy. Principal Component Analysis (PCA) and

Linear Discriminant Analysis (LDA) are some of the most

common and widely used algorithms for feature extraction.

By analyzing the spectrogram of the PCG signal, we found

that the PCG signal has the same properties as the speech

signal. Mel-scaled power spectrogram and MFCC have been

shown to be more effective compare to PCA and LDA to

extract important features and to differentiate between dif-

ferent speech signals. Therefore, Mel-scaled power spectro-

gram and MFCC are used in our study to extract informative

features from the raw PCG signal, which are then passed

through a 5-layer feed forward DNNmodel trained by Keras.

The performance of this PCG classification model has been

compared with 12 other state-of-the-art PCG classification

models, and our PCG classification model has outperformed

those models by a large margin.

II. METHODS

A. MULTI-RESOLUTION ANALYSIS USING DISCRETE

WAVELET TRANSFORM

DWT can analyze the signal with different resolutions at

different frequencies. At high frequencies, a good time and

poor frequency resolution can be achieved. Similarly, at low

frequencies, a good frequency and poor time resolution can

be achieved by using DWT [5]. The time-frequency anal-

ysis of a signal x by using DWT can be accomplished by

passing the signal through a series of high-pass filters to

analyze the high frequencies and low-pass filters to analyze

the low frequencies [5]. A half-band low-pass filter removes

all frequencies that are above half of the highest frequency

in the signal. Similarly, a half-band high-pass filter removes

all frequencies that are below half of the highest frequency in

the signal. Using this procedure, the desired frequency band

can be picked up for further processing. First, the samples of

the signal x are decomposed simultaneously using a low-pass

filter of impulse response g and a high-pass filter of impulse
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FIGURE 2. Block diagram of the filter analysis.

response h, which results in the convolution of the signal x

with the filters. After the process of filtering, as half of the

frequencies have been removed, half of the total samples can

be rejected according to the Nyquist rule. So, the signal is

down-sampled by 2 to discard half of the total samples from

the signal. This process is called one level decomposition and

mathematically can be expressed as:

Ylow[n] =

∞∑

k=−∞

x[k] ∗ g[2n− k] (1)

Yhigh[n] =

∞∑

k=−∞

x[k] ∗ h[2n− k] (2)

where Ylow[n] and Yhigh[n] are the outputs of the low-pass

and high-pass filters, respectively, after down-sampled by 2.

The output from the low-pass and high-pass filters are called

the approximation coefficients and detail coefficients, respec-

tively [5]. The block diagram of the filter analysis is shown

in Fig. 2.

Decomposition can be repeated if it is further required to

get the desired frequency spectrum from the input signal.

B. SHANNON ENERGY ENVELOPE AND ZERO-CROSSING

ALGORITHM

The Shannon energy is used in our research to accurately

identify the boundaries of all the basic heart sounds (S1, S2,

S3, and S4). The mathematical expression of this procedure

is given below:

Shannon Energy : E = −x2logx2 (3)

where x is the denoised signal. The average Shannon energy

is calculated in 0.02 second continuous segments of the whole

PCG signal, with segment overlap of 0.01 second. The aver-

age Shannon energy can be represented as:

Es = −
1

N

N∑

i=1

x2(i)logx2(i) (4)

where x is the denoised PCG signal, N is the signal length, and

i is an integer. Lastly, the normalized average Shannon energy

is calculated to get the Shannon energy envelop of the signal.

Mathematically, the normalized average Shannon energy can

be written as:

En(t) =
Es(t) −M (Es(t))

max(|Es(t)|)
(5)

where En(t) is the normalized average Shannon energy, Es(t)

is the average Shannon energy,M (Es(t)) is the mean value of

Es(t), andmax(|Es(t)|) is the maximum absolute value among

all the coefficients of Es(t), respectively. After calculating

the boundary of each heart sound accurately, a zero-crossing

algorithm can be used to know the starting and stopping

points of each heart sound by calculating the points where

the sign of the boundaries change from positive to negative

or vice versa.

C. FEATURE EXTRACTION

Feature extraction is a process of deriving a compact

and useful representation of the information from the

signal [13], [14]. The heart sound signals in the database are

redundant in nature. 1 second of data contains 2,000 samples

with a sampling frequency of 2,000 Hz. Therefore, we need to

extract the necessary and meaningful features from the signal

to train the model. Mel-scaled power spectrogram andMFCC

are used in our research to extract important features from the

PCG signal.

1) MEL-SCALED POWER SPECTROGRAM

Time vs. Frequency representation of a signal is called the

spectrogram of the signal. A spectrogram visually represents

the change of the frequency of a signal with respect to time,

which helps themodel to recognize the sound accurately [15].

The Mel-scale aims to mimic the non-linear human ear per-

ception of sound, by being more distinctive at lower frequen-

cies and less distinctive at higher frequencies. TheMel-scaled

filters are non-uniformly placed in the frequency axis to sim-

ulate human ear properties. Thus, there are more filters in the

low-frequency region and fewer filters in the high-frequency

region. A Mel-scaled power spectrogram of a signal can be

found by applying Mel-scaled filters to the power spectrum

of a signal and the neural network works much better if

the Mel-scaled power spectrogram is used instead of the

spectrogram [15]. The process of obtaining the Mel-scaled

power spectrogram of a signal is shown in Fig. 3.

First, the signal is divided equally into small sections of

short duration (20 to 30 ms) known as frames. Then, each

frame is multiplied by the Hamming window. The Hamming

window can be expressed as:

w[n] = 0.54 − 0.46cos(
2πn

N − 1
) (6)

where 0 ≤ n ≤ N − 1, and N is the window length. Then,

the Discrete Fourier transform (DFT) is applied to convert the

signal from the time domain to the frequency domain. The

Mel-scale filter-banks are computed as follows:

m = 2595 ln(
f

700
+ 1) (7)

where f is the frequency in the linear scale, and m is the

resulting frequency in Mel-scale. Now, the Mel-scaled power

spectrogram of the signal is obtained by applying Mel-scale

filter-banks to the power spectrum of the signal and the log
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FIGURE 3. a) Feature extraction process by using Mel-scaled power
spectrogram and MFCC.

FIGURE 4. a) Mel-scaled power spectrogram of a normal PCG signal. b)
Mel-scaled power spectrogram of a PCG signal with murmurs.

of the energy output of each filter. This can be expressed as:

S[m] = log(

N−1∑

k=0

|x[k]|2Hm[k]) (8)

where Hm[k] is the filter-banks, and m is the number of the

filter-bank. Fig. 4 shows the Mel-scaled power spectrogram

of a normal signal (without murmurs) and an abnormal signal

(with murmurs), respectively.

2) MEL-FREQUENCY CEPSTRAL COEFFICIENTS

Mel-frequency cepstrum (MFC) is the compressed repre-

sentation of the Mel-scaled power spectrogram, which can

be found by taking the Discrete Cosine Transform (DCT)

of a log power spectrum on a nonlinear Mel-scale of fre-

quency [15]. The process of obtaining the Mel-scaled power

spectrogram of a signal is shown in Fig. 3. The DCT of the

spectrum to obtain the MFCC can be represented as:

c[n] =

M−1∑

m=0

S[m] cos(
πn

M
(m−

1

2
)), n = 0, 1, 2, . . . .,M

(9)

where M is the total number of filter banks. Fig. 5 shows

the MFCC of a normal signal (without murmurs) and an

abnormal signal (with murmurs), respectively.

The features of the Mel-scaled power spectrogram and the

MFCC are biologically inspired and resemble the resolution

of the human auditory system, which (features) are proven to

be more efficient to discriminate between two different sound

signals [15].

D. DEEP NEURAL NETWORK

A DNN is the network of artificial neurons with multiple

hidden layers between input and output layers. These neurons

FIGURE 5. a) MFCC of a normal PCG signal. b) MFCC of a PCG signal with
murmurs.

FIGURE 6. A deep neural network with N hidden layers.

usually create a complex network of different layers. Neurons

from one layer pass signals to other neurons in the next layer.

Fig. 6 represents a DNN of N hidden layers.

From Fig. 6, we can see that the input data is fed into the

neurons of the input layer. The output of the input layer works

as input to the first hidden layer. This process will continue

until the final layer. The output of the final layer will give the

final prediction. Each layer can have one or more neurons

and each neuron uses a threshold value in the form of an

activation function to pass the signal to the next connected

neuron. Two neurons of consecutive layers are connected

with a parameter called weight. The function of the weight

is to transform the input data within the hidden layers. While

training the model, DNN uses a backpropagation algorithm

to provide feedback to the network based on the output. The

goal of the backpropagation algorithm is to update each of

the weights several times step-by-step, thereby minimizing

the error and gradually increase the overall accuracy [16].

After nth iteration the error at the output of neuron p can be

expressed as:

ep(n) = dp(n) − ap(n) (10)

where dp(n) and ap(n) are the desired and actual output of

neuron p, respectively. The instantaneous error energy at the

output layer is defined as:

E(n) =
1

N

N∑

p=1

e2p(n) (11)

The above error can be reduced by using gradient descent

method. The gradient descent is the widely used optimization

method to update the weights by calculating the derivative
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of the error with respect to the weights of the network. This

process can be expressed as:

1wp,j(n) = −η
∂E(n)

∂wp,j(n)
(12)

where η is known as the learning rate. Learning rate is a

hyper-parameter, which determines the adjustment of the

weights with respect to the loss gradient. The range of the

learning rate is between 0 to 1. This process of updating

the weights will continue until the loss function is minimum.

The final updated value of 1wp,j(n) can be expressed as:

1wp,j(n+ 1) = wp,j(n) + 1wp,j(n) (13)

Thus, by minimizing the error we can find the optimal

values for the weights of each neuron that will give the best

model performance.

E. PERFORMANCE EVALUATION OF DNN

Classification accuracy of any learning model can be

evaluated by investigating the confusion matrix. Two param-

eters known as sensitivity and specificity are used to ana-

lyze the prediction accuracy of any binary classification

models. The sensitivity indicates the true positive rate and

measures the proportion of the correctly identified actual

positives. The specificity indicates the true negative rate and

measures the proportion of the correctly identified actual

negatives. Both of these parameters can be calculated by

using the confusion matrix. Another important metric used to

evaluate the classification model is known as accuracy, which

is the number of correctly predicted data points out of all

the data points. Sensitivity, specificity, and accuracy can be

calculated by using these formulas:

Sensitivity =
TP

TP+ FN
(14)

Specificity =
TN

FP+ TN
(15)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(16)

where TP (True Positive) is the number of sick people cor-

rectly identified as sick, TN (True Negative) is the number of

healthy people correctly identified as healthy, FP (False Pos-

itive) is the number of healthy people incorrectly identified

as sick, and FN (False Negative) is the number of sick people

incorrectly identified as healthy.

III. RESULTS AND ANALYSIS

In this section, we verified the performance of the pro-

posed denoising, compression, segmentation, and classifica-

tion algorithms, respectively. An extensive simulation was

carried out using the Python programming language to imple-

ment these algorithms.

A. DATASET

In this paper, the well-known University of Michigan Heart

Sound and Murmur Library [17] and the 2016 PhysioNet

FIGURE 7. Frequency spectrum of a PCG signal.

TABLE 2. Different levels and their frequency range.

Computing in Cardiology Challenge database [18] were used

for evaluating the performance of different algorithms. There

are 23 PCG signals in the University of Michigan Heart

Sound and Murmur Library database including 5 normal and

18 pathological. The 2016 PhysioNet Computing in Cardiol-

ogy Challenge database consists of 6 datasets (A through F)

containing a total of 3,240 unique heart sound recordings.

The recordings from these 2 databases were collected from

both healthy people and patients with confirmed cardiac

diseases.These 2 databases are not balanced. The imbalance

ratio of normal heart sounds to abnormal heart sounds is 1:4.

A total of 123 unique PCG signals were used from these

2 databases to validate our segmentation algorithm. For the

classification, we used all the 3,240 PCG signals available

in the 2016 PhysioNet Computing in Cardiology Challenge

database. We used 90% of the data as the training set to

develop the prediction ability of the model, and the remaining

10% of the data was used as the testing set to validate the

model.

B. RESULTS OF DENOISING AND COMPRESSION

The presence of different kinds of noise and murmurs make

it very difficult to extract the correct diagnostic informa-

tion and features from the PCG signal. In some cases it is

almost impossible to segment PCG signals because of the

noise. Therefore, it is necessary to eliminate noise and isolate

murmurs from the PCG signal before segmentation. These

isolated murmurs can be picked up for further processing.

The highest frequency of all the PCG signals in the database

is 1,000 Hz. The signal was decomposed in such a way that

its approximation band contained all of the information as

well as the energy. Fig. 7 shows pathological information

of a PCG signal stays within the 0-250 Hz frequency range.

Hence, the signal was decomposed up to the 2nd level to cover

0-250 Hz by approximation band. Table 2 shows the fre-

quency range of each sub-band.
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FIGURE 8. a) Original PCG signal. b) Signal using only approximation
coefficients of level 2. c) Signal using only detail coefficients of level 2.
d) Signal using only detail coefficients of level 1.

Different signals in different sub-bands are shown in Fig. 8.

From Table 2 and Fig. 8, it can be observed that only

the approximation sub-band (0-250 Hz) contains all the

pathological information with only 2,276 coefficients out

of 9,069 coefficients. The two detail sub-bands of level 2

(251-500 Hz) and level 1 (501-1,000 Hz) with 6,790 coeffi-

cients contain redundant information including noise. In the

case of abnormal PCG signal, detail sub-bands contain mur-

murs besides noise, which can be separated and analyzed

further. As the pathological information of the signal usually

stays within the frequency range (0-250 Hz) of the approx-

imation band, only the approximation sub-band was used to

reconstruct the signal and to eliminate high-frequency noise

and murmurs over 250 Hz. The reconstructed signal can be

defined as:

Xr (n) = A2(n) (17)

where Xr (n) and A2(n) are the reconstructed and approxima-

tion signals, respectively. This process will not only denoise

the PCG signal but will also compress the signal without

losing any pathological information. It will save storage,

so the PCG signal can be recorded for a long time.

C. RESULTS OF SEGMENTATION

Segmentation of the PCG signal facilitates to get the exact

position and duration of the basic heart sounds, systole,

and diastole intervals. The segmentation technique, based

on the Shannon energy envelope and the zero-crossing algo-

rithm, effectively extracted all the important characteristics of

the PCG signal. A threshold was set to discard the effect of the

noise and the low amplitude signal. Fig. 9 and 10 represent the

original signal, the signal after removing noise and murmurs,

Shannon energy envelope, and zero-crossing of a normal and

an abnormal PCG signal, respectively. The time duration of

the 4 basic heart sounds, systole interval, diastole interval,

FIGURE 9. a) Original normal PCG signal. b) Reconstructed PCG signal
after denoising. c) Shannon energy envelope of the PCG signal.
d) Zero-crossing of the PCG signal.

FIGURE 10. a) Original abnormal PCG signal. b) Denoising and isolation
of the murmurs from the PCG signal after reconstruction. c) Shannon
energy envelope of the PCG Signal. d) Zero-crossing of the PCG Signal.

one cardiac cycle, and heart rate information extracted from

a normal and an abnormal PCG signal are shown in Table 3.

D. RESULTS OF CLASSIFICATION

A 5-layer sequential feed-forward DNN model trained by

Keras was used in our research to classify the PCG signal

into two categories, either normal or abnormal. Keras is the

high-level API of TensorFlow, which we used to train our

classifying model with great speed.

Mel-scaled power spectrogram and MFCC were used to

extract meaningful features from each heart sound of the

database. A total of 25 features were achieved from each of

the PCG signals using these two methods, which were then
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TABLE 3. Extraction of the cardiac information from PCG signals.

FIGURE 11. Training and testing accuracy with respect to epochs.

FIGURE 12. Training and testing loss with respect to epochs.

fed into the DNN to train the model. Afterwards, 5 hidden

layers with 256, 512, 768, 1,024, and 1,280 filters were imple-

mented with the ReLU activation function for non-linearity.

In the output layer, the sigmoid activation function was used

to get the probability distribution, which we applied on the

cross-entropy cost function. The cross-entropy cost function

was used tomeasure how far apart the output of themodel was

from that of the desired or target output. The Adam optimizer

was used to minimize the cost function. The training started

with a learning rate of 0.0001 and continued until it reached

the maximum number of epochs. The Dropout technique was

used in the model to reduce independent learning among the

neurons and to handle overfitting. After training the model its

prediction capability was tested on the testing set. This pro-

posed model can discriminate between normal and abnormal

PCG signals with an excellent training accuracy of 98.25%

and testing accuracy of 97.10%. The achieved sensitivity

and the specificity of the model are 99.26% and 94.86%,

respectively. Fig. 11 shows the accuracy of the model and

Fig. 12 shows the reduction of the cost with respect to epochs.

Based on the result, this model can be a promising solution

to detect early-stage heart diseases by picking up potential

abnormal PCG signals from a series of normal PCG signals.

IV. DISCUSSION

The main goal of the 2016 PhysioNet Computing in Cardiol-

ogy Challenge [18] was to build a robust intelligent system

that can detect anomaly in the PCG signal and can classify

a PCG signal as normal or abnormal based on its features.

The best overall accuracy achieved in the official phase of

the 2016 PhysioNet Computing in Cardiology Challenge

was 86.02% with sensitivity and specificity of 94.24% and

77.81%, respectively. Table 4 shows the comparison of our

proposed PCG classification model with 12 other state-of-

the-art PCG classification models. All these models used

the same dataset published by the 2016 PhysioNet Comput-

ing in Cardiology Challenge. Presently, this is the largest

database of PCG signals in the world. As shown in Table 4,

the classification accuracy achieved from the previous mod-

els varied between 79.00% to 97.00%, whereas the range

of the sensitivity and specificity varied between 77.00% to

98.33% and 77.81% to 98.00%, respectively. It is notewor-

thy to mention that the AdaBoost-CNN model proposed by

Potes et al. [19] was ranked 1st in the 2016 PhysioNet

Computing in Cardiology Challenge. Nassaralla et al. [20]

extracted time and frequency features of PCG signals to

build a learning model using RFC and DNN. Nassaralla et al

obtained a very good accuracy and specificity of 92.00%

and 98.00%, respectively, but low sensitivity of 78.00%.

On the other hand, Han et al. [23] reached an overall good

accuracy and sensitivity of 91.50% and 98.33%, respectively,

but with less specificity of 84.67%. They used complex

segmentation of heart sounds and CNN to identify PCG

signals. Krishnan et al. [30] also implemented segmenta-

tion of the cardiac cycle and achieved 85.65% accuracy.

Sotaquirá et al. [26] used DNN and weighted probabil-

ity comparison of each card cycle and got high accuracy

of 92.60%. Langley et al. [22] obtained 79.00% accuracy

without using complex segmentation technique. They used

threshold-based classification tree for PCG classification.

Singh et al. [27] initially applied KNN on unsegmented

heart sounds recording and got 90.00% accuracy. Later,

Singh et al. [29] improved the accuracy to 92.47% by apply-

ing a set of classifiers. Whitaker et al. [21], Tang et al. [24],

and Nogueira et al. [28] employed SVM with different struc-

tures to build their models and achieved 89.26%, 88.00%,

and 87.85% accuracy, respectively. Dominguez et. al. [25]

attained a great accuracy of 97.00% by employing the mod-

ified version of the AlexNet model but this model has high

computational complexity. Our PCG classification model

outperforms these state-of-the-art models with a significant

improvement in overall accuracy rate. The proposed model

achieved an overall accuracy of 97.10% with sensitivity and

specificity of 99.26% and 94.86%, respectively. Moreover,

it has very low computational complexity with high speed

for PCG classification. Hence, this model can overcome the

limitation to classify PCG signals accurately with high speed.

Our automatic PCG analysis technique is a complete

package of denoising, compression, segmentation, and classi-

fication. Until now, very little research has been done on ana-

lyzing PCG signals which covers all four major techniques.

Clinically, it is essential to extract as many possible features

from the PCG signal for the correct classification. However,

not all of the features carry important information, and there
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TABLE 4. Comparison of the proposed model with other state-of-the-art PCG classification models.

can be some redundancy. Thus, denoising and compression

techniques were used to remove redundant information from

the PCG signal in our proposed method to classify each PCG

signal correctly. This preprocessing technique played a cru-

cial role in extracting all of the important cardiac parameters

from the PCG signal and in increasing the overall accuracy

of the classification and segmentation. During the acquisition,

PCG signals usually suffer from distortionwhile passing from

heart to sensor. This happens due to the time delay of different

frequency components of the PCG signal during the propa-

gation. For our research we did not use any data acquisition

processes to collect PCG signals directly from patients in the

clinical environment. Rather, we used a database to validate

our proposed classification model. Therefore, minimizing the

effect of time delay of the PCG signal during propagation is

beyond the scope of this paper.

The main limitation of our proposed algorithm is the exis-

tence of murmurs within the frequency range of the basic

heart sounds. In this case, the Shannon energy is affected

by noise and it is very difficult to accurately identify the

boundaries of each heart sound. In the presence of high

intensity noise, the Shannon energy envelope is too noisy to

read and will provide incorrect output. The DWT reconstructs

the PCG signal by separating high-frequency murmurs from

the low-frequency heart sounds. However, when the heart

sounds and murmurs share the same frequency band, separat-

ing murmurs from the PCG signal will eliminate some of the

major details of heart sounds. This will cause potential loss

of the cardiac information. Additional research is needed to

solve this problem.

V. CONCLUSION

PCG signals have been used for decades to detect cardiac

abnormalities. The extraction of important cardiac informa-

tion from the PCG signal and the detection of the abnormal

PCG signal in the primary stage can play a vital role to

decrease the death rate caused by cardiovascular diseases.

An Automatic PCG signal analysis approach using DWT,

Shannon energy envelope, zero-crossing, and feed-forward

DNN is presented in this paper. This technique is not only

able to denoise the signal efficiently but also separates the

heart sounds from murmurs. Therefore, it can determine the

duration of basic heart sounds as well as the duration of

systole interval, diastole interval, and cardiac cycles properly.

Classification of the PCG signal is also possible with the clas-

sification algorithm with great accuracy of 97.10%, which

is better than many other state-of-the-art PCG classification

methods. Based on the ability of this algorithm, an automatic

wearable tool can be developed to detect the early symptoms

of cardiac diseases, allowing for prompt intervention.

However, it should be noted that the proposed method

requires a large amount of data to train the model. Therefore,

in future work, it is necessary to evaluate the performance

of our proposed model by using PCG signals from more

subjects. Moreover, we will focus on exploring other impor-

tant features to improve the classification performance. The

efficiency of the segmentation algorithm becomes limited in

the presence of a large number of murmurs overlapping with

heart sounds. It is a very complex process to remove all the

murmurs, and further research is required to overcome this

limitation. In the future, other neural network models such as

CNN, RNN, LSTM, and GRU will be used to increase the

sensitivity, specificity, and accuracy of the model if possible,

near 100%.

REFERENCES

[1] R. M. Rangayyan and R. J. Lehner, ‘‘Phonocardiogram signal analysis:

A review,’’ Crit. Rev. Biomed. Eng., vol. 15, no. 3, pp. 211–236, 1987.

[2] J. Chebil and J. A. Nabulsi, ‘‘Classification of heart sound signals using

discrete wavelet analysis,’’ Int. J. Soft Comput., vol. 2, no. 1, pp. 37–41,

2007.

[3] L. Hamza Cherif, S. M. Debbal, and F. BEREKSI-REGUIG, ‘‘Segmen-

tation of heart sounds and heart murmurs,’’ J. Mech. Med. Biol., vol. 08,

no. 04, pp. 549–559, Dec. 2008.

[4] X. Zhang, L. Durand, L. Senhadji, H. C. Lee, and J.-L. Coatrieux, ‘‘Time-

frequency scaling transformation of the phonocardiogram based of the

matching pursuit method,’’ IEEE Trans. Biomed. Eng., vol. 45, no. 8,

pp. 972–979, Sep. 1998.

[5] R. Polikar. The Wavelet Tutorial. [Online]. Available:

http://engineering.rowan.edu/polikar/WAVELETS/WTtutorial.html

[6] M. Chowdhury, K. Poudel, and Y. Hu, ‘‘Phonocardiography data compres-

sion using discrete wavelet transform,’’ inProc. IEEE Signal Process. Med.

Biol. Symp. (SPMB), Dec. 2018, pp. 01–03.

[7] M. T. H. Chowdhury, K. N. Poudel, and Y. Hu, ‘‘Automatic phonocardio-

graphy analysis using discrete wavelet transform,’’ in Proc. 3rd Int. Conf.

Vis., Image Signal Process., Aug. 2019, pp. 1–8.

[8] J. Zhong and F. Scalzo, ‘‘Automatic heart sound signal analysis with

reused multi-scale wavelet transform,’’ Int. J. Eng. Sci., vol. 02, pp. 50–57,

Jan. 2013.

VOLUME 8, 2020 160889



M. T. H. Chowdhury et al.: Time-Frequency Analysis, Denoising, Compression, Segmentation, and Classification of PCG Signals

[9] H. Nazeran, ‘‘Wavelet-based segmentation and feature extraction of heart

sounds for intelligent PDA-based phonocardiography,’’Methods Inf. Med.,

vol. 46, no. 02, pp. 135–141, 2007.

[10] H. Liang, S. Lukkarinen, and I. Hartimo, ‘‘Heart Sound Segmentation

Algorithm Based on Heart Sound Envelogram,’’ Proc. IEEE Comput.

Cardiol., vol. 24, pp. 105–108, 1987.

[11] N. Shankar and M. S. Sangeetha, ‘‘Analysis of Phonocardiogram for

Detection of Cardiac Murmurs using Wavelet transform,’’ Int. J. Adv. Sci.

Tech. Res., vol. 1, no. 3, pp. 350–357, 2013.

[12] K. Courtemanche, V.Millette, andN. Baddour, ‘‘Heart sound segmentation

based on mel-scaled wavelet transform,’’ in Proc. 31st Conf. Can. Med.

Biol. Eng. Soc., Montreal, Quebec, Canada, 2008, pp. 1–4.

[13] M. Nabih-Ali, E.-S.-A. El-Dahshan, and A. S. Yahia, ‘‘Heart diseases diag-

nosis using intelligent algorithm based on PCG signal analysis,’’ Circuits

Syst., vol. 8, no. 7, pp. 184–190, 2017.

[14] E. F. Gomes and E. Pereira, ‘‘Classifying heart sounds using peak location

for segmentation and feature construction,’’ Tech. Rep., 2012.

[15] J. L. C. Loong, K. S. Subari, M. K. Abdullah, N. N. Ahmad, and R. Besar,

‘‘Comparison of MFCC and cepstral coefficients as a feature set for PCG

biometric systems,’’ Int. J. Biomed. Biol. Eng., vol. 4, no. 8, pp. 335–339,

Jan. 2010.

[16] B. Benuwa, Y. Z. Zhan, B. Ghansah, D. K. wornyo, and F. K. Banaseka,

‘‘A review of deep machine learning,’’ Int. J. Eng. Res. Afr., vol. 24,

pp. 124–136, Apr. 2016.

[17] (Apr. 2014). Heart Sound & Murmur Library. [Online]. Available:

https://open.umich.edu/find/open-educational-resources/medical/heart-so

und-murmur-library.

[18] C. Liu, D. Springer, Q. Li, and B. Moody, ‘‘An open access database for

the evaluation of heart sound algorithms,’’ Physiol. Meas., vol. 37, no. 12,

pp. 2181–2213, Nov. 2016.

[19] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, ‘‘Ensemble of fea-

ture:Based and deep learning:Based classifiers for detection of abnor-

mal heart sounds,’’ in Proc. Comput. Cardiol. Conf. (CinC), Sep. 2016,

pp. 621–624.

[20] M. Nassralla, Z. E. Zein, and H. Hajj, ‘‘Classification of normal and abnor-

mal heart sounds,’’ in Proc. 4th Int. Conf. Adv. Biomed. Eng. (ICABME),

Oct. 2017, pp. 1–4.

[21] B. M. Whitaker, P. B. Suresha, C. Liu, G. D. Clifford, and D. V. Anderson,

‘‘Combining sparse coding and time-domain features for heart sound

classification,’’ Physiol. Meas., vol. 38, no. 8, pp. 1701–1713, Jul. 2017.

[22] P. Langley and A. Murray, ‘‘Heart sound classification from unseg-

mented phonocardiograms,’’Physiol. Meas., vol. 38, no. 8, pp. 1658–1670,

Jul. 2017.

[23] W. Han, Z. Yang, J. Lu, and S. Xie, ‘‘Supervised threshold-based heart

sound classification algorithm,’’ Physiol. Meas., vol. 39, no. 11, Nov. 2018,

Art. no. 115011.

[24] H. Tang, Z. Dai, Y. Jiang, T. Li, and C. Liu, ‘‘PCG classification using

multidomain features and SVM classifier,’’ BioMed Res. Int., vol. 2018,

pp. 1–14, Jul. 2018.

[25] J. P. Dominguez-Morales, A. F. Jimenez-Fernandez, M. J. Dominguez-

Morales, and G. Jimenez-Moreno, ‘‘Deep neural networks for the recog-

nition and classification of heart murmurs using neuromorphic auditory

sensors,’’ IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 1, pp. 24–34,

Feb. 2018.

[26] M. Sotaquirá, D. Alvear, and M. Mondragón, ‘‘Phonocardiogram classifi-

cation using deep neural networks and weighted probability comparisons,’’

J. Med. Eng. Technol., vol. 42, no. 7, pp. 510–517, Oct. 2018.

[27] S. A. Singh and S. Majumder, ‘‘Classification of unsegmented heart sound

recording using KNN classifier,’’ J. Mech. Med. Biol., vol. 19, no. 4,

pp. 24–34, 2019.

[28] D. M. Nogueira, M. N. Zarmehri, C. A. Ferreira, A. M. Jorge, and

L. Antunes, ‘‘Heart sounds classification using images from wavelet trans-

formation,’’ Prog. Artif. Intell., to be published.

[29] S. A. Singh and S. Majumder, ‘‘Short unsegmented PCG classification

based on ensemble classifier,’’ TURKISH J. Electr. Eng. Comput. Sci.,

vol. 28, no. 2, pp. 875–889, Mar. 2020.

[30] P. T. Krishnan, P. Balasubramanian, and S. Umapathy, ‘‘Automated heart

sound classification system from unsegmented phonocardiogram (PCG)

using deep neural network,’’ Phys. Eng. Sci. Med., vol. 43, no. 2,

pp. 505–515, Feb. 2020.

MD. TANZIL HOQUE CHOWDHURY received

the B.S. degree in electrical and electronic engi-

neering from the Ahsanullah University of Sci-

ence and Technology, Bangladesh, in 2014, and the

M.S. degree in computer science fromMiddle Ten-

nessee State University, Murfreesboro, TN, USA,

in 2020, where he is currently pursuing the Ph.D.

degree in computational science.

His research interests include bio-medical sig-

nal processing and deep learning in bio-medical

applications.

KHEM NARAYAN POUDEL (Member, IEEE)

received the B.E. and M.S. degrees in electronics

and communication engineering and information

and communication engineering from Tribhuwan

University, Kathmandu, Nepal, in 2010 and 2013,

respectively, theM.S. degree in electrical and com-

puter engineering from The University of Utah,

Salt Lake City, UT, USA, and the M.S. degree in

computer science and the Ph.D. degree in com-

putational science from Middle Tennessee State

University, Murfreesboro, TN, USA.

His research interests include computational electromagnetics, dielec-

tric multi-layer grating structure, and deep learning in bio-medical signal

processing.

YATING HU received the B.S. degree in electrical

engineering from Nankai University, in 2008, and

the M.S. and Ph.D. degrees from Wayne State

University, in 2011 and 2014, respectively.

She joined the Faculty Member of Middle

Tennessee State University, in 2014. Her research

interests include sensor and instrumentation

design, high performance bio-medical sensors,

energy harvesting for wireless sensors, and tech-

nology commercialization. In particular, she is

interested in developing mobile health care related technologies, which

enable ubiquitous patient monitoring and proactive health management. She

had worked on several federal funded research projects, including wearable

sensors for continuous heart and lung sound monitoring (NSF), piezo-

electric vibration energy harvesting for self-powered smart sensors (NSF),

bio-inspired 3-D tactile sensor for minimally invasive surgery (NSF), and

micromachined piezoresistive accelerometers based on an asymmetrically

gapped cantilever (NSF).

160890 VOLUME 8, 2020


