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Abstract 

A method of time-frequency analysis (TFA) based on wavelets is applied to study the phase space 

structure of three-dimensional asymmetric triaxial galaxy enclosed by spherical dark halo com-

ponent. The investigation is carried out in the presence and absence of dark halo component. 

Time-frequency analysis is based on the extraction of instantaneous frequency from the phase of 

the continuous wavelet transform. This method is comparatively fast and reliable. This method 

can differentiate periodic from quasi-periodic, chaotic sticky from chaotic non-sticky, ordered from 

chaotic and also, it can accurately determine the time interval of the resonance trapping and 

transitions too. Apart from that, the phenomenon of transient chaos can be explained with the 

help of time-frequency analysis. Comparison with the method of total angular momentum (de-

noted as Ltot) proposed recently is also presented. 
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1. Introduction 

We know that the phase space of nonlinear dynamical systems consists of periodic, quasi-periodic and chaotic 

trajectories. Chaotic trajectories visit resonance islands, remain there for some time and then escape to the 

chaotic region during its evolution. To know the time interval of resonance trapping and resonance transition 
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and to visualize the phenomenon of transient chaos are some important questions which compel us to study more 

about the application of different chaos indicators. Over the last few years, several chaos indicators have been 

introduced to study those aspects. Moreover, for dynamical system of two degrees of freedom, there are several 

chaos indicators such as the Poincare Surface of Section (PSS), Largest Lyapunov Characteristic Exponent (LLCE), 

Smaller Alignment Index (SALI). Fast Liapunov Indicators (FLI), the Generalized Alignment Index (GALI) and 

the Correlation Dimension (CD) (see [1]-[3]). Visualization of the Poincare surfaces of section (PSS) is very 

useful for the study of the dynamical system of two degrees of freedom. But in case of three degrees of 

freedom, it becomes four-dimensional which is difficult to analyze. On the other hand, other indicators 

mentioned above require the solution of equations of motion and the first order variational equations whose 

computation is not easy in case of higher dimensional systems. Also, they do not tell about additional qualitative 

features like whether a trajectory is resonant or non-resonant. Recently in [4], a new indicator totL  (i.e. Total 

angular momentum) is introduced to study the ordered and chaotic motion of the asymmetric triaxial galaxy, 

including the effect of spherical dark halo components. totL
 

(TAM) is used to describe the nature of orbits in 

this potential and is proved to be a fast and reliable indicator in comparison to a Lyapunov characteristic 

exponent and P(f)-indicator. The method of total angular momentum can distinguish regular trajectory from 

chaotic. But there is no clarity about the other aspects such as stickiness, resonance trapping and transition and 

transient chaos, which must be investigated. In [4], the effect of dark halo component in the chaotic region is 

shown with the help of the Poincare surface of section by reducing the three-dimensional galactic model to two 

dimensions. Time-frequency analysis based on the extraction of instantaneous frequency from wavelet transform 

is computed via two ways. The first method is the computation of instantaneous frequency of the phase of 

continuous wavelet transform (CWT) and the second method is based on the computation of instantaneous 

frequency from the amplitude of the continuous wavelet transform. The amplitude-based method is very well 

described in [5]. Characterization of the phase space of standard map and the Hamiltonian of the hydrogen 

atom (moving in crossed magnetic and elliptically polarized microwave fields) is presented using this method. 

On the other hand, phase-based approach is already explained in [6]-[9]. In [10], we can see the application of 

the phase-based approach to the circular restricted three-body problem (Sun-Jupiter system) to explain the 

phenomenon of resonance transition and transport condition. The phenomenon of resonance trapping of chaotic 

trajectory, resonance transition and transient chaos (time dependent system causes an orbit move from regular to 

chaos and vice-versa (see [11]) can be computed and visualized with the help of TFA. Identification between 

regular and chaotic, periodic and quasi-periodic, chaotic sticky and chaotic non-sticky is possible with the help 

of TFA. Also, the computational time for TFA is negligible as compared to other chaos indicators. The aim of 

this paper is two folded. The first is to establish the method of time-frequency analysis in comparison to total 

angular momentum. The second is to investigate and characterize the phase space structure of asymmetric 

triaxial galaxies in the presence and absence of spherical dark halo components. 

We have organized the paper as follows: 

In Section 2, we have given a brief description of asymmetric triaxial galaxy enclosed by spherical dark halo 

component (3D). In Section 3, a brief description of TFA based on the phase of CWT and its implementation in 

Matlab are given. Results and discussion based on the application of TFA to the three-dimensional galactic model 

are shown in Section 4. The conclusion is given in Section 5. 

2. Triaxial Galaxy Enclosed by Spherical Dark Halo Component in 3D 

The potential for triaxial galaxy enclosed by spherical dark halo (see [4]) component is given by  

( ) ( ) ( ), , , , , , ,t g hV x y z V x y z V x y z= +                             (1) 

where 

( ) ( )
2

2 3 2 2 20, , ln ,
2

g b

v
V x y z x x y z cλ α β= − + + +                     (2) 

and 

( )
( )

1
2 2 2 2 2

, , .h
h

h

M
V x y z

x y z c

−
=

+ + +
                               (3) 

Equation (2) denotes a triaxial galaxy with a bulge and a small asymmetry introduced by the term 
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3 , 1xλ λ− ≪ . The parameters α  and β  denote the flattening of the galaxy and bc  denotes the scale length 

of the bulge of the galaxy. The parameter 0v  is used for consistency of galaxy units. Equation (3) presents a 

spherical dark halo component. Here hM  and hc  are the mass and the scale length of the dark halo com- 

ponent, respectively. Equations (1), (2) and (3) together represents the three-dimensional galactic model. Now 

we can write the equations of motion as follows, 

( ) ( ) ( ), , , , , ,
, and .

t t tV x y z V x y z V x y z
x y z

x y z

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
ɺɺ ɺɺ ɺɺ                (4) 

The Hamiltonian of the potential given by Equation (1) can be expressed as  

( ) ( )2 2 2

3

1
, , ,

2
x y z tH p p p V x y z h= + + + =                             (5) 

where xp , yp  and zp  are the momenta corresponding to coordinates x, y and z respectively. Also, 3h  

denotes the numerical value of the Hamiltonian or the energy constant. In Equation (5), if we take 0=z , we get 

the potential for two dimensional triaxial galaxy which can be expressed as  

( ) ( )2 2

2

1
, ,

2
x y tH p p V x y h= + + =                                   (6) 

where 2h  stands for numerical value of Hamiltonian in two dimension. In this paper, we use a system of units 

which is defined as follows: 

Unit of length = 1 kpc; 

Unit of mass = 2.325 × 107 M⊙; 

Unit of time = 0.97748 × 108 yr; 

Unit of velocity = 10 km⋅s−1; 

Unit of energy (per unit mass) = 100 km2⋅s−2; 

G = 1 (gravitational constant). 

While integrating the equations of motion in (4) for the computation of all the orbits, we use the fixed value of 

0 15, 2.5, 1.5, 1.8bv c α β= = = =  and 0.03λ =  where as hM  and hc  are taken as parameters. We calculate 

the trajectory by integrating the equations of motion given in Equation (4). It is done using Runge Kutta variable 

step size Integrator. Accuracy of calculations is maintained up to eight significant figures. 

3. Total Angular Momentum and Time-Frequency Analysis Based on Wavelets 

3.1. Total Angular Momentum 

Total angular momentum for a star of mass 1m =  moving in a 3D orbit is defined as  

2 2 2 ,tot x y zL L L L= + +                                       (7) 

where xL , yL  and zL  are the components along x, y and z axis respectively, given as  

, & .x y zL yz yz L zx zx L xy xy= − = − = −ɺ ɺ ɺ ɺɺ ɺ                            (8) 

Note: totL  (total angular momentum) in Equation (7) is conserved only for a spherical system (see [4]). 

3.2. Time-Frequency Analysis Based on Wavelets 

Time-frequency analysis based on phase of continuous wavelet transform is described in this Section. At first we 

define continuous wavelet transform, instantaneous frequency and the mother wavelet. The continuous wavelet 

transform is defined in terms of Ψ , called mother wavelet expressed as  

( ) ( )1
, d ,

t b
L f a b f t t

aa

∞

Ψ
−∞

− = Ψ 
 ∫                               (9) 

The function ( )2L RΨ∈  must have compact support or decay rapidly to 0 for t  tending to ∞ . Here Ψ  

denotes the usual complex conjugate of Ψ . The wavelet transform depends on two parameters ( ),a b : a is 

called the scale and b the time parameter. The wavelet transform produces a complex surface as a function of the 
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variables a and b. The mother wavelet, we use throughout this work is known as the Morlet-Grossman wavelet. 

It is expressed as 

( )
2

22 2
1

e e .
2

t

i tt η σ

σ

−
ΠΨ =

Π
                                   (10) 

Here, σ  and σ  are the parameters for the mother wavelet (see [8] for detail). 

Note: The parameter η  and σ  can be tuned to improve the resolution. In our case 0.8η =  and 1σ =   

serves the purpose. Here due to the part 
t b

a

− 
 
 

 the length of the window in wavelet transform change accord-  

ing to frequency. Due to this unique feature i.e. capability of adaptation of time window according to frequency 

range gives better localization in frequency and time. 

3.3. Instantaneous Frequency and Ridge-Plot 

Let us consider an analytic signal ( )fZ x  of a real signal ( )f x  whose real part is ( )f x  and the complex 

part is Hilbert transform of f(x), i.e. 

( ) ( ) ( )( ).fZ x f x H f x= +  

Now it’s unique polar representation is 

( ) ( ) ( )( )
e

iArg Z tf

f fZ t Z t=  

where 

( ) ( ) ( )2 2

f f fZ t RZ t ImZ t= +  

and  

( )( ) ( )
( )

.
f

f

f

ImZ t
Arg Z t

RZ t
=  

where R and Im denote the real and imaginary part of the signal. Also a unique representation of ( )f t  in 

canonical form is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )cos , , , and .f f ff t A t t f t RZ t A t Z t t Arg Z tφ φ= = = =  

Instantaneous frequency is defined as 

( ) ( )( )( )d
.

d
ft Arg Z t

t
ω =  

The Ridge of the wavelet transform of ( )Z t , ( ),L f a bψ  is the set of points (a,b) in the domain of the 

transform ( ) ( ) ( ),a b
Z t tΨ  is stationary i.e. the points which satisfy ( )0 ,t a b b= . Ridge-plot is in fact the time- 

frequency landscape of the signal. Details can be seen in [8] and [9]. 

3.4. Implementation of Wavelet-Ridges in Matlab 

The algorithm for computing ridges from the phase of continuous wavelet transform is already explained in [6], 

[7] and [9]. Programs based on the algorithm for finding Ridge-plot can be made with the help of Wavelab 

routines written in Matlab (see [12]-[14]). Computation of CWT is done by Wavelab routines written in Matlab. 

Stepwise procedure for finding Ridge-plot is given in Figure 1. The value of η , σ , number of voices per 

octave and number of the octave for the calculation of wavelet transform and its ridges are also given in Figure 1. 

4. Results and Discussion (Applicaion to Three Dimensional Triaxial Galaxy model) 

In this Section, we analyze the data of Table 1 and Table 2 and discuss the plots obtained by integrating the  
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Figure 1. Procedure for finding instantaneous frequency (i.e. wavelet ridges) from the solution of 

equations of motion.                                                                         

 
Table 1. Sample of five orbits for the triaxial galaxy model in presence of dark halo component and the corresponding 

results. The approximate C.P.U time for the execution of the programme for Ltot and Ridge-plot on the computer is given in 

second.                                                                                                         

Initial condition

( )0 0 0 0 0 0
, , , , ,x y z x y zɺ ɺ ɺ

 

Mass 

length (Mh) 

Scale 

length (Ch) 

Energy 

const. (h3) 

-plot
tot

L
 

(in sec) 

Ridge-plot 

(in sec) 
Type of orbit 

(−9.55, 0, 0.1, 0, 

5.8029, 0) 
10000 18 68 4.32 14.55 Periodic 

(5.5, 0, 0.6, 0, 

20.4251, 0) 
10000 18 68 4.19 14.58 Quasi-Periodic 

(−0.5, 0, 0.85, 0, 

27.9848, 0) 
10000 18 68 4.30 15.01 Chaotic-sticky 

(−0.9, 0, 0.85, 0, 

27.6788, 0) 
10000 18 68 4.44 14.69 Chaotic nonsticky 

(0.7, 0, 0.85, 0, 

27.8624, 0) 
10000 18 68 4.31 31.57 Transient chaos and 

      Resonance trapping 

 

equation of motion (4) at the given initial conditions using Runge-Kutta (4/5) variable step-size Integrator. 

Phase-portrait and totL -plot is drawn with the help of software Mathematica and Ridge-plot is drawn in Matlab. 
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Table 2. Sample of orbits of the triaxial galaxy model in the absence of dark halo component and the corresponding results. 

The C.P.U time for the execution of the program for Ltot-plot and Ridge-plot on the computer are given in seconds.            

Initial condition 

( )0 0 0 0 0 0
, , , , ,x y z x y zɺ ɺ ɺ  

Mass 

mass (Mh) 

Scale 

length (Ch) 

Energy 

const. (h3) 

-plot
tot

L
 

(in sec) 

Ridge-plot 

(in sec) 
Type of orbit 

(−7.5, 0, −1, 0,  

7.4008, 0) 
0 8 516 4.23 14.57 Periodic 

(3, 0, 0.5, 0,  

20.5996, 0) 
0 8 516 4.33 14.55 Quasi-periodic 

(0.1, 0, 0.5, 0, 

24.5701, 0) 
0 8 516 4.25 14.58 Chaotic sticky 

(1.7, 0, −1, 0, 

22.2880, 0) 
0 8 516 4.31 15.01 Chaotic non-sticky 

(0.01, 0, 0.1, 0, 

24.8801, 0) 
0 8 516 4.37 32.67 Resonant transition 

      and Transient chaos 

 

At first, we discuss the results obtained using the Poincare surface of section in Figure 2. “Section condition” 

taken for the Poincare plot is 0y =  and 0y >ɺ . Initial conditions are taken as ( ) ( )( )0 ,0,0, 0x yɺ  on x-axis on 

the interval (−10, 10) with step-size 0.1 and integrated at each initial condition up to 2500 time units. ( )0yɺ  is 

calculated with the help of Equation (5). Both results of PSSs are in confirmation of the Poincare plots given in 

[4]. In the absence of the dark halo component, almost all phase plane is filled up with a hazy collection of 

points except few small regular regions which consist of a set of islands. On the other hand, in the presence of 

the dark halo component we notice the substantial reduction in chaotic regions and increase in regular regions. 

Thus, we can say that the dark halo component serves as chaos controller in triaxial galaxies with small asym- 

metries. These observations confirm the result of [4]. 

We have selected a sample of five representative orbits for both cases. Time interval considered for the TFA 

is (1, 32768) except two figures (Figure 3 and Figure 4). For Figure 3 and Figure 4, the interval of time unit is 

taken as (1, 65536) to present the results in a better way. It adds an additional expense of eighteen seconds in the 

C.P.U time for the execution of the program. In Figure 5 and Figure 6, we consider the orbits at initial 

conditions (−9.55, 0, 0.1, 0, 5.8029, 0) and (−7.5, 0, −1, 0, 7.4008, 0) respectively. In Ridge-plots of both figures, 

we notice a completely flat Ridge throughout the motion. We know that frequency remains constant for the 

periodic orbit and hence both orbits are periodic. 

Note: In [4], at same initial condition (−9.55, 0, 0.1, 0, 5.8029, 0) the orbit is termed as quasiperiodic on the 

basis of totL -plot. But, according to Ridge-plot this trajectory is periodic. Also, the phase portrait and totL -plot 

in Figure 5 is exactly similar to the figure of [4].  

Sample of orbits considered in Figure 7 and Figure 8 is at initial conditions (5.5, 0, 0.6, 0, 20.4251, 0) and (3, 

0, 0.5, 0, 20.5996, 0) respectively. We observe a very little variation in Ridge curve (or instantaneous frequency) 

of both figures. In the plots of totL , we notice symmetric peaks indicating regular motion. On the basis of both 

Ridge-plots, we term both trajectories as quasi-periodic. Also totL  plots of both orbits are confirming the result 

of totL -plot in [4].  

Now we consider the orbits at initial conditions (−0.5, 0, 0.85, 0, 27.9848, 0) and (0.1, 0, 0.5, 0, 24.5701, 0) 

are shown in Figure 9 and Figure 10 respectively. If we look at both Ridge-plots, we can say that the trajectories 

are chaotic in nature. Also, highly asymmetric features and large deviation between maxima and between 

minima of totL -plot confirms the chaotic behavior of trajectories. But in addition to this, we find very little 

variation in both Ridge-plots in the time intervals (0, 20000) and (0, 12000) respectively. It means that both 

trajectories are trapped on resonance islands for long time intervals and then escape to the chaotic region. This 

phenomenon is known as stickiness. Thus, we term both trajectories as chaotic sticky. But in case of totL  plots, 

it is not clear. 

Now, we consider the sample of trajectories at initial conditions (−0.9, 0, 0.85, 0, 27.6788, 0) and (1.7, 0, −1, 

0, 22.2880, 0) presented in Figure 11 and Figure 12 respectively. If we look at totL -plots of both figures, we 

find similar results as in the previous case. But, if we look at the Ridge-plots of both figures we notice a 

continuous variation in the instantaneous frequency throughout the motion and hence we call these trajectories  
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Figure 2. Poincare surface of sections of triaxial galaxy model in presence (left side) and absence (right side) of dark halo 

component with parameteric values (Mh = 10000, Ch = 18, H = 68) and (Mh = 0, Ch = 8, H = 516) respectively.                  

 

 

Figure 3. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a transient trajectory in presence 

of dark halo component at initialcondition (0.7, 0, 0.85, 0, 27.8624, 0).                                                  

 

 

Figure 4. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a trajectory presenting transient 

chaos and resonance transition in absence of dark halo component at initial condition (0.01, 0, 0.1, 0,24.8801, 0).                  

 

 

Figure 5. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a periodic trajectory in presence 

of dark halo component at initial condition (−9.55, 0, 0.1, 0, 5.8029, 0).                                                   
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Figure 6. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a periodic trajectory in absence of 

dark halo component at initial condition (−7.5, 0, −1, 0, 7.4008, 0).                                                   

 

 

Figure 7. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a quasi-periodic trajectory in 

presence of dark halo component at initial condition (5.5, 0, 0.6, 0, 20.4251, 0).                                           

 

 

Figure 8. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a quasi-periodic trajectory in 

absence of dark halo component at initial condition (3, 0, 0.5, 0, 20.5996, 0).                                             

 

 

Figure 9. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a chaotic sticky trajectory in 

presence of dark halo component at initial condition (−0.5, 0, 0.85, 0, 27.9848, 0).                                          

 

as chaotic non-sticky. 

At last, we consider sample of two orbits at initial conditions (0.7, 0, 0.85, 0, 27.8624, 0) and (0.01, 0, 0.1, 0, 

24.8801, 0) shown in Figure 3 and Figure 4 respectively. Again in the plots of totL , we observe the same  
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Figure 10. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a chaotic sticky trajectory in 

absence of dark halo component at initial condition (0.1, 0, 0.5, 0, 24.5701, 0).                                           

 

 

Figure 11. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a chaotic non-sticky trajectory in 

presence of dark halo component at initial condition (−0.9, 0, 0.85, 0, 27.6788, 0).                                           

 

 

Figure 12. Phase portrait (extreme left), Ltot-plot (middle) and Ridge-plot (extreme right) of a chaotic non-sticky trajectory in 

absence of dark halo component at initial condition (1.7, 0, −1, 0, 22.2880, 0).                                          

 

phenomenon as in the previous case and hence we can say that these trajectories are chaotic. But in case of 

Ridge-plots scene is little different. We observe following things in the Ridge-plots:  

1) Resonance trapping: In Figure 3 at time intervals (0, 13000), (19000, 25000) and (50000, 60000) approx 

we find a little variation in the frequency and besides that there is rapid change in frequency. Similarly, in 

Figure 4 at time intervals (0, 5000), (10000, 15000), (25000, 32000) and (41000, 60000) there is very little 

change in instantaneous frequency and besides that rapid change in frequency takes place. This is the case of 

resonance trapping which can be visualized and also accurately determined with the help of TFA. 

2) Resonance transition: In Figure 4, we notice that at time unit 42,000 approx there is a jump from one type 

of resonance to another type of resonance and remains there for approx 18,000-time units. This phenomenon is 

known as resonance transition which is clearly observed in the Ridge-plot.  

3) Transient Chaos: We know that in a time-dependent system a chaotic trajectory move from regular to chaos 

and vice versa (see [11]). We call this phenomenon as transient chaos. We can visualize this phenomenon in the 

Ridge-plots. 

5. Conclusions 

As we have already discussed, the aim of the present work is to show the advantage of TFA in comparison to 
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TFA and to explore some additional information of phase space structures of asymmetric triaxial galaxies in the 

presence and absence of the spherical dark halo component. Based on the discussion of Section 4, we can 

conclude that TFA has several advantages in comparison to TAM. We conclude following things: 

1) TFA based on wavelets is comparatively fast and more reliable in comparison to TAM (C.P.U time taken 

for the computation of Ridge-plots for 32,768-time units is 15 seconds (maximum) whereas the time taken by 

TAM for 150-time units is 5 seconds (maximum)). 

2) TFA can identify between periodic and quasi-periodic, chaotic sticky and non-sticky, and ordered and 

chaotic motion. 

3) With the help of TFA, we can accurately determine and also visualize the event of trapping of a chaotic 

trajectory around resonance island (see Figure 3 and Figure 4). 

4) The phenomenon of resonance transition and transient chaos can also be explained with the help of 

Ridge-plot (see Figure 3 and Figure 4). 

5) Computational effort needed for programming of TFA based on wavelets is not easy in comparison to 

TAM. This is an important drawback of TFA based on wavelets. But once it is done, we can perform other 

computational works in comparatively negligible time.  

6) We always search for an indicator which is applicable to higher-dimensional nonlinear dynamical systems. 

TFA is independent of the degree of freedom and requires the only solution of equations of motion which can be 

computed. Our present work is also an important example of the application to higher dimensional systems. 

Thus, we can say that Time-frequency analysis based on wavelets can be given preference for the study of 

nonlinear dynamical systems for two or more degrees of freedom. 
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