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In this paper we propose a method, based on the Gabor transform, to quantify and visualize the time
evolution of the traditional frequency bands defined in the analysis of electroencephalogram (EEG)
series. The information obtained in this way can be used for the information transfer analyses of the
epileptic seizure as well as for their characterization. We found an optimal correlation between EEG
visual inspection and the proposed method in the characterization of paroxism, spikes, and other tran-
sient alterations of background activity. The dynamical changes during an epileptic seizure are shown
through the phase portrait. The method proposed was examplified with EEG series obtained with depth

electrodes in refractory epileptic patients.

PACS number(s): 87.90.+y, 02.70.Hm

I. INTRODUCTION

It has been well over a century since it was discovered
that the mammalian brain generates a small but measur-
able electrical signal. The electroencephalogram (EEG) of
small animals was measured by Caton in 1875, and in
man by Berger in 1925. It had been thought by the
mathematician Wiener, among others, that generalized
harmonic analysis would provide the mathematical tools
necessary to penetrate the mysterious relations between
the EEG time series and the functioning of the brain.
The progress along this path has been slow however, and
the understanding and interpretation of EEG’s remain
quite elusive.

Traditional EEG tracing is now interpreted in much
the same way as it was done 50 years ago. More channels
are used now and much more is known about the clinical
implication of the waves, but the basic EEG display and
the quantification of the waves are quite similar to those
of their predecessors of a half century ago.

There is no taxonomy of EEG patterns that delineates
the correspondence between those patterns and brain ac-
tivity. The clinical interpretation of EEG records is
made by a complex process of visual pattern recognition
and association on the part of the clinician, and
significantly more often in the last years (with the intro-
duction of the personal computers) through the use of the
Fourier transform.

Quantitative EEG analysis as a field includes a wide
variety of techniques. These are frequency analysis (spec-
tral analysis), topographic mapping, compressed spectral
arrays, significance probability mapping, and other com-
plex analytical techniques [1-3]. A recent approach to
the problem of the quantification of the EEG series has
been presented by nonlinear dynamics [4—11].

The morphology and topography of sharp transients
have been correlated with seizure type and therapeutic
response to different medications and surgery. An essen-
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tial component of the traditional visual interpretation of
the clinical EEG is the characterization of infrequent,
morphologically variable transient events, especially
those associated with the epilepsies (“spikes,” “spikes and
waves,” etc.) [1-3]. Accordingly, a great deal of energy
has been spent over the years in efforts to search au-
tomatically long recordings for these phenomena and
epileptiform transient detection, but with different results
[12-14]. Anyway, the most diffused quantitative method
in clinical practice is the spectral analysis together with a
visual assessment [1-3].

When working in the frequency domain it is useful to
divide EEG activities into three different categories [15]:
(i) spontaneous nonparoxysmal or background, (ii) spon-
taneous paroxysmal activity, and (iii) activity evoked by
external sensory stimulation. Consequently, it is quite
obvious that in the frequency domain representation,
rhythmic components are relatively enhanced at corre-
sponding frequencies, whereas transients (for example,
epileptic spikes, isolated paroxysm, etc.) are smeared over
the spectrum and, therefore, are no longer recognizable.
From this, it follows that the principal field of spectral
analysis is the background activity, which means the first
category mentioned above, whereas in the other two
categories there exist only special cases to which standard
spectral analysis can be successfully applied [15].

The methods mentioned above are applied to the ac-
tivity analysis in a single channel, independently of the
activity in other channels. The most common methods of
studying interactions between two channels are the
cross-correlation and the cross-spectral analyses [15,16].
The average amount of mutual information and nonlinear
correlation are recently developed methods [17-20].
These methods all try to determine whether two channels
have a common activity and, often, whether one channel
contains activity induced by the activity in the other
channel. Clearly proving causality is extremely difficult,
but it can sometimes be inferred by measuring time
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differences.

From another point of view, an electroencephalogram
(EEG) may be considered as a time series measured on a
dynamical system that represents brain activity. This
subject has caught the attention of several researchers in
this field, having found the important feature that the
variability of the EEG signals is not noise and presents an
attractor [4-6,9].

The treatment of EEG series using the approach of
nonlinear dynamic systems has opened new possibilities
for knowledge of the brain dynamic. However, the aims
are not limited to this, but also to obtaining new forms to
quantify differences in the EEG series that have some
kind of clinical application.

The metric approach usually employed in nonlinear
dynamical analysis is based on distances and assumes the
stationarity of the data sets. Distances between points in
appropriate embeddings of the data are used to compute
a set of metric properties. These quantities are difficult to
compute, require large data sets, and degrade rapidly
with additive noise [21].

Mayer-Kress and Layne [S5] used the reconstruction
techniques in the time series of the EEG to obtain their
phase portrait. These diagrams suggest chaotic attrac-
tors with divergent trajectories and therefore the EEG
series seem nonstationary. This means that the average
position of a series defined over some interval changes in
another. Layne, Mayer-Kress, and Holzfuss [7] conclude
that the EEG series are nonstationary and present high
dimensionality, in which case the concepts of attractor
and fractal dimension would not be applied because these
are asymptotic or stationary properties of a dynamical
system. However, Babloyantz and Destexhe [8] focused
their attention on the fact that this nonstationarity is
strictly true for awake states but could be different for
states of the sleep cycles or for patients with certain
pathologies.

This problem has not been well studied and it has
brought about a great variety of results exposed by
different authors [6,9]. Due to the great extension of the
EEG series that is necessary for nonlinear metric treat-
ment (satisfying all the mathematical hypotheses) a cri-
terion of stationarity is almost impossible to satisfy in
practice. Consequently, if the time series are nonstation-
ary, the metric algorithms must not be used.

Statistical tests of stationarity have revealed a variety
of results depending on conditions, with estimates of the
amount of time during which the EEG is stationary rang-
ing from several seconds to several minutes [22-25].
However, as a practical matter, whether or not the same
data segment is considered stationary depends on the
problem being studied, the type of analysis being per-
formed, and the measured (features) used to characterize
the data.

The analysis of stationarity can be done by using a
method based on the weak stationarity criterion, which
validates the application of the algorithms later used in a
rigorous way, in order to obtain reliable results [25]. For
all the reasons mentioned above, the inclusion of the time
evolution in the quantification of the EEG series is an
open problem.

In this paper we present a method based on Gabor’s
old idea [26] for the simultaneous treatment in the time-
frequency space of a signal. The proposed methods let us
analyze the time evolution of the frequency rhythm of an
EEG signal and visualize the frequency engagement dur-
ing epileptic activity as well as paroxysm activities. The
correlation between the obtained frequency evolution
series for the different channels and bands can be used to
obtain some knowledge about the interaction and conse-
quently causality between channels and bands.

The different time behaviors identified by this method
can be verified by the corresponding phase portraits ob-
tained from the associated EEG epochs. This informa-
tion can be used as a first step in the formulation of
dynamical models of the epileptic seizure and its propa-
gation.

This paper is organized in the following way. In Sec.
II the experimental setup and the clinical data are
presented. In Sec. III an abstract of the traditional spec-
tral analysis is given and the new time-frequency method
is introduced. As an example of the method some select-
ed results and discussion are presented for the intracrani-
al EEG series in Sec. IV. Finally a summary is given in
Sec. V.

II. EXPERIMENTAL SETUP AND CLINICAL DATA

Our method was applied to the EEG recording from
interseizure and seizure brain activity of a refractory
epileptic patient prone to surgical treatment. The EEG
intracranial registers (stereo EEG) were obtained from a
male patient 21 years old, during 9 h, with 12 depth elec-
trodes (each electrode having 5 to 15 contacts) placed in
the epileptogenic zone and the propagation brain areas.
Each signal was amplified and filtered using a 1-40-Hz
bandpass filter. A four-pole Butterworth filter was used
as a low-pass filter and as an antialiasing scheme. We
stored the signal EEG in different samples free of ar-
tifacts. Preseizure, during seizure, and postseizure signal
EEG’s were chosen for the quantification. From all al-
lowed EEG signals 120 records (EEG time series) provid-
ed by the different contacts, were selected in order to per-
form the clinical diagnosis by the physician team, and
they are the same used in the present work. The sample
rate of the EEG signal was 256 data per second and the
record length for the different signals varied between 1
and 3 min. According to the visual assessment of the
EEG seizure recording, this patient presented an epilep-
togenic area in the hippocampus with mediate propaga-
tion to the girus cingular and the supplementary motor
area on the left hemisphere.

The use of depth electrodes provides records where the
noise and artifact contamination effects (usually present
in the EEG series obtained with scalp electrodes) are
minimized. Anyway, the applicability of the proposed
method is not restricted to the use of these kinds of EEG
records.

III. TIME-FREQUENCY ANALYSIS

Spectral decomposition of the EEG by computing the
Fourier transform has been used since the very early days
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of electroencephalography. The rhythmic nature of
many EEG activities leads itself naturally to this analysis.
Fourier transform allows the separation of various
rhythms and an estimation of their frequencies indepen-
dently of each other, a difficult task to perform visually if
several rhythmic activities occur simultaneously. Spec-
tral analysis can also quantify the amount of activity in a
frequency band.

The spectral analysis of EEG signals has proved to be
quite useful in comparing short samples of data from pa-
tients against age-matched normative values, as well as in
sleep stage analysis and quantification of drug, metabolic
effects, and various disease states [12]. But important in-
formation about peak timing is lost.

The results of EEG spectral analysis are often grouped
into the traditional frequency bands, i.e., § (less than 4
Hz), 6 (4-7 Hz), a (8—13 Hz), B (14-30 Hz), and y ac-
tivity (above 30 Hz). There is much physiological and
statistical evidence for the independence of several of
these bands, but their boundaries can vary a little accord-
ing to the particular experiment being considered, and
they can be adjusted as required [1-3]. The most popu-
lar way of performing frequency analysis has been to ap-
ply the fast Fourier transform (FFT) algorithm directly
to a short (usually 1-4 sec) segment of digitized data
[12,15]. In the methods mentioned before, the time evo-
lution was not taken into account or, as in the case of the
compress spectra, they only provided a visual tool with a
difficult interpretation of the contained information.

Our aim is to obtain a description of the EEG signals
in a combined time-frequency space. For this purpose,
we followed the ideas that Gabor introduced in 1946
[26,27], as a basic element of the proposed method. The
Gabor transform is equivalent to wavelet algorithms,
with a fixed window; but in the present work we em-
ployed the Gabor transform due to the following: (a) In
the analyzed frequency range both methods are
equivalent using an appropriate window, (b) the Gabor
transform is easily comprehensible by its analogies with
the Fourier transform. This topic becomes relevant in
comparison with the bibliography and in the application
of the method by the physician team. Then, as a first
step, we performed the Gabor transform of the EEG sig-
nal denoted by S (z) as follows:

Sp(wgte)= [ * S(gh(t—to)e

lmot

dt . (1)

We used for g, (1) a slide Gaussian window with width
D, as has been suggested by Gabor. According to this al-
gorithm, one dimensional signals are represented in a
combined time-frequency space [27]. These functions are
situated on a lattice in this combined space, with clear-
ances t; and o, in the time and frequency axes, respec-
tively. If we represent the associated intensity to each
point in the time-frequency lattice (as for example, the
graph that corresponds to the EEG signal display in Fig.
1), we obtain a tridimensional pattern as is shown in Fig.
2 or its corresponding density level diagram (Fig. 3). In
these two graphs, we normalized to the maximum inten-
sity. In Fig. 2, 50 levels have been considered.

These graphs, in particular the density level diagram
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with color codes, can be used as a visual tool for a quali-
tative description of the time evolution of the different
spectral frequencies contained in the EEG recording.
Again, it is difficult to extract the information contained
in both kinds of graphs. In this sense, the most impor-
tant advantage of this method is its systematic instrumen-
tation and the rigorous mathematical background in
comparison with the compress spectra and other similar
methods [15].

As a second step, we defined the evolution of the spec-

tral frequency content B'" for the band i (i =8,6,a,)
defined in the frequency interval (ol o’ ) as
BN w,t)=9%(0,8)9p(0,8) Vol C0<ol) ; (2

then, the power spectral intensity for the i/ band as a time
function will be

ol
bl t)“f() "B w,1)dao , (3)

Dmin

and consequently, the total spectral power intensity is
Ir(n=2[ "Blo,ndo , 4
(1) f o (w,t)dw (4)
where the spectral intensity content is defined in the fre-

quency interval (— o, o). Then the power spectral in-
tensity per band relative to the total intensity will be

RY=(19/1,)X100 . (5)

For the subsequent analysis of the EEG signal, we
define for the different bands the mean weight frequency
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FIG. 1. Recording of the EEG signal corresponding to a
depth electrode in the epiloptogenic region (left hippocampus).
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and the main peak frequency in the i band at time 1, o'}
as the frequency value for which B takes its maximum
value in the interval (o, 0\ ). That is,

BN @y, t)> BN w,1) VoFoy (o, old) . ()

Note that when @=w,, we are in the presence of a
quasimonofrequency signal (band). If this behavior is ob-
served during a reasonable period we shall say that we
have a frequency engagement in the corresponding fre-
quency band.

We introduce a new parameter A" and call it monofre-
quency deviation. This parameter, as a function of time,
gives us an idea about the periods in which the engage-

different bands and channels we have normalized each
one to its maximum value [AY()=A"(z)/A() 1. Hav-
ing introduced these new time series R (1), a'"(¢), (1),
and AYXz) is important, as they have allowed us to
characterize the epileptic seizure as well as its evolution
by means of quantifiable magnitudes that are independent
of the signal’s morphology.

IV. RESULTS AND DISCUSSION

In order to avoid the nonstationarity problems usually
present in the EEG signal we worked with a window
width D =4 sec. In this way, the stationarity hypothesis
was accomplished. The sample rate of the EEG signal

Time [ sec ]

FIG. 3. Density level dia-
grams corresponding to the tri-
dimensional pattern shown in
Fig. 2. Fifty levels are displayed.

Frequency [ Hz |

30
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FIG. 4. Power spectral intensity per band relative to the total
intensity, as a function of time for the EEG signal shown in Fig.
1.

was 256 data per second, and the displacement velocity of
the slide window was 84 data. Then, the resolution in the
time-frequency space was Aw=0.125 Hz and At =0.25
sec. For the present analysis we considered the following
frequency bands: 8 (0.5-3.5 Hz); 6 (3.5-7.5 Hz); a
(7.5-12.5 Hz); and the B band was divided in two, 3,
(12.5-18 Hz) and 3, (18-30 Hz).

In Fig. 1, the EEG signal for 64 sec corresponding to
one depth electrode in the left hippocampus region is
shown. From a visual inspection, it is clear that around
the 10th second the epileptic seizure starts, and finishes
around the 54th second.

In Fig. 4 we display the power spectral intensity per
band relative to the total intensity R " for the EEG sig-
nal shown in Fig. 1. Looking at the time evolution of
these quantities, a good agreement between the changes
in R and in the signal morphology can be established.
In Figs. 5-9 we show the time evolution of &'” and w M
for the different bands considered in this work.

We emphasize that, when @=w,;, a quasimonofre-

3.5 T T T - T T

Frequency [ Hz ]

06 1 1 : 4 1 1 1 L
0 10 20 30 40 50 60

Time [ sec ]

FIG. 5. Time evolution of the mean frequency @ (full line)
and main peak frequency w,, (dotted line) for the 8 band corre-
sponding to the EEG signal of Fig. 1.
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FIG. 6. Same as Fig. 5 for the 6 band.

quency behavior evolves. This can be understood as a
quasifrequency engagement. From the total set of signals
that is allowed for analysis rises the fact that this
behavior can be associated with an epileptic seizure, as
well as paroxism activity.

In order to perform the analysis, we divided the signal
shown in Fig. 1 into different time intervals. These inter-
vals were suggested by the structure of Fig. 4 and are in
very good agreement with the changes in the signal mor-
phology. |

0-10 sec. Up to 5 sec the predominance of the slow
frequencies is observed, where the 8 rhythm is the princi-
pal component. From 5 sec on the fast frequencies in-
crease and the a and 6 rhythms are the most important
near 10 sec (Fig. 4). From Fig. 1 we can observe that
around 10 sec, it is clear that the epileptic seizure starts.
Between 8 and 10 sec engagements in the & (A® <5%), 6
(AY <15%), and B, (A£=20%) bands are observed
(Figs. 5, 6, and 8). Note that this engagement in the [3,
band is quite stable.

10-23 sec. The predominance of the a rhythm is
clear, with components within the 6 rhythm. From the
middle of this interval an increase in the intensity of the
[, thythm is observed (see Figs. 1 and 4). Clear engage-
ments in & (AP <15%), 0 (A¥'~20%) and B,
(Agv‘ ~5%) bands, and a trend to engagement in a bands
(20% < AW <30%), are observed in Figs. 5-8.

12.5 — : T . — . .

Frequency [ Hz ]

75 1 I 1 : 1 1 1 1
0 10 20 30 40 50 60

Time [ sec ]

FIG. 7. Same as Fig. 5 for the a band.
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Frequency [ Hz ]
o
T

13F
0 10 20 30 20 50 60
Time [ sec]
FIG. 8. Same as Fig. 5 for the 3, band.
23-38 sec. The epileptic seizure is totally developed.

The frequencies in the a and B, bands are predominant
and coexist with low frequencies in the 0 band (see Figs. 1
and 4). A strong & engagement (A’ <5%) can be seen
(see Fig. 5).

38-48 sec. We can see a strong decrease in the relative
intensity of the 3 rhythms and an increase for the 6 and a
rhythms. The & engagement holds in the first seconds.

48-60 sec. The epileptic seizure is over (54 sec). The §
rhythm is completely dominant. Only engagements in
the 8§ band are observed at the beginning of the interval
(AR ~5%).

The previous example suggests that the epileptic
seizure can be characterized during the first seconds by a
strong engagement in the high frequency band (B;) and

2629

30 T T T T T T T

26 - B

22 |

Frequency [ Hz ]
N
=

20

Time [ sec )

FIG. 9. Same as Fig. 5 for the 3, band.

another engagement in low frequency ones. The low fre-
quency engagement holds during the entire seizure. A
similar description can be given for all the available sig-
nals of the epileptogenic and propagation zones.

As a complement, for a better comprehension of the
changes in the dynamic behavior of the epileptic seizure,
we show in Fig. 10 the phase portrait corresponding to
the signal of Fig. 1 for the following time intervals: (a)
preseizure (0-7 sec); (b) start of the seizure (14—-21 sec); (¢)
full development of the seizure (31-38 sec); (d) end of
seizure (45-52 sec). The time lags employed are extract-
ed from the frequencies’ engagement observed (low band
engagements). We must stress from Fig. 1 that, although
the seizure seems to have a predominance of high fre-
quencies, the underlying & frequency establishes the at-

FIG. 10. Phase portrait cor-
responding to the signal of Fig. 1

T = 0.01 sec . .
for the time intervals (a)
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preseizure (0-7 sec), (b) start of
the seizure (14-21 sec), (c) full

development of the seizure
(31-38 sec), and (d) end of
1 seizure (45-52 sec). 7 is the time
lag employed.
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FIG. 11. Lag correlation between monofrequency deviation
time series in the § band of a channel in the epileptogenic region
(Fig. 1) and the corresponding 6, 6, and «a bands of the corre-
sponding contralateral channel.

tractor limit cycle.

From Fig. 10 and from the previous discussion we can
confirm the validity of the basic assumption that, at the
seizure onset, a transition takes place in the dynamic
behavior of the neuronal network from a complex
behavior to a simpler one [10,18]. A work about a model
that represents this time evolution is actually in progress.

The frequency engagements, preseizure and during
seizure, suggest that a method for detecting the informa-
tion transference between channels (brain zones) involved
in the epileptogenic zone and the other zones of the brain
can be derived. When we speak about ‘“‘information
transfer” we do not refer to the seizure propagation but
to how the behavior in a band and in a determined chan-
nel of the epileptogenic zone affects the behavior in other
bands in channels that are not so close to it.

The A'” parameter, as a time function, gives us an idea
about the periods in which the engagements are relevant.
Then we can evaluate the correlation among the time
series A" that arises from two different channels and the
corresponding band, as a function of a time shift 7. From
this procedure we can investigate when an engagement in
one channel and band induces similar behavior in another
channel and band.

In Fig. 11 we display, as an example, the -8, 8-6, and
5-a correlations as a function of the time shift 7 between
a channel in the epileptogenic region and the correspond-
ing contralateral. In Fig. 12 we show the same correla-
tions, but now between a channel in the epileptogenic re-
gion and one in a zone outside.

It can be observed that the behaviors are very different.
Figure 11 shows a high correlation in the §-6 and 5-6
bands engagements. These present a maximum correla-
tion at 7=3 and 2 sec, respectively. Figure 12 shows a
decreasing correlation for the two channels involved.
This procedure, used for all the possible pairs of channels
with their corresponding bands, can be used to identify
the epileptic focus.

The behavior observed in the EEG signals analyzed in
this paper lets us make the assumption that the epilepto-
genic zone (focus) acts as a global pacemaker with some
characteristic frequency determined by the frequency en-
gagements. From the results, we also can observe that
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Band Correlation

-0.2 — L L L s L

Time Shift [ sec ]

FIG. 12. Same as Fig. 11 between a channel in the epilepto-
genic region (Fig. 1) and one outside.

engagements in a band can induce engagements in anoth-
er channel and in other bands and the corresponding time
for the information transfer.

This method is a possible tool to distinguish channels
in an epileptogenic region from other ones. Moreover it
can be useful for obtaining valuable information in order
to model the epileptic seizure.

V. CONCLUSION

In this paper we introduce a method that allows us to
perform the EEG time-frequency analysis in a systematic
way. This method lets us give an accurate description of
the time evolution of the rhythm defined in the EEG
characterization.

In this way we can generate time series of parameters
that quantify the dynamical behavior of the brain activity
in a way independent of the EEG signal morphology. In
particular, the lag correlation among these time series
gives good information about the process of the spread of
the epileptiform activity through the brain.

We applied this method to intracranial EEG records of
epileptic refractory patients. We can conclude that the
epileptic seizure as well as the paroxistic activity can be
characterized by a quasimono-frequency activity in some
band. This characteristic can be used to detect precur-
sors of the seizure and to study the dynamical changes in
its time evolution. In particular, in this work we found
good evidence that during the epileptic seizure a transi-
tion takes place in a dynamic behavior of the neuronal
network from a complex to a simpler one.

The use of the present time-frequency analysis together
with the clinical patient history of the visual assessment
of the EEG can contribute to the identification of the
source of the epileptic seizure and of its dynamic. Fur-
thermore, it yields insights with respect to the theory of
how epileptic seizures occur.
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