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In this paper we compare two methods, based on the Gabor and wavelet transforms, to quantify and visualize
the time evolution of frequency contents of electroencephalogram~EEG! time series. We found an optimal
correlation between EEG visual inspection and the proposed methods in the characterization of the frequency
and energy content of characteristic activity during an epileptic seizure. The quasimonofrequency behavior
observed in the epileptic EEG series, in a previous work using a Gabor analysis@J. Inst. Electr. Eng.93, 429
~1946!#, is confirmed with the analysis using a wavelet. Moreover, the method based on the wavelet transform
allows us to build a detector of epileptic events. Both methods are exemplified with EEG series obtained with
depth electrodes in refractory epileptic patients.@S1063-651X~96!01111-7#

PACS number~s!: 87.90.1y

I. INTRODUCTION

The traditional electroencephalogram~EEG! tracing is
now interpreted in much the same way it was done 50 years
ago. More channels are used now and much more is known
about clinical implication of the waves, but the basic EEG
display and quantification of it are quite similar to its prede-
cessors. The clinical interpretation of EEG records is made
by a complex process of visual pattern recognition and the
association with external and evident characteristics of the
disease~clinical symptomatology!. In past years the use of
the Fourier transform, with the introduction of personal com-
puters, has been generalized. The analysis of EEG signals
always involves the queries of quantification, i.e., the ability
to state objective data in numerical and/or graphic forms that
simplify the analysis of long EEG time series. Without such
measures, EEG appraisal remains subjective and can hardly
lead to logical systematization@1–4#.

The EEG is a complex signal whose statistical properties
depend on both space and time. Regarding the temporal
characteristics, no-stationarity EEG signals are ever-
changing; nevertheless, they can be analytically subdivided
into representative epochs where the stationarity hypothesis
is accomplished@5#. Spectral decomposition of the EEG by
computing the Fourier transform has been used since the
very early days of electroencephalography. The rhythmic na-
ture of many EEG activities leads naturally to this analysis.
Fourier transform allows separation of various rhythms and
estimation of their frequencies independently of each other, a
difficult task to perform visually if several rhythmic activi-
ties occur simultaneously. Spectral analysis can also quantify
the amount of activity in a frequency band.

The spectral analysis of EEG signals has proved to be
quite useful in comparing short samples of data~usually 1–4
sec segment of digitized data! @6,7# from patients against
age-matched normative values, as well as in sleep stage
analysis, and quantification of drugs, metabolic effects, and
various diseased states@6#. However, important information
about peak timing is lost. The inclusion of the time evolution

in the quantification of the EEG series is an open problem.
The morphology and topography of sharp transients have
been correlated with seizure type and therapeutic responses
to different medications and surgery. An essential compo-
nent of the traditional visual interpretation of the clinical
EEG is the characterization of unfrequent, morphologically
variable transient events, especially those associated with the
epileptic seizures~‘‘spikes,’’ ‘‘spikes and waves,’’ etc.!
@1–4,6#. Accordingly, a great deal of energy has been spent
over the years in efforts to automatically search long record-
ings for these phenomena and epileptic transient detection,
but with different results@6–9#. The most diffused quantita-
tive method in the clinical practice is the spectral analysis
together with a visual assessment@1–4,6#.

When working in the frequency domain it is useful to
divide EEG activities into three different categories@7#: ~i!
spontaneous activity or background,~ii ! irregular character-
istic epileptic activity~paroxysm!, and ~iii ! activity evoked
by external sensory stimulation. Consequently, it is quite ob-
vious that in the frequency domain representation, rhythmic
components are relatively enhanced at corresponding fre-
quencies, whereas transients~for example, epileptic spikes,
isolated paroxysm, etc.!, are smeared over the spectrum and
therefore are no longer recognizable. From this it follows
that the principal field of spectral analysis is the background
activity, which means the first category mentioned above,
whereas in the other two categories there exist only special
cases to which standard spectral analysis can be successfully
applied@6,7#.

In the present work we compare two different techniques
that allows us to make an analysis of the EEG time series in
a time-frequency space. The first is based on the Gabor trans-
form @10# and the second on the wavelet transform@11–14#.
The Gabor transform is a windowed Fourier transform: a
window in time is used to localize the frequencies. The win-
dow is a time function whose values are nonzero only in a
finite-time interval. In particular, the Gabor transform uses a
Gaussian function as the window@10#. Based on the Gabor
transform, recently, we introduced a procedure to character-
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ize and visualize the changes in the EEG signal with time
@15#. In particular, a good dynamical characterization of an
epileptic seizure was found.

A disadvantage of the use of the Gabor transform is that
the size of the window is fixed. This implies that the election
of the window size is a compromise between the range of
frequencies that one can expect to find and the extension in
time of the phenomena to be analyzed. In fact, when looking
for high frequencies a small window in time should be used
and the information on low frequencies could be lost. On the
other hand, when looking for slow oscillations or low fre-
quencies a long window in time should be used, and in this
case the time evolution of high frequencies events will not be
accurate.

The wavelet transform was recently introduced in order to
overcome the mentioned drawbacks@11–14# and its use in
the EEG analysis is quite recent@16–19#. In fact, this trans-
form introduces a different type of time-frequency window:
a window with variable size that allows an adaptable analy-
sis. In particular, we can consider the Gabor transform as a
special case of the wavelet transform with a fixed window
@12#. Thus, using the wavelet transform we can make an
analysis of the EEG signal based on a window automatically
adjustable to the characteristics of the events to be studied, in
analogy to the analysis performed with the method based on
the Gabor transform. One of the main proposals of the
present work will be to check whether there is loss of rel-
evant information using the Gabor transform instead of the
wavelet transform. The importance of this is that the method
based on the Gabor transform is more easily interpreted by
the team of physicians by its analogies with the Fourier
transform. In particular, we will confirm our previous results
about the quasimonofrequency behavior during an epileptic
seizure as well as paroxysmal activity. In addition, the
method based on the wavelet transform lets us localize in
time, in a precise way, isolated spikes and spike waves, as
well as other epileptic transients. This can be used as an
automatic transient detector.

This paper is organized in the following way. In Sec. II
the experimental setup and the clinical data are presented. In
Sec. III the time-frequency methods based on the Gabor and
wavelets transforms are introduced. In Sec. IV results using
both methods are compared and discussed for intracraneal
epileptic EEG series. Finally, a summary is given in Sec. V.

II. EXPERIMENTAL SETUP AND CLINICAL DATA

For each patient the strategy for the use of implanted elec-
trodes is planned in relation to the spatial and temporal or-
ganization of the epileptic discharges. This information is
simultaneously correlated with clinical symptomatology.
Here we present EEG signals from two patients, who were
selected because they present different seizure activities.
These two patients, whose EEG time series analysis are
shown here, were explored with eight multilead electrodes,
each one 2 mm long and 1.5 mm apart. The analysis of
before and during epileptic seizure data is accomplished by
visual analysis of the EEG record. Each signal was amplified
and filtered using a 1–40 Hz bandpass filter. A four-pole
Butterworth filter was used as a low-pass filter, serving as an
antialiasing scheme. The EEG signals were digitalized at 256
Hz through a 10-bit analog-to-digital converter.

According to the visual assessment of the EEG seizure
recording, patient I presented an epileptogenic area in the
hippocampus with immediate propagation to the girus cingu-
lar and the supplementary motor area, on the left hemisphere.
In Fig. 1 ~signal I!, we display the EEG signal for 16 sec,
corresponding to a depth electrode in the hippocampus. In
this sample, we can see an isolate paroxysm at 2 sec and a
paroxysmal activity that starts around the 4 sec and finishes
around 13.5 sec.

Patient II, according to the visual assessment of the EEG
seizure recording, presented an epileptogenic area in the left
amygdala with propagation to the contralateral amygdala. In
Fig. 2 ~signal II!, we show the EEG signal for 40 sec, corre-
sponding to a depth electrode in the left amygdala. In this
sample, the epileptic seizure starts around the 0 sec and fin-
ishes around 34 sec.

The use of depth electrodes provides records where the
noise and artifact contamination effects~usually present in
the EEG series obtained with scalp electrodes! are mini-
mized. The applicability of the proposed methods is not re-
stricted to the use of this kind of EEG records.

III. TIME-FREQUENCY ANALYSIS

A. Method based on Gabor transform

In a previous work@15# we introduce a time-frequency
analysis that takes as a basic element the Gabor transform
@10#. We performed the Gabor transform of the EEG signal
denoted byS(t) as

FIG. 1. Recording of the EEG signal, patient I, corresponding to a depth electrode in the hippocampus region.
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GD~v0 ,t0!5E
2`

`

S~ t !gD* ~ t2t0!e
iv0tdt. ~1!

We used forgD(t) a slide Gaussian window with widthD
and the asterisk denotes complex conjugation. According to
this algorithm, one-dimensional signals are represented in a
combined time-frequency space@15#. These functions are
situated on a lattice in this combined space, with clearances
t0 andv0 in the time and frequency axes, respectively. In the
present analysis the slide Gaussian window has a velocity
displacement of 64 data points and widthD52 sec. Thus the
resolution in the time-frequency space wasDv50.125 Hz
andDt50.25 sec.

We defined the time evolution of thespectral frequency
contentand we denoted byB( i ) this function for the fre-
quency band i , that is, for the frequency interval
(vmin

(i) ,vmax
(i) ), as

B~ i !~v,t !5GD* ~v,t !GD~v,t ! ;vmin
~ i ! <v<vmax

~ i ! ; ~2!

then for thei band the power spectral intensity as a time
function will be

I ~ i !~ t !5E
vmin

~ i !

vmax
~ i !

B~ i !~v,t !dv ~3!

and consequently the total spectral power intensity is

I T~ t !52E
0

`

B~v,t !dv, ~4!

where the spectral intensity content is defined in the fre-
quency interval~2`,`!. We also define the power spectral
intensity per band relative to the total intensity as

FIG. 3. Power spectral intensity per band relative to the total
intensity, as a function of time for the EEG signal shown in Fig. 1.
B1, triple-dot–dashed line;B2, long-dashed line;B3, short-dashed
line; B4, dot-dashed line;B5, dotted line;B6, solid line.

FIG. 2. Recording of the EEG signal, patient II, corresponding to a depth electrode in the left amygdala region.
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r~ i !5~ I ~ i !/I T!100. ~5!

For the subsequent analysis of the EEG signal we define for
the different bands themean weight frequencyvalue as

ṽ~ i !~ t !5S E
vmin

~ i !

vmax
~ i !

B~ i !~v,t !v dv D Y I ~ i !~ t !. ~6!

Finally, we defined themain peak frequencyin the i band at
time t,v M

( i ), as the frequency value for whichB( i ) takes its
maximum value in the interval (vmin

(i) ,vmax
(i) ):

B~ i !~vM ,t !.B~ i !~v,t ! ;vÞvMP~vmin
~ i ! ,vmax

~ i ! !. ~7!

The Fourier spectrum will be represented by only one
sharp peak at one frequency when there is a monofrequency
signal. For this case, if we evaluate the mean weight fre-

quency and the main peak frequency, they both will be the
same. Therefore, whenṽ(t) is approximately equal tovM(t)
during an appreciable time intervalin some band, we shall
say that there is aquasimonofrequency engagementin that
band. We stress that in our formalism a signal will be quasi-
monofrequent in this band if this engagement is observed
during areasonable period.

Now we introduce the parameterD( i ) and call it the
monofrequency deviation. This parameter, as a function of
time, gives us an idea about the periods in which the engage-
ments are relevant:

D~ i !~ t !5uṽ~ i !~ t !2vM
~ i !~ t !u. ~8!

Moreover, in order to compare these new time series, for
different bands and channels we normalized each one to its
maximum value@DN

( i )(t)5D ( i )(t)/Dmax
(i) #.

FIG. 4. Normalized monofrequency deviation as a function of time for the EEG signal shown in Fig. 1 for the~a! B1, ~b! B2, ~c! B3, ~d!
B4, ~e! B5, and~f! B6 bands, respectively.
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The importance of having introduced these new time se-
riesr(t), ṽ ( i )(t), v M

( i )(t), andD N
( i )(t) is that they allow us to

characterize the paroxysmal activity and epileptic seizure as
well as its evolution with time by means of quantificable
magnitudes that are independent of the signal’s morphology.
Also, throughout this formalism, valuable dynamical infor-
mation about the epileptic seizure can be extracted@15#.

B. Method based on wavelet transform

Briefly speaking, a wavelet is a rapidly decreasing oscil-
lation function, for which we can change the scale values in
order to match the frequency we are seeking@11–14#. We
will perform the EEG analysis using a wavelet with adequate

scale values and shifting them in time in order to cover the
complete EEG records@16–19#.

The integral wavelet transform of a finite energy signal
S(t) is defined by

~WcS!~b,a!5uau21/2E
2`

`

S~ t !c* S t2b

a Ddt5^S,ca,b&,

~9!

wherea,bPR are parameters; in particular,a is related to
the oscillation frequency andb the localization in time of the
wavelet function, respectively. We assume that the function

FIG. 5. Signal (S) and signal energy distribution (Ej ), as a function of time, for the EEG signal shown in Fig. 1, in the corresponding
wavelet resolution levelsj .
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S(t) is integrable square~Lebesgue!, which means that
S(t)PL2~R!. When a functionc(t)PL2~R! is any basic
wavelet, it verifies@11#

E
2`

`

c~ t !dt50. ~10!

In the present analysis we have used a multiresolution
scheme based on the spline wavelet transform, with a dis-
cretized version of the integral wavelet transform given by
Eq. ~9! @20#. We selected this wavelet because it provides a
solution to the problems considered basic in event detection:
~i! optimal localization in the time-frequency domain,~ii !
characterization of the different types of epileptic events, and
~iii ! computational efficiency of the algorithm proposed.

The wavelet functionc(t) @20# is

c~ t !5
1

40 320
@2f~2t16!1124f~2t15!

21677f~2t14!17904f~2t13!218 482f~2t12!

124 264f~2t11!218 482f~2t !17904f~2t21!

21677f~2t22!1124f~2t23!2f~2t24!#, ~11!

wheref(t) is the cubic spline compactly supported~scaling
function!:

f~ t !5H 12utu1 1
6 utu32 1

3 ~12utu!3

~22utu!3/6
0

if utu<1
if 1<utu<2
if utu.2.

~12!

FIG. 6. Wavelet residual signal (Rj ) for the EEG signal shown in Fig. 1, in the corresponding wavelet resolution levelsj . S represents
the reconstructed signal by summing allRj .
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In order to evaluate the time-frequency localization proper-
ties of the proposed analysis, we evaluate the values of the
center (m) and radius~D! of the time and frequency win-
dows:

mc5$iciL2%22E
2`

`

tuc~ t !u2dt520.5, ~13a!

Dc5$iciL2%21F E
2`

`

~ t10.5!2uc~ t !u2dtG1/250.5419,

~13b!

mĉ5$iĉiL2%22E
2`

`

vuĉ~v!u2dv55.1632, ~13c!

Dĉ5$iĉiL2%21F E
2`

`

~v25.1632!2uĉ~v!u2dvG1/250.9239,

~13d!

whereĉ is the Fourier transform ofc andi iL2 denotes the
norm inL2 space. From these quantities, the window area in
the time-frequency plane is

1
4 ~area!5DĉDc50.500 67, ~14!

which is almost the optimal value 0.5@12#. Thus the selec-
tion of this wavelet guarantees a good localization in the
time-frequency plane.

For a given EEG signalS(t), initially represented by its
polynomial spline coefficients at zero resolution, the wavelet
decomposition can be written as

S~ t !5 (
k52`

`

c0~k!f~ t2k!

5 (
k52`

`

cN~k!f~22Nt2k!

1(
j51

N

(
k52`

`

dj~k!c~22 j t2k!, ~15!

where the numbersd1(k),d2(k),...,dN(k) are the wavelet
coefficients and the sequence$cN(k)% represents the coarser
resolution signal at resolution levelN. If this decomposition
is carried out over all resolutions levels, the wavelet expan-
sion

S~ t !5 (
j52`

`

(
k52`

`

dj~k!c~22 j t2k! ~16!

is obtained. In each levelj the series expansion given by Eq.
~16! has the property of complete oscillation@12#, which
makes this decomposition useful for event localization.

In each levelj , the residual signalwill be

Rj~ t !5 (
k52`

`

dj~k!c~22 j t2k! ~17!

and contains the part ofS(t) with the frequency range in the
interval

S ~mĉ2Dĉ!
22 j

Dt
,~mĉ1Dĉ!

22 j

Dt D , ~18!

whereDt is the sampling time. The original signal can be
recovered byS(t)5( jRj (t).

When the family$ck, j (t)5c(22 j t2k)% is anorthonor-
mal basis inL2~R!, the concept of energy is linked to the
usual notions derived from the Fourier theory. Then the en-
ergy function will be the sum of the square of the coefficients
of the series expansion given by Eq.~16!,

iSi25(
k, j

udk, j u25(
k, j

u^S,ck, j&u2. ~19!

But the wavelets that we are using in the present analysis
belong to the more general class ofbiorthogonalwavelets
@20#. This means that there exists a functionc̃(t) called the
dual ofc(t). The dualc̃(t) is itself a wavelet@20#, such that

^c~22 i t2k!,c̃~22 j t2 l !&5 H2i0 if i5 j , k5 l
otherwise. ~20!

Then the familyc̃ j ,k5c̃(22 j t2k) is called the dual basis of
cj ,k . As a consequence, every signalS(t) can be written as

S~ t !5(
j ,k

dj~k!c j ,k~ t !5(
j ,k

d̃j~k!c̃ j ,k~ t !, ~21!

where

dj~k!5^S,c̃ j ,k&, ~22a!

d̃ j~k!5^S,c j ,k&. ~22b!

In this ~biorthogonal! case the energy associated with the
signalS(t) is given by

iSi25(
j ,k

2 jdj~k!d̃ j~k!. ~23!

An algorithm for detecting epileptic events can be devel-
oped based on the previously established multiresolution
analysis and the energy associated with the EEG signal. In
the wavelet multiresolution framework~described above!, it
is possible to evaluate the energy corresponding to each
level, and this can be used for the detection of the character-
istic epileptic events@19#.

FIG. 7. Same as Fig. 3 for the EEG signal shown in Fig. 2.
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Since we are using dyadic decomposition of the range of
frequencies, from a signal ofM samples, we haveM /2j co-
efficients at levelj . In order to obtain an accurate event
detection, we distribute uniformly the ‘‘atoms’’ of energy
@each one of the terms of Eq.~23!# in each levelj along 2j

points.
Defining

ej~r !5dj~k!d̃ j~k! ~24!

for integersr in the interval (k21)2j,r<k2 j , the energy in
each resolution levelj51,...,N will be

Ej5(
r51

M

ej~r ! ~25!

and the energy in each sampled timer51,...,M will be

E~r !5(
j51

N

ej~r !. ~26!

As a consequence, different epileptic events~spikes and
spike waves!, isolated or a succession of them, can be char-
acterized through the corresponding values ofej (r ) in dif-
ferent resolution levels. Then a detection method can be
implemented by looking at when the valueej (r ) is greater
than a thresholdDj appropriately defined for each resolution
level @19#.

IV. RESULTS AND DISCUSSION

The results of EEG spectral analysis are often grouped
into the traditional frequency bands, whose boundaries can
vary a little according to the particular experiment being con-
sidered, and they can be adjusted as required@1–3#. On the

FIG. 8. Same as Fig. 4 for the EEG signal shown in Fig. 2.
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other hand, if the signal presents some remarkable frequency
characteristics, these must be observed in an independent
way whatever the division in bands of the total frequency
range. In order to compare the two methods proposed for the

analysis of EEG series in the time-frequency space, we chose
six frequency bands associated with the resolution levels
~which correspond to an octave division! appropriate for
wavelet analysis in the scheme of multiresolution proposed.

FIG. 9. Same as Fig. 5 for the EEG signal shown in Fig. 2.
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FIG. 10. Same as Fig. 6 for the EEG signal shown in Fig. 2.
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We denoted these band-resolution levels byBj ~j51, . . . ,6!
and their frequency limits are given in Table I. Note that the
maximum frequency considered in the present analysis is 32
Hz, in agreement with the bandpass filter used in the acqui-
sition of the EEG signal.

A. Signal I

In Figs. 3 and 4 we display the power spectral intensity
per band relative to the total intensityr( j ) and the normalized
monofrequency deviationDN

( j ) for the EEG signal display in
Fig. 1. In Figs. 5 and 6 we show the energy distribution for
the same signal at the different resolution levelsEj and the
corresponding residual signalRj according with the wavelet
transform analysis.

Looking at the time evolution ofr( j ) andEj , good agree-
ment between the temporal changes in these quantities and
the signal morphology can be established. Comparing Figs. 3
and 5, it can be seen that both methods present similar
energy-band–level distributions.

The greatest energy~intensity! contribution corresponds
to B2–B5 . In both analysis we observe an almost constant
contribution in time forB5. On the other hand,B4 has im-
portant contributions between 2–9 and 12–14 sec. The most
significative contribution forB2 andB3 appears between 4
and 13 sec and 8 and 12 sec, respectively.

As we mentioned above, for small values ofDN during a
reasonable time interval, a quasimonofrequency band behav-
ior will evolve @15#. In Figs. 4~c! and 4~d!, we can see a long
engagement forB3 andB5 between 3 and 9 sec and 2 and 10
sec, respectively. Shorter engagements can be observed in
B2, B4, andB6 @see Figs. 4~b!, 4~d!, and 4~f!#. This quasi-
monofrequency behavior also can be observed by the wave-
let analysis throughout the corresponding residual signals in
each resolution level~see Fig. 6!. Note that now the quasi-
monofrequency behavior is associated with almost repetitive
patterns in the corresponding time intervals. In particular,
this can be verified by performing a Fourier transform for the
corresponding portion of the residual signal. In addition,
these wavelet residual signals can show engagements that are
not seen with the Gabor transform based method. This miss-
ing of engagements is associated with the fact that the Gabor
transform has a fixed window and certainly can be solved if
we run the described procedure for different window widths.
An example of a missed engagement can be observed inB3
between 8 and 12 sec in the corresponding wavelet residual
signal~see Fig. 6!, which is not observed with the running of
the Gabor based method with a window widthD52 sec@see
Fig. 4~e!#.

B. Signal II

The signal shown in Fig. 2 has a richer morphology than
that shown in Fig. 1; in particular, bursts between 26 and 32
sec are observed. As for the previous signal, the results for
the method based on the Gabor transform are displayed in
Figs. 7 and 8 and the wavelet transform in Figs. 9 and 10,
respectively. From Figs. 7 and 9 we can conclude that a
similar global behavior is extracted by both methods. This
behavior is characterized by an alternation in the dominant
contribution of the different band-resolution levels. We
stress that temporal resolution of the bursts@Figs. 9~a! and
9~b!# is better in the wavelet energy diagram than in the
Gabor diagram~Fig. 7!. In particular, in the Gabor analysis,
the bursts are observed as a global increase in the fast fre-
quencies contribution, inB4 between 24 and 32 sec.

From Fig. 8 it can be seen that the more important quasi-
monofrequency engagements are inB2, B3, andB4 @Figs.
8~a!, 8~b!, and 8~c!, respectively!. Short engagements can be
observed in the other bands. In particular, inB2, these en-
gagements correspond to bursts in the signal. Again, this
monofrequency behavior can be related to a repetitive mor-
phology of the wavelet residuals.

One of the most important characteristics of the wavelet
transform is the great accuracy for the resolution of events in
time; as an example of this, the isolate paroxism around 2
sec in signal I~Fig. 1! and the bursts in signal II~Fig. 2! can
be detected as a high contribution at the corresponding time
in the energy resolution levels 3 and 2, respectively. These
characteristics can be used as a tool for automatic event de-
tection.

V. CONCLUSION

In this work we compared two methods that provide a
good global description of the EEG signals in the time-
frequency space. The wavelet transform gives a more accu-
rate temporal localization as well as a good detection of short
events; in particular, this characteristic can be used as a tool
for automatic event detection. The method based on the Ga-
bor transform gives a global ‘‘average’’ description in a
compact way for analyzing the EEG signal. In particular, this
method is a useful tool in the analysis of long-time EEG
series. When a more accurate description of the signal is
required the wavelet transform must be used.

We want to stress that the time series generated by both
methods analyzed here provide quantifiable and objective in-
formation about the frequency content and their relative in-
tensities~energy! present in each interval of the EEG signal.
In this way hidden information can be made evident. For
example, a fast activity that is evident in a first visual inspec-
tion could be modulated by a low frequency that is not easy
to detect in the EEG trace. This potential hidden information
can be appreciated in a better way by analyzing the quasi-
monofrequency engagement parameterDN ~the Gabor trans-
form method! or wavelet residualsR. This information has a
great physiological relevance for physicians because this al-
lows them to characterize and understand in a better way the
underlying dynamics of the different epileptic seizures and it
can be useful to identify the possible global pacemakers. The
use of these two proposed time-frequency analyses, together
with the clinical patient history and the visual assessment of

TABLE I. Frequency boundaries~in hertz! associated with the
different resolution wavelet levels.

Notation vmin vmax

Resolution
level

B1 16.0 32.0 1
B2 8.0 16.0 2
B3 4.0 8.0 3
B4 2.0 4.0 4
B5 1.0 2.0 5
B6 0.5 1.0 6
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the EEG by an expert physician, can contribute to a better
diagnosis of epilepsy.
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