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Time-frequency analysis of electroencephalogram series. Il. Gabor and wavelet transforms
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In this paper we compare two methods, based on the Gabor and wavelet transforms, to quantify and visualize
the time evolution of frequency contents of electroencephalodEEe) time series. We found an optimal
correlation between EEG visual inspection and the proposed methods in the characterization of the frequency
and energy content of characteristic activity during an epileptic seizure. The gquasimonofrequency behavior
observed in the epileptic EEG series, in a previous work using a Gabor ardlybist. Electr. Eng93, 429
(1946)], is confirmed with the analysis using a wavelet. Moreover, the method based on the wavelet transform
allows us to build a detector of epileptic events. Both methods are exemplified with EEG series obtained with
depth electrodes in refractory epileptic patiei&1063-651X96)01111-7

PACS numbeps): 87.90+y

[. INTRODUCTION in the quantification of the EEG series is an open problem.
The morphology and topography of sharp transients have
The traditional electroencephalogra(@EG) tracing is been correlated with seizure type and therapeutic responses
now interpreted in much the same way it was done 50 year® different medications and surgery. An essential compo-
ago. More channels are used now and much more is knownent of the traditional visual interpretation of the clinical
about clinical implication of the waves, but the basic EEGEEG is the characterization of unfrequent, morphologically
display and quantification of it are quite similar to its prede-variable transient events, especially those associated with the
cessors. The clinical interpretation of EEG records is madepileptic seizures(“spikes,” ‘“spikes and waves,” etg.
by a complex process of visual pattern recognition and th¢1—4,6. Accordingly, a great deal of energy has been spent
association with external and evident characteristics of thever the years in efforts to automatically search long record-
disease(clinical symptomatology In past years the use of ings for these phenomena and epileptic transient detection,
the Fourier transform, with the introduction of personal com-but with different result$6—9]. The most diffused quantita-
puters, has been generalized. The analysis of EEG signalve method in the clinical practice is the spectral analysis
always involves the queries of quantification, i.e., the abilitytogether with a visual assessméht-4,6.
to state objective data in numerical and/or graphic forms that When working in the frequency domain it is useful to
simplify the analysis of long EEG time series. Without suchdivide EEG activities into three different categorigd: (i)
measures, EEG appraisal remains subjective and can harddpontaneous activity or background, irregular character-
lead to logical systematizatidi—4]. istic epileptic activity(paroxysm, and (iii) activity evoked
The EEG is a complex signal whose statistical propertieby external sensory stimulation. Consequently, it is quite ob-
depend on both space and time. Regarding the tempora&lous that in the frequency domain representation, rhythmic
characteristics, no-stationarity EEG signals are evereomponents are relatively enhanced at corresponding fre-
changing; nevertheless, they can be analytically subdivideduencies, whereas transierifer example, epileptic spikes,
into representative epochs where the stationarity hypothesisolated paroxysm, et;.are smeared over the spectrum and
is accomplished5]. Spectral decomposition of the EEG by therefore are no longer recognizable. From this it follows
computing the Fourier transform has been used since théaat the principal field of spectral analysis is the background
very early days of electroencephalography. The rhythmic naactivity, which means the first category mentioned above,
ture of many EEG activities leads naturally to this analysiswhereas in the other two categories there exist only special
Fourier transform allows separation of various rhythms andtases to which standard spectral analysis can be successfully
estimation of their frequencies independently of each other, applied[6,7].

difficult task to perform visually if several rhythmic activi- In the present work we compare two different techniques
ties occur simultaneously. Spectral analysis can also quantifghat allows us to make an analysis of the EEG time series in
the amount of activity in a frequency band. a time-frequency space. The first is based on the Gabor trans-

The spectral analysis of EEG signals has proved to bérm [10] and the second on the wavelet transfdtiti—14.
quite useful in comparing short samples of datsually 1-4  The Gabor transform is a windowed Fourier transform: a
sec segment of digitized dat§6,7] from patients against window in time is used to localize the frequencies. The win-
age-matched normative values, as well as in sleep stagdbow is a time function whose values are nonzero only in a
analysis, and quantification of drugs, metabolic effects, andinite-time interval. In particular, the Gabor transform uses a
various diseased statf8]. However, important information Gaussian function as the windd0]. Based on the Gabor
about peak timing is lost. The inclusion of the time evolutiontransform, recently, we introduced a procedure to character-
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FIG. 1. Recording of the EEG signal, patient I, corresponding to a depth electrode in the hippocampus region.

ize and visualize the changes in the EEG signal with time Il. EXPERIMENTAL SETUP AND CLINICAL DATA

[15.]' In. par'glcular, a good dynamical characterization of an For each patient the strategy for the use of implanted elec-
epileptic seizure was found. _ trodes is planned in relation to the spatial and temporal or-
A disadvantage of the use of the Gabor transform is thaganization of the epileptic discharges. This information is
the size of the window is fixed. This implies that the electionsimultaneously correlated with clinical symptomatology.
of the window size is a compromise between the range oHere we present EEG signals from two patients, who were
frequencies that one can expect to find and the extension iselected because they present different seizure activities.
time of the phenomena to be analyzed. In fact, when looking hese two patients, whose EEG time series analysis are
for high frequencies a small window in time should be usedshown here, were explored with eight multilead electrodes,
and the information on low frequencies could be lost. On theeach one 2 mm long and 1.5 mm apart. The analysis of
other hand, when looking for slow oscillations or low fre- before and during epileptic seizure data is accomplished by
quencies a long window in time should be used, and in thigisual analysis of the EEG record. Each signal was amplified

case the time evolution of high frequencies events will not bednd filtered using a 1-40 Hz bandpass filter. A four-pole
accurate. Butterworth filter was used as a low-pass filter, serving as an

The wavelet transform was recently introduced in order t@ntialiasing scheme. The EEG signals were digitalized at 256

overcome the mentioned drawbadlsl-14 and its use in Hz throug_h a 10-bit analog—to-digital converter. .
the EEG analysis is quite receit6—19. In fact, this trans- According to the visual assessment of the EEG seizure

form introduces a different type of time-frequency window: L?Cog%'gr%’ 5gt\l/$i?rt1 ilme;(zsd?gtfd rﬁnaeg:ﬁ)ﬁ’qtct)g?ﬁg ?rrl?:clirr]\ tS_e
a window with variable size that allows an adaptable analy PP P propag 9 9

sis. In particular, we can consider the Gabor transform as lar and the supplementary motor area, on the left hemisphere.

fh Fig. 1 (signal ), we display the EEG signal for 16 sec,

special case of the wavelet transform with a fixed WindowCorresponding to a depth electrode in the hippocampus. In

[12]. Thus, using the wavelet transform we can make anhis sample, we can see an isolate paroxysm at 2 sec and a
analysis of the EEG signal based on a window automaticallyyaroxysmal activity that starts around the 4 sec and finishes
adjustable to the characteristics of the events to be studied, Byound 13.5 sec.

analogy to the analysis performed with the method based on patient I1, according to the visual assessment of the EEG
the Gabor transform. One of the main proposals of theseizure recording, presented an epileptogenic area in the left
present work will be to check whether there is loss of rel-amygdala with propagation to the contralateral amygdala. In
evant information using the Gabor transform instead of therig. 2 (signal 1), we show the EEG signal for 40 sec, corre-
wavelet transform. The importance of this is that the methodponding to a depth electrode in the left amygdala. In this
based on the Gabor transform is more easily interpreted byample, the epileptic seizure starts around the 0 sec and fin-
the team of physicians by its analogies with the Fourielishes around 34 sec.

transform. In particular, we will confirm our previous results  The use of depth electrodes provides records where the
about the quasimonofrequency behavior during an epileptigoise and artifact contamination effedtssually present in
seizure as well as paroxysmal activity. In addition, thethe EEG series obtained with scalp electrodage mini-
method based on the wavelet transform lets us localize ipyized. The applicability of the proposed methods is not re-

time, in a precise way, isolated spikes and spike waves, agricted to the use of this kind of EEG records.
well as other epileptic transients. This can be used as an

automatic transient detector. IIl. TIME-FREQUENCY ANALYSIS

This paper is organized in the following way. In Sec. Il
the experimental setup and the clinical data are presented. In
Sec. Il the time-frequency methods based on the Gabor and In a previous work15] we introduce a time-frequency
wavelets transforms are introduced. In Sec. IV results usingnalysis that takes as a basic element the Gabor transform
both methods are compared and discussed for intracrangidl0]. We performed the Gabor transform of the EEG signal
epileptic EEG series. Finally, a summary is given in Sec. V.denoted byS(t) as

A. Method based on Gabor transform
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FIG. 2. Recording of the EEG signal, patient Il, corresponding to a depth electrode in the left amygdala region.
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We used foigp(t) a slide Gaussian window with widih . ] ) i )
and the asterisk denotes complex conjugation. According t¥here the spectral intensity content is defined in the fre-
this algorithm, one-dimensional signals are represented in @uency interval—o,). We also define the power spectral
combined time-frequency spa¢d5]. These functions are intensity per band relative to the total intensity as
situated on a lattice in this combined space, with clearances
to andwg in the time and frequency axes, respectively. In the
present analysis the slide Gaussian window has a velocity
displacement of 64 data points and widik=2 sec. Thus the i
resolution in the time-frequency space wae=0.125 Hz B ’
andAt=0.25 sec.

We defined the time evolution of thgpectral frequency
contentand we denoted by this function for the fre-
quency bandi, that is, for the frequency interval
(wgw)imwgn)ax)v as

Ratio

Band Intensity

BY(w,1)=G5(w,)Gp(w,t) Vol <o<oll:; 2

then for thei band the power spectral intensity as a time 4 ,
function will be Time [ sec ]

|(i)(t)= w%)axB(i)(w,t)dw 3) _ FIQ. 3. Power s_pectral_ intensity per ban_d relative to_the_ total

() intensity, as a function of time for the EEG signal shown in Fig. 1.
B,, triple-dot—dashed lineB,, long-dashed lineB3, short-dashed
and consequently the total spectral power intensity is line; B,, dot-dashed lineBs, dotted line;Bg, solid line.

min
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FIG. 4. Normalized monofrequency deviation as a function of time for the EEG signal shown in Fig. 1 tar Bye (b) B, (c) Bs, (d)
B4, (e) Bs, and(f) Bg bands, respectively.

pV=(11717)100. (5  quency and the main peak frequency, they both will be the
same. Therefore, whén(t) is approximately equal t@,(t)
For the subsequent analysis of the EEG signal we define faturing an appreciable time intervah some band, we shall
the different bands thenean weight frequencyalue as say that there is guasimonofrequency engagemeéntthat
band. We stress that in our formalism a signal will be quasi-
)/ 10)(t). 6) mo_nofrequent in this b_and if this engagement is observed
during areasonable period .
Now we introduce the parametex() and call it the
Finally, we defined thenain peak frequenciy thei band at  monofrequency deviatiorThis parameter, as a function of
time t,wf\'ﬂ), as the frequency value for whioB®) takes its time, gives us an idea about the periods in which the engage-
maximum value in the intervale®),,,o{,): ments are relevant:

4 O
5(')(t)=<f(i“;axl§(')(w,t)w do

®min

By 1)>BV(w,t) Yo#oye(ol) oll). (7) AVt =30 (1)— o (1)]. (8)

The Fourier spectrum will be represented by only oneMoreover, in order to compare these new time series, for
sharp peak at one frequency when there is a monofrequendjjfferent bands and channels we normalized each one to its
signal. For this case, if we evaluate the mean weight fremaximum vaIue[AFJ)(t)zA(')(t)/AEQa)J.
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FIG. 5. Signal §) and signal energy distributiorE(), as a function of time, for the EEG signal shown in Fig. 1, in the corresponding
wavelet resolution levels.

The importance of having introduced these new time sescale values and shifting them in time in order to cover the
riesp(t), @(t), o (1), andA {)(t) is that they allow us to  complete EEG recordsl6-19.
characterize the paroxysmal activity and epileptic seizure as The integral wavelet transform of a finite energy signal
well as its evolution with time by means of quantificable S(t) is defined by
magnitudes that are independent of the signal’s morphology.
Also, throughout this formalism, valuable dynamical infor-

mation about the epileptic seizure can be extraigd. (W,S)(b,a)= |a|1/2f:3(t),/,*<%) dt=(S,¥ap),

9
B. Method based on wavelet transform ©
Briefly speaking, a wavelet is a rapidly decreasing oscil-
lation function, for which we can change the scale values irwherea,beR are parameters; in particulaa, is related to
order to match the frequency we are seeKitg—14. We  the oscillation frequency arfathe localization in time of the
will perform the EEG analysis using a wavelet with adequatevavelet function, respectively. We assume that the function
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FIG. 6. Wavelet residual signaRy) for the EEG signal shown in Fig. 1, in the corresponding wavelet resolution IgvElsepresents
the reconstructed signal by summing BJl.

S(t) is integrable squardLebesgug which means that The wavelet functionj(t) [20] is
S(t) e LAR). When a functiony(t) e LXR) is any basic

wavelet, it verified11] Y(t)= 20 350 320[ — ¢(2t+6)+1244(2t+5)
fx H(1)dt=0. (10) —1677(2t+4) + 7904p(2t+ 3) — 18 482p(2t + 2)
- +24 264p(2t+ 1) — 18 482h(2t) + 7904h(2t — 1)
In the present analysis we have used a multiresolution —1677H(2t—2) +124¢p(2t—3)— p(2t—4)], (11

scheme based on the spline wavelet transform, with a dis-

cretized version of the integral wavelet transform given bywhere(t) is the cubic spline compactly supportetaling
Eq. (9) [20]. We selected this wavelet because it provides dunction):
solution to the problems considered basic in event detection: 11,13 1 3 _
(i) optimal localization in the time-frequency domaiii,) 1-[t[+gltP=3(1-]t]) !f <1
characterization of the different types of epileptic events, andb(t)=1 (2—t)%6 if 1<|t|<2 (12
(i) computational efficiency of the algorithm proposed. 0 it [t]>2.
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St)= E E dj(K) (271t —k) (16)
g is obtained. In each levé¢lthe series expansion given by Eg.
ey (16) has the property of complete oscillati¢t2], which
E makes this decomposition useful for event localization.
E In each levelj, theresidual signalwill be
'%
; . Rj(t)= E dj(k) (27t =k) (17
0 4 8 12 16 20 21 25 52 36 10 and contains the part &(t) with the frequency range in the
Time [ sec ] interval
FIG. 7. Same as Fig. 3 for the EEG signal shown in Fig. 2. 271 271
(m;—Ay) H,(m;ﬁA[p) Al (18)

In order to evaluate the time-frequency localization proper-
ties of the proposed analysis, we evaluate the values of the

center () and radius(A) of the time and frequency win- where At is the sampling time. The original signal can be

recovered by5(t) ==;R;(t).

dows: When the famlly{lr//kj(t) #(271t—k)} is anorthonor-
L[ 5 mal basis inL%(R), the concept of energy is linked to the
my,={[| | 2} f t{(t)|*dt=—0.5, (138 usual notions derived from the Fourier theory. Then the en-
7°° ergy function will be the sum of the square of the coefficients
w0 112 of the series expansion given by HGb6),
A,/,={||</1|||_2}_1[ f_ (t+0.5)2|¢//(t)|2dt} =0.5419,
(13b) I8l7= 2 T I= 2 (Sl (19
m&F{H'ZHLZ}*ZIw | (0)|?dw=5.1632, (130 But the wavelets that we are using in the present analysis
—o belong to the more general class lbrthogonal wavelets
. 12 [20]. This means that there exists a functig(t) called the
A‘f{llfblle}‘l[ (w—5-16332|tl(w)|2dw} —0.9239,  dual of y(t). The dualy(t) is itself a wavelef20], such that
(130 . ~ 2" if i=j, k=I

- (P(27't=Kk), (27 t-1)) = : (20
where i i52 the Fourier transform ofy and| || 2 denotes the 0 otherwise.
norm inL“ space. From these quantities, the window area IRrhen the family?kjyk=?&(2‘jt—k) is called the dual basis of

the time-frequency plane is ¥, . As a consequence, every Sigig{t) can be written as
z(area=A;A ,=0.500 67, (149
which is almost the optimal value 0[42]. Thus the selec- S(t):% d;(k) ‘ﬁjvk(t):% d; (k) ; (1), (21)
tion of this wavelet guarantees a good localization in the ' '
time-frequency plane. where
For a given EEG signab(t), initially represented by its _

polynomial spline coefficients at zero resolution, the wavelet di(K)=(S,%; ), (223
decomposition can be written as '

o d;(K)=(S,¢; - (22b)

t)= k) p(t—k
S k:z_oc Colk) & ) In this (biorthogonal case the energy associated with the

signal S(t) is given by

= 2 onka(2 M=k e~
k= [El =§ 21d;(k)d;(k). (23

N [
+ 2 :2 K p(27t=k), (15 An algorithm for detecting epileptic events can be devel-

. oped based on the previously established multiresolution
where the numbersl;(k),d,(k),...,dy(k) are the wavelet analysis and the energy associated with the EEG signal. In
coefficients and the sequenpey(k)} represents the coarser the wavelet multiresolution framewotfdescribed aboyeit
resolution signal at resolution levhl. If this decomposition is possible to evaluate the energy corresponding to each
is carried out over all resolutions levels, the wavelet expanlevel, and this can be used for the detection of the character-
sion istic epileptic event$19].
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FIG. 8. Same as Fig. 4 for the EEG signal shown in Fig. 2.

Since we are using dyadic decomposition of the range of N
frequencies, from a signal &fl samples, we havi/2' co- E(r)= E g(r). (26)
efficients at levelj. In order to obtain an accurate event =1
detection, we distribute uniformly the “atoms” of energy

[each one of the terms of ER3)] in each levelj along 2~ AS a consequence, different epileptic evergpikes and
points. spike wavey isolated or a succession of them, can be char-

Defining acterized through the corresponding valuesf) in dif-
ferent resolution levels. Then a detection method can be
ej(r)=dj(k)aj(k) (24) implemented by looking a.t when the valeg(r) is greate_r
than a threshol®; appropriately defined for each resolution

for integersr in the interval k—1)2/<r=<k2/, the energy in level [19]

each resolution levegl=1,... N will be
IV. RESULTS AND DISCUSSION

M
E:E e (r) (25) The results of EEG spectral analysis are often grouped
=T into the traditional frequency bands, whose boundaries can
vary a little according to the particular experiment being con-
and the energy in each sampled time1,...,M will be sidered, and they can be adjusted as reqitee]. On the
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FIG. 9. Same as Fig. 5 for the EEG signal shown in Fig. 2.

other hand, if the signal presents some remarkable frequen@nalysis of EEG series in the time-frequency space, we chose
characteristics, these must be observed in an independesik frequency bands associated with the resolution levels
way whatever the division in bands of the total frequency(which correspond to an octave divisjoappropriate for

range. In order to compare the two methods proposed for theravelet analysis in the scheme of multiresolution proposed.
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FIG. 10. Same as Fig. 6 for the EEG signal shown in Fig. 2.
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TABLE |. Frequency boundarie@n hertz associated with the B. Signal Il

different resolution wavelet levels. The signal shown in Fig. 2 has a richer morphology than

that shown in Fig. 1; in particular, bursts between 26 and 32

Resolution ) .
Notation Ormin Omax level sec are observed. As for the previous signal, the results for
the method based on the Gabor transform are displayed in
B, 16.0 32.0 1 Figs. 7 and 8 and the wavelet transform in Figs. 9 and 10,
B, 8.0 16.0 2 respectively. From Figs. 7 and 9 we can conclude that a
Bs 4.0 8.0 3 similar global behavior is extracted by both methods. This
B4 2.0 4.0 4 behavior is characterized by an alternation in the dominant
Bs 1.0 2.0 5 contribution of the different band-resolution levels. We
Be 0.5 1.0 6 stress that temporal resolution of the burdgtgs. 9a) and

9(b)] is better in the wavelet energy diagram than in the
Gabor diagramFig. 7). In particular, in the Gabor analysis,

We denoted these band-resolution level j=1,..., . :
SN 9 the bursts are observed as a global increase in the fast fre-

and their frequency limits are given in Table |. Note that the . ibution. iB. b 24 and 32
maximum frequency considered in the present analysis is 38U€ncies contribution, i, between 24 an S€c.

Hz, in agreement with the bandpass filter used in the acqui- oM Fig. 8 it can be seen that the more important quasi-
sition of the EEG signal. monofrequency engagements areBp, B3, and B, [Figs.

8(a), 8(b), and &c), respectively. Short engagements can be
A. Signal | observed in the other bands. In particular,Bp, these en-
) ) ) ~ gagements correspond to bursts in the signal. Again, this
In Figs. 3 and 4 we display the power spectral intensitymonofrequency behavior can be related to a repetitive mor-
per band relative to the total intensjty’ and the normalized phology of the wavelet residuals.
monofrequency deviation { for the EEG signal display in One of the most important characteristics of the wavelet
Fig. 1. In Figs. 5 and 6 we show the energy distribution foryransform is the great accuracy for the resolution of events in
the same signal at the different resolution levjsand the  time; as an example of this, the isolate paroxism around 2
corresponding residual signg} according with the wavelet  sec in signal KFig. 1) and the bursts in signal [Fig. 2) can
transform analysis. . . be detected as a high contribution at the corresponding time
Looking at the time evolution o) andE; , good agree- i the energy resolution levels 3 and 2, respectively. These
ment between the temporal changes in these quantities apgharacteristics can be used as a tool for automatic event de-
the signal morphology can be established. Comparing Figs. &ction.
and 5, it can be seen that both methods present similar
energy-band—level distributions. V. CONCLUSION
The greatest energgintensity contribution corresponds
to B,—Bg. In both analysis we observe an almost constant In this work we compared two methods that provide a
contribution in time forBs. On the other handB, has im-  good global description of the EEG signals in the time-
portant contributions between 2—9 and 12—-14 sec. The mo$tequency space. The wavelet transform gives a more accu-
significative contribution foB, and B; appears between 4 rate temporal localization as well as a good detection of short
and 13 sec and 8 and 12 sec, respectively. events; in particular, this characteristic can be used as a tool
As we mentioned above, for small valuesx§ during a  for automatic event detection. The method based on the Ga-
reasonable time interval, a quasimonofrequency band behatbor transform gives a global “average” description in a
ior will evolve [15]. In Figs. 4c) and 4d), we can see along compact way for analyzing the EEG signal. In particular, this
engagement foB,; andBg between 3 and 9 sec and 2 and 10method is a useful tool in the analysis of long-time EEG
sec, respectively. Shorter engagements can be observed saries. When a more accurate description of the signal is
B,, B,, andBg [see Figs. &), 4(d), and 4f)]. This quasi- required the wavelet transform must be used.
monofrequency behavior also can be observed by the wave- We want to stress that the time series generated by both
let analysis throughout the corresponding residual signals imethods analyzed here provide quantifiable and objective in-
each resolution levelsee Fig. 6. Note that now the quasi- formation about the frequency content and their relative in-
monofrequency behavior is associated with almost repetitivéensities(energy present in each interval of the EEG signal.
patterns in the corresponding time intervals. In particular]n this way hidden information can be made evident. For
this can be verified by performing a Fourier transform for theexample, a fast activity that is evident in a first visual inspec-
corresponding portion of the residual signal. In addition,tion could be modulated by a low frequency that is not easy
these wavelet residual signals can show engagements that dcedetect in the EEG trace. This potential hidden information
not seen with the Gabor transform based method. This misgan be appreciated in a better way by analyzing the quasi-
ing of engagements is associated with the fact that the Gabanonofrequency engagement parameigr(the Gabor trans-
transform has a fixed window and certainly can be solved iform method or wavelet residualR. This information has a
we run the described procedure for different window widths.great physiological relevance for physicians because this al-
An example of a missed engagement can be observed in lows them to characterize and understand in a better way the
between 8 and 12 sec in the corresponding wavelet residuahderlying dynamics of the different epileptic seizures and it
signal(see Fig. 6, which is not observed with the running of can be useful to identify the possible global pacemakers. The
the Gabor based method with a window widhk=2 sec[see  use of these two proposed time-frequency analyses, together
Fig. 4(e)]. with the clinical patient history and the visual assessment of
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the EEG by an expert physician, can contribute to a bettefwo of us(S.B. and O.A.R. undertook this work with the
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