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Abstract

Cardiovascular diseases are major causes of disability and premature death glob-

ally. In particular, atrial fibrillation is the most common cardiac arrhythmia

condition found in clinical practice, and is associated with an increased risk of

stroke. Heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) are

important indicators of cardiovascular health, and provide useful information on

autonomic nervous system inputs to cardiac cycle and cardiorespiratory coupling,

respectively. New methods to support the treatment of cardiovascular diseases

and identifying efficient ways of measuring cardiovascular health could yield sig-

nificant benefits. In this thesis, we present a number of advanced algorithms for

cardiorespiratory signal processing.

We present algorithms for analyzing atrial fibrillation arrhythmia from elec-

trocardiograms (ECG). We propose an orthonormal basis function based repre-

sentation for fibrillatory waveforms, and use a regularized least square solution

for atrial activity extraction from ECG, suppressing more dominant ventricular

components. Time-frequency analysis of atrial activity is used to identify and

track fibrillatory frequencies from extracted atrial activity, which provides possi-

ble guidance to tailored treatments. In addressing the problem of tracking fibril-

latory frequencies, we have developed a framework for generating new classes of

time-frequency distributions with many desirable properties. This framework is

based on multi-dimensional Fourier transform of a radially symmetric function,

and can be used to generate new distributions with unique characteristics. A

realization of this framework on a high-dimensional radial delta function results

in a new class of time-frequency distributions, which we call radial-δ distribu-

tions. The class of radial-δ distributions unifies number of well known distribu-

tions, and further provides methods for high resolution time-frequency analysis
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of multi-component signals with low interference terms.

We present a maximum likelihood inverse Gaussian point process model for

dynamic and instantaneous HRV and RSA estimation from heart beat interval

series and respiration recordings. Unlike previous methods, we perform time-

frequency analysis of heart beat interval series, respiration, as well as the coher-

ence between the two, and dynamically evaluate RSA transfer function based

on instantaneous respiration and maximum coherence frequencies. The point

process algorithm and dynamic respiration based RSA estimation methods are

applied on two experimental protocols, a meditation experiment and a pain ex-

periment. These applications demonstrate the robustness of the point process

model in estimating HRV and RSA under different psychophysiological states.

Regardless of the significant variations in respiration during meditation prac-

tice, goodness-of-fit tests are still found to be well within the desired confidence

bounds, which validate the proposed models. Results indicate a significant in-

crease in RSA during meditation practice, which suggest positive influence of

meditation on the cardiovascular health. In the second experiment, reduced

RSA during pain indicates the ability of the method to differentiate between

different acute pain levels.

Novel time-frequency distributions and orthonormal basis atrial activity rep-

resentation based analysis provide accurate tracking of fibrillatory frequencies

of atrial fibrillation arrhythmia from ECG. The point process model with time-

frequency analysis provides accurate estimations of HRV and RSA, and is robust

to dynamic changes in respiration and autonomic inputs. These algorithms pro-

vide useful tools for monitoring cardiovascular health and particular arrhythmia

conditions.
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