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Abstract—The shifted delta cepstrum (SDC) is a widely used fea-
ture extraction for language recognition (LRE). With a high con-
text width due to incorporation of multiple frames, SDC outper-
forms traditional delta and acceleration feature vectors. However,
it also introduces correlation into the concatenated feature vector,
which increases redundancy and may degrade the performance
of backend classifiers. In this paper, we first propose a time–fre-
quency cepstral (TFC) feature vector, which is obtained by per-
forming a temporal discrete cosine transform (DCT) on the cep-
strum matrix and selecting the transformed elements in a zigzag
scan order. Beyond this, we increase discriminability through a
heteroscedastic linear discriminant analysis (HLDA) on the full
cepstrum matrix. By utilizing block diagonal matrix constraints,
the large HLDA problem is then reduced to several smaller HLDA
problems, creating a block diagonal HLDA (BDHLDA) algorithm
which has much lower computational complexity. The BDHLDA
method is finally extended to the GMM domain, using the sim-
pler TFC features during re-estimation to provide significantly im-
proved computation speed. Experiments on NIST 2003 and 2007
LRE evaluation corpora show that TFC is more effective than SDC,
and that the GMM-based BDHLDA results in lower equal error
rate (EER) and minimum average cost (Cavg) than either TFC or
SDC approaches.

Index Terms—Language recognition (LRE), time–frequency
cepstrum (TFC), block diagonal heteroscedastic linear discrimi-
nant analysis (BDHLDA).

I. INTRODUCTION

L
ANGUAGE recognition (LRE) is a growing area within

the field of speech signal processing. It has many applica-

tions, such as multilingual speech recognition, speech transla-
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tion, multilanguage call centers, information security, and foren-

sics [1]–[3]. Generally speaking, LRE acts as a front-end for

human–human or machine–human systems—determining the

type of language being spoken and routing the speech to spe-

cific back-ends.

Language recognition can be subdivided into two tasks: lan-

guage identification and language verification. Language identi-

fication is a closed-set -class classification problem which tries

to determine which language is/was being spoken. On the other

hand, language verification is an open-set two-class detection

problem which tries to determine whether the target language

is/was being spoken. In addition to these two cases, there is an-

other typical task, open-set language recognition, which tries to

judge which of a set of languages if any is/was spoken. Different

tasks have different applications, but the underlying algorithms

are similar.

Many methods have been developed for LRE. The most suc-

cessful ones can be divided into two categories: acoustic model

methods and phonotactic methods. In the acoustic model ap-

proach, the acoustic feature vectors of the speech are modeled

directly by such methods as Gaussian mixture models (GMMs)

[4], support vector machines (SVMs) [5], or SVMs with GMM

super vectors (SVM GSVs) [6]. This method usually uses spec-

tral (or cepstral) feature vectors, so it is also referred to as the

spectrum method. In the phonotactic approach, the speech is

first decoded into a token string or lattice, and then language

models such as phoneme -gram models [7]–[9], binary trees

(BTs) [10], or vector space models (VSMs) [11] are applied.

This method utilizes the intermediate results of decoders (or to-

kenizers), so it is also referred to as the token method.

No matter what approach is used, feature extraction is the

first and possibly most important step for LRE. Feature vec-

tors can be divided into two categories: basic feature vectors

and derived feature vectors. Basic feature vectors are extracted

from the speech signal directly while derived ones are further

transformed from the basic feature sequences. Basic and derived

feature vectors are often used together to achieve better perfor-

mance.

In the acoustic model approach, Mel-frequency cepstral

coefficients (MFCCs) [3], perceptual linear prediction (PLP)

[12], and linear prediction cepstral coefficients (LPCCs) [13]

are widely used basic feature vectors. Derived feature vectors

have historically consisted of the first and second derivatives.

However, in recent years, due to Torres-Carrasquillo’s orig-

inal contributions and Matejka’s extensional work [4], [14],
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the shifted delta cepstrum (SDC) has been proposed and has

rapidly become the most prevalent derived feature vector in the

acoustic model approach.

The SDC feature, which has much broader context than tradi-

tional feature vectors, captures additional discriminative infor-

mation between languages and improves system performance.

However, the SDC introduces correlation into the new feature

vector, which may not be as effective for backend classifier mod-

eling, such as the commonly used diagonal GMM.

Alternatives to this approach include feature transformation

methods [15], which have received a lot of attention from

speech signal processing community. Linear transformation

algorithms, such as linear discriminant analysis (LDA) and

heteroscedastic linear discriminant analysis (HLDA), have been

successfully applied in language recognition and other speech

recognition tasks [16]–[19].

Usually, the feature transformation is used on the entire final

feature vector. For example in [18], the HLDA is performed on

SDC concatenated with MFCC. In fact, it is possible to show

that derived feature vectors can be expressed as a linear trans-

formation of concatenated basic vectors. Feature derivation can

thus be considered as a form of feature transformation through

proper definition of transformation matrices.

This paper will first focus on the derived and then the trans-

formed feature vectors for an acoustic model approach to LRE.

Aimed at improving the performance of SDC features, we first

propose a time–frequency cepstral feature vector, which extracts

information from the continuous basic feature vector by uti-

lizing the temporal discrete cosine transform (DCT). After that,

we desire a HLDA method on the full feature vector directly, but

this creates tremendous computational complexity. To address

this, we introduce block diagonal matrix constraints and reduce

the large HLDA problem to several smaller HLDA problems.

The rest of this paper is organized as follows. A simple re-

view of commonly used derived feature vectors is provided in

Section II. Section III presents the time–frequency cesptrum and

Section IV proposes block diagonal HLDA. Section V demon-

strates the effectiveness of each technology through detailed ex-

periments. Finally, conclusions are given in Section VI.

II. COMMONLY USED DERIVED FEATURE VECTORS

In LRE, the derived feature vectors are usually calculated

from basic feature vectors and then appended to them to form

a new feature vector. As discussed previously, these commonly

used derived feature vectors include the differential cepstrum

and SDC. We will introduce those briefly in this section.

A. Delta and Acceleration Cepstrum

Letting represents the th frame basic cepstrum vector, the

first-order derivative cepstrum (usually referred as the delta cep-

strum) can be expressed as

(1)

where is the frame delay and is the window parameter for

controlling context width.

The second-order derivative cepstrum (usually referred as the

acceleration or delta-delta cepstrum) is defined in a similar way,

Fig. 1. Diagram of the shifted delta cepstrum (SDC).

except that the input is the delta cepstrum and the output is the

acceleration cepstrum . The new concatenated feature vector

from basic, delta and acceleration cepstra is

(2)

Usually, the context width parameter is set to and the

dimension of the basic feature vector is set to 13, which includes

either the zeroth DCT coefficient C0 or the log-energy. Thus the

total dimension is 39.

B. Shifted Delta Cepstrum

In the SDC, a simpler form of the delta cepstrum is used in-

stead of (1), defined as

(3)

The SDC is a stack of -frames of this simple delta cepstrum,

expressed as

...
(4)

where is the number of frames being stacked and is the

amount of frame shift. An illustration of the SDC is shown in

Fig. 1.

Matejka et al. found that the performance of the SDC can

be further improved if it is appended to the basic feature vector

[14]. The new feature vector is

(5)

Empirically, researchers have found that when (in-

cluding zeroth DCT coefficient C0), and ,

the SDC gives quite good performance [14]. In this case, the

total dimension is .

III. TIME–FREQUENCY CEPSTRUM

From the previous section, we can see that the SDC is essen-

tially a downsampling of a sequence of simple delta ceptrum

frames without any anti-aliasing

filtering. The total context is much broader than a single delta

and acceleration cepstrum. Compared with direct concatena-

tion, downsampling reduces the dimensionality. While this

straightforward process is easy to implement, it also has two

drawbacks: 1) there is no evidence to indicate whether the

maximum information content of the simple delta cepstrum

sequence is lower than the Nyquist frequency, of the
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frame rate, so the -fold downsampling may cause the loss of

significant useful information; and 2) although the concatenated

simple delta cepstra are separated by frames, they still have

some temporal correlation, which will introduce correlation

into the new feature vector.

In fact, we can see that the information content of the SDC

feature vector comes from an equivalent single linear transform

of a cepstrum matrix

(6)

where is the context width. This suggests the possibility that

we can utilize the cepstrum matrix in a more optimal way in-

stead of calculating and decimating the delta cepstrum.

The problem is how to extract more context information from

the cepstrum matrix and yet remove the correlation between el-

ements. This is similar to compression tasks in the image pro-

cessing field, for which the 2-D DCT is often used, which can

be thought of as a combined vertical and horizontal DCT. If the

original image is , then the transformed image can be ob-

tained by

(7)

where and are the vertical and horizontal transform ma-

trix, respectively, and the superscript T denotes matrix trans-

pose. The 2-D DCT is an effective method to de-correlate and

reduce dimensionality in image processing.

In our case, however, the basic cepstral feature vectors have

already been de-correlated. So to implement a 2-D DCT we need

only perform a DCT in the temporal (horizontal) direction. Let-

ting denote a DCT transform matrix, the cepstrum matrix

can be de-correlated with

(8)

After this operation, most of the variability in will be con-

centrated in the coefficients in the upper left part of , which

corresponds to the low-frequency components of the 2-D DCT.

To give a simple demonstration, the variance of each element

of was computed using the CallFriend

corpus. The normalized variances (normalized by the maximum

elements) are plotted in Fig. 2, and supports this assumption.

These components can be extracted to form a new feature

vector by scanning the matrix in zigzag order as shown in Fig. 3.

In this vector, the lower the index, the lower the frequency. The

vector can then be truncated to dimensions to form the TFC

feature vector:

(9)

where denotes rearrangement of the elements of the

matrix in zigzag scan order, truncated to dimension . The

overall process for TFC feature extraction is shown in Fig. 4.

In order to give an intuitive example, the correlation coeffi-

cient matrix of the MFCC-SDC (56 dimensions) and the TFC

(55 dimensions) were computed on the CallFriend corpus. The

results are shown in Fig. 5. A clear correlation pattern can be

seen in the off-diagonal elements of the SDC features, whereas

Fig. 2. Normalized variances of each element of the cepstrum matrix after a
horizontal DCT.

Fig. 3. Illustration of zigzag scan.

Fig. 4. Procedures of TFC feature extraction.

the TFC features are much less correlated. The mean squares of

the offdiagonal elements of the correlation coefficients matrices

were also computed. The values for the MFCC-SDC and TFC
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Fig. 5. Correlation coefficients matrix of MFCC-SDC and TFC feature vectors.
(a) MFCC-SDC (56 dimensions). (b) TFC (55 dimensions).

were 0.0090 and 0.0057, respectively, which also indicates that

the TFC features are less correlated than the SDC features.

Vaseghi et al. have proposed a cepstral-time matrix (CTM)

feature vector [20], which is similar to the TFC feature pro-

posed here. For extracting the CTM, a 2-D DCT is first per-

formed on successive frames of sub-band energies to generate

a cepstrum-time matrix, and then a low-rank sub-matrix is se-

lected as elements of the feature vector.

Although our proposed TFC is similar to the CTM feature

vector, there is one major difference between them. The TFC

feature vector selects the elements using a zigzag scan order in

the upper-left triangular area of the cepstrum-time matrix, while

the CTM approach selects the entire upper-left rectangular area

of the matrix. Due to the energy compaction properties of the

DCT, the TFC structure concentrates the signal information into

fewer coefficients than the CTM.

Castaldo et al. have performed detailed experiments on CTM

feature vectors for language recognition [21]. The results show

that the performance of the CTM is similar, or even slightly

worse than, that of the SDC. But through the experiments in

Section V, we will see that the TFC outperforms the SDC with

similar configurations.

Note that we select an isosceles triangular area in TFC. There

are other possible configurations, such as a nonsymmetric tri-

angle or trapezoid, according to the variance pattern of Fig. 2.

While this may lead to further improvements, here we focus on

the isosceles case, which facilitates a zigzag scan.

IV. BLOCK DIAGONAL HLDA

Although the TFC feature vector de-correlates each di-

mension, it is not optimal with respect to discriminability.

Heteroscedastic linear discriminant analysis (HLDA) is an at-

tractive tool to solve this problem, which has been successfully

used in the speech processing community for feature extraction

and dimensionality reduction [16]–[19]. HLDA, which is a

generalization of LDA without a homoscedasticity assumption,

projects the features into a low-dimensional subspace while

preserving discriminative information. HLDA addresses two

problems: 1) diagonalization, focusing on transforms that allow

us to model all classes well with diagonal covariance Gaus-

sians; and 2) dimensionality reduction, focusing on transforms

that allow us to discard non-discriminative information. Thus,

we may be able to gain additional performance improvement

by replacing the DCT with HLDA.

A. Problem Statement

Suppose

...
. . .

... (10)

where the subscript of [see (6)] has been omitted for sim-

plicity. Let denote the column vector which is the transpose

of th row of

(11)

We can obtain a supervector by concatenating each column

vector

... (12)

which is the operation of stacking the rows of to a column

vector.

For HLDA, we seek a matrix , which transfers -dimen-

sional to a new vector

(13)

where consists of the first rows of consists of

the remaining rows, are the useful dimensions, and

are the nondiscriminatory dimensions in the transformed

space.
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Let denote a training sample and indicate its class

label. In the HLDA framework, the classes are modeled as full-

covariance Gaussians [16] with two constraints: 1) all covari-

ance matrices have the same orientation in the sense that they

can be all diagonalized by the same linear transformation; 2) in

the diagonalized space, means, and variances for some of the

dimensions are shared across all classes/Gaussians. These are

the non-discriminatory dimensions that are not effective to dis-

criminate between classes. The probability density function of

such a model is

(14)

where denotes the normal distribution, and and

are the mean vector and covariance matrix of class

. is assumed to be diagonal and of its diag-

onal coefficients are shared across all classes. The transforma-

tion matrix is also shared by all classes. HLDA then repre-

sents the joint estimation of all these parameters and

in a maximum-likelihood (ML) sense. This can be equiv-

alently calculated by defining the transformation

(15)

Suppose there are classes, the th (within-class) covari-

ance matrix is and the total (global) covariance matrix is

. The objective function is defined as the loglikelihood of all

the training samples, simplified as [16]

(16)

where denotes the diagonal elements and denotes

the determinant of a matrix. The HLDA solution maximizes the

objective function

(17)

In our case, is a -dimensional vector (where ),

which is typically a high-dimensional space, up to several hun-

dred dimensions. Applying HLDA on directly is computa-

tionally infeasible. In order to solve this problem, we will intro-

duce some constraint conditions and decouple the larger HLDA

problem into several smaller ones.

B. Block Diagonal Conditions

1) Transformation Matrix: If we constrain the general trans-

formation to the horizontal direction, will degenerate to a

block diagonal matrix, i.e.,

. . . (18)

Fig. 6. Correlation coefficients matrix of the supervector ��� over the full
data set. (a) Overview of all dimensions. (b) Partial enlargement of first 18
dimensions.

where each is a sub-matrix. In this case, can be

decomposed as

...
... (19)

2) Covariance Matrix: For the covariance matrix, we as-

sume that there is no correlation between different cepstral coef-

ficients, which we believe to be sufficiently removed by DCT as

a last step in extracting MFCCs. Thus, we assume only temporal

correlation of individual cepstral coefficients. This will lead the

total (global) covariance matrix and each class covariance ma-

trix to have a block diagonal structure:

. . . (20)
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Fig. 7. Correlation coefficients matrix of the supervector ��� of the English data
subset.

. . . (21)

To illustrate this, we set and and compute

the correlation coefficients matrix of using the CallFriend

corpus. The results obtained from the full data and English

subset are shown in Figs. 6 and 7. (Other individual classes

show similar patterns to Fig. 7, so they are not plotted here.)

We can see that the covariance matrices have a nearly block

diagonal form, which supports our assumption.

C. Decoupling the Objective Function

We can simplify the HLDA problem by utilizing the block di-

agonal conditions discussed above. Since we assume only tem-

poral correlation of individual cepstral coefficients and no corre-

lation across different coefficients, we only need to decorrelate

the individual sub-vectors corresponding to temporal trajecto-

ries of different cepstral coefficients. Therefore, we need to es-

timate the individual transformations to the temporal sub-vec-

tors of a particular cepstral coefficient matrix. We can show that

using (18), (20), and (20), (16) can be decoupled as shown in

(22) at the bottom of the page, where is the number of

useful dimensions for th HLDA problem and

.

Given this block diagonal structure of covariance matrices,

the large problem is decoupled into several smaller problems. So

we refer to this algorithm as block diagonal HLDA (BDHLDA).

Using this strategy, the solution of the whole problem becomes

. . . (23)

where is the solution of th smaller problem

(24)

D. Algorithm Complexity

Suppose

. . . (25)

. . . (26)

Through some straightforward derivations, we obtain [22]

(27)

where is the th row of the transformation ma-

trix . is the th row of the cofactor matrix

(22)
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for the current estimate of .

is

(28)

Estimation of matrix is an iterative procedure, where we

iteratively reestimate rows of until convergence.

In the BDHLDA or HLDA algorithm, the iteration computa-

tion load is not that significant. The real bottleneck for compu-

tation lies in calculating the statistics, especially the covariance

matrices, from the training samples. In BDHLDA, and

are both matrices. If the number of the training

sample is , the computational complexity will be . The

BDHLDA consists of HLDA problems, so the total compu-

tational complexity is . If we do not use the con-

straint conditions, the computational complexity of the large-

scale HLDA algorithm will be . Thus, the com-

putational complexity of BDHLDA is thus just of that of

HLDA.

E. GMM-Based BDHLDA

In the previous section, we discussed the BDHLDA algo-

rithm, which assumes that classes are Gaussian distributed. In

LRE, a natural method is to treat each language as a class.

However, with this approach, the classes would have largely

non-Gaussian distributions and would thus be unlikely to give

good performance. An effective solution is to use a GMM to

model the data. Burget et al. uses this method to improve the

performance of the HLDA algorithm [19]. This strategy can also

be used in the BDHLDA algorithm; however, due to the high-di-

mensionality of the original features, Burget’s method cannot be

applied directly.

Before giving the GMM-based BDHLDA, let us first review

the GMM-based HLDA algorithm. For each class (in our case,

one class denotes one language), we can train a GMM using the

original feature vectors. Each Gaussian component will give a

fine partition for the feature space; thus, we obtain many sub-

classes corresponding to the components. GMM gives a soft par-

tition, i.e., each training sample belongs to several subclasses

with certain occupation probability, so we need to calculate the

statistics according to this probability.

Suppose the th class is a modeled as a GMM with parameters

, with probability density function

(pdf) for one frame of original feature vector

(29)

We can obtain the th component’s occupation (posterior prob-

ability) as

(30)

Fig. 8. GMM-based BDHLDA.

Based on this occupation, the statistics are

(31)

(32)

(33)

In this way, the feature space from classes can be broken into

subclasses. This is the GMM-based HLDA algorithm. We

can see that this algorithm gives a finer partition of the feature

space and also better satisfies the distribution assumption.

For the BDHLDA algorithm, however, the dimension of the

original feature vector is very high. The computation load for

training the GMM is tremendous, and thus calculating

is not feasible. The BDHLDA statistics can be collected in a

one pass retraining fashion, with mixture component occupa-

tion probabilities computed using TFC features and the corre-

sponding models.

As illustrated in Fig. 8, we can summarize the GMM-based

BDHLDA method as follows.

1) Construct the feature matrix by using the basic feature

vectors, and then perform a horizontal DCT to obtain the

TFC feature vectors .

2) Using the TFC features, train a GMM for each language.

3) Calculate the occupation likelihood for each

TFC feature vector.

4) Using as the weight, calculate the statistics of

for each .

5) Using these statistics, solve each HLDA sub-problem, and

then obtain the solution for each. When solving the HLDA,

set the useful number of dimensions to for the th

problem.
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6) Using the transform matrix of each HLDA, transform

and get

(34)

7) Let denote the first dimensions of .

Concatenate to get the new

feature vector

...

(35)

V. EXPERIMENTS

A. Experimental Setup

The TFC and BDHLDA feature vectors are evaluated on

NIST LRE data. We perform our experiments on 2003 LRE

data (LRE03) and 2007 LRE data (LRE07). LRE03 has a

simple channel condition and matched training data, which

provides a relatively pure test condition, so we use it to make

initial performance comparison and parameter optimization.

LRE07 has several miscellaneous data sources and is more

challenging than LRE03, so we use it to give further validation

in our experiments.

In addition, in order to speed up the training process for small

scale testing, we use only every 20th feature vector for training

to give a reduced training set. We will label this as 1/20 training

in contrast with full training which corresponds to using all the

feature vectors for training in our experiments.

1) Experimental Data: For LRE03, the training data comes

from the CallFriend corpus, which consists of Arabic, English

(southern and non-southern English), Farsi, French, German,

Hindi, Japanese, Korean, Mandarin (mainland and Taiwan Man-

darin), Spanish (Caribbean and non-Caribbean Spanish), Tamil,

and Vietnamese telephone speech. Each language/dialect con-

tains 60 half-hour conversations.

For LRE07, the training data comes from CallFriend, Call-

Home, OGI, OHSU, and LRE07Train corpus. The target lan-

guages include Arabic, Bengali, Chinese (Cantonese, Mandarin,

Wu, and Min), English (American and Indian English), Farsi,

German, Hindustani (Hindi and Urdu), Japanese, Korean, Rus-

sian, Spanish (Caribbean and non-Caribbean Spanish), Tamil,

Thai, and Vietnamese.

2) Experimental Setup: The evaluation is performed in the

framework of NIST LRE [23]. The detection task is done for

each language and the closed-set pooled equal error rate (EER)

and minimum average cost (Cavg) [23] are used as performance

measures. We use diagonal GMM as the classifiers to validate

the performance of the proposed feature vectors. Each language

is modeled as a GMM, with 256 mixture components in prelim-

inary experiments and with 512 mixture components in large

scale experiments. The GMMs are first trained via maximum

likelihood (ML) criteria with eight iterations, and then trained

via maximum mutual information (MMI) criteria [14] with 20

iterations.

Fig. 9. TFC feature dimension� � ��, LRE03, 1/20 training, 30-s test.

Fig. 10. TFC feature dimension� � ��, LRE03, 1/20 training, 30-s test.

B. TFC Feature Vector

In the TFC feature vector, the context width and feature

dimension are the control parameters. With a zigzag scan

(see Fig. 3), we create a triangular area of elements. We first fix

the dimension as 36, 45, and 55, corresponding to increasing

triangles, and vary the context width from 9 to 24 with step

size 3.

The results on LRE03 30 s duration segments with

training are illustrated in Figs. 9–11. From the results, we can

see that across feature dimensions, always gives the

best performance. With SDC feature vectors, the context width

for the optimized parameters is 21.

The optimized TFC and SDC have a similar context width,

which reveals that the discriminative information for different

languages may primarily lie in broad temporal segments.

Next, we fix the context width and vary the feature

dimensions from 36 to 78 (which corresponds to varying the

right side length of the triangular area from 8 to 12). The results

are shown in Fig. 12. From this figure, we can observe that when

, the TFC feature vector obtains best performance. This
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Fig. 11. TFC feature dimension� � ��, LRE03, 1/20 training, 30-s test.

Fig. 12. TFC feature context width� � ��, LRE03, 1/20 training, 30-s test.

value is also very similar to the SDC feature with dimension 56.

Through the above experiments, we obtained the optimized

parameters for the TFC feature vector as .

In the following experiments, we will use these values as the

default configuration.

After optimizing the parameters, we compare the TFC with

other common derived feature vectors. Features tested include

MFCC concatenated with delta and acceleration (labeled as

MFCC-D-A), MFCC concatenated with SDC (labeled as

MFCC-SDC), CTM (using the parameters labeled as DCT

7-6-21 in [21], which achieve the best result for LRE03 30

s test.) and TFC feature vectors. All the parameters and re-

sults are listed in Table I. From the results, we can see that

the MFCC-D-A, which uses a relatively short context and

lower dimensionality, results in higher EER and Cavg. The

MFCC-SDC, CTM, and TFC have broader context width and

higher dimension, their EERs and Cavgs are lower than that of

MFCC-D-A. The TFC feature vector has similar parameters to

MFCC-SDC and CTM, but outperforms them.

TABLE I
COMPARISON OF DIFFERENTIAL CEPSTRUM, SDC, CTM, AND TFC

FEATURE VECTORS, LRE03, 1/20 TRAINING, 30-s TEST

TABLE II
COMPARISON OF TFC, BDHLDA, AND GMM-BASED BDHLDA

FEATURE VECTORS, LRE03, 1/20 TRAINING, 30-s TEST

C. BDHLDA

We compare BDHLDA, GMM-based BDHLDA (labeled as

GBDHLDA), and TFC feature vectors on the LRE03 task. For

the TFC features, the optimized parameters are and

(so that the cepstrum matrix has and ,

with resulting dimension ). For BDHLDA, we treat

each language as a class and use the DCT matrix to initialize

the transform matrix. In order to give a fair comparison, we set

and . For th small problem

of BDHLDA, the number of useful dimensions is set as

.

The results are shown in Table II. We can see that the

BDHLDA is slightly better than TFC, suggesting that the

BDHLDA de-correlates better than the horizontal DCT. On

the other hand, the GMM-based BDHLDA gives additional

improvement compared with BDHLDA because its character-

istics better fit the true data distribution. Although GMM-based

BDHLDA has a higher computational load than BDHLDA, it

does give some additional performance gain.

D. Large Scale Experiments

In this section, we test the MFCC-SDC, TFC, and

GMM-based BDHLDA using the full training set. We in-

crease GMM mixture components to 512 and perform the

evaluation on LRE03 and LRE07 and test on 30-s, 10-s, and

3-s durations. For the GMM-based BDHLDA, we use the

equalized HLDA (EHLDA) [24] to balance the training data

of each language. Note that we only adjust the weight between

languages, while retaining the proportion of Gaussian com-

ponents within each language. The detection error trade-off

(DET) curves are showed in Figs. 13 and 14, and the EERs

and Cavgs are listed in Tables III and IV. We also provide the

results obtained by ML-trained GMMs for comparison. From

the results, we can see the consistent performance improvement

due to changing from SDC to TFC and to BDHLDA, especially
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Fig. 13. DET curves of SDC, TFC, and GMM-based BDHLDA feature vectors,
LRE03, full training.

Fig. 14. DET curves of SDC, TFC, and GMM-based BDHLDA feature vectors,
LRE07, full training.

for the 30-s duration segments. For LRE03, the Cavg decreased

from 1.54% to 1.36% and further to 1.31%, and for LRE07, the

Cavg decreased from 7.06% to 6.85% and further to 6.56%.

VI. CONCLUSION

In this paper, we have proposed two approaches to improve

the extensively used SDC feature vector for language recog-

nition. To do this, we have developed theoretically founded

methods for capturing information from the time–cepstrum

matrix. These methods include the TFC feature vector, based

on a horizontal DCT of the cepstrum matrix for de-correlation,

coupled with feature selection using zigzag scan order for

maximal information content. This initial idea is then extended

TABLE III
COMPARISON OF SDC, TFC, AND GMM-BASED BDHLDA

FEATURE VECTORS, LRE03, FULL TRAINING

TABLE IV
COMPARISON OF SDC, TFC, AND GMM-BASED BDHLDA

FEATURE VECTORS, LRE07, FULL TRAINING

from a feature de-correlation focus to a feature discriminability

focus by developing a BDHLDA algorithm, which is essentially

an HLDA on the entire cepstrum matrix with block diagonal

matrix constraints to give lower computational complexity. The

BDHLDA approach is finally extended to work in the GMM

model domain, using the TFC features internally to provide

computationally efficient implementation. Experiments on

NIST 2003 and 2007 LRE evaluation corpus show that the TFC

is more effective than the SDC and that the final GMM-based

BDHLDA is more effective than either SDC or TFC features.
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