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Time–Frequency Distributions
With Complex Argument

LJubǐsa Stankovic´, Senior Member, IEEE

Abstract—A distribution highly concentrated along the group
delay or the instantaneous frequency (IF) is presented. It has
been defined by introducing signal with a complex argument in
time–frequency (TF) analysis. Realization of a signal with com-
plex argument, using signal with a real argument, is described.
The reduced interference realization of the complex argument
distribution, in the case of multicomponent signals, is presented.
The proposed distribution has been used for the IF estimation.
It has been shown that the estimation could be improved with
respect to the Wigner distribution based one since the bias could
be significantly reduced with only a slight increase of the variance.
The theory is illustrated by examples.

Index Terms—Estimation, instantaneous frequency, non-
stationary signal analysis, signal analysis, spectral analysis,
time–frequency analysis, Wigner distribution.

I. INTRODUCTION

T IME–FREQUENCY (TF) analysis deals with signal rep-
resentations in the joint TF plane. The simplest TF repre-

sentation (the short-time Fourier transform) is a straightforward
extension of the Fourier transform obtained by introducing a
lag window that localizes the spectral content around the con-
sidered time instant. The energetic version of this transform
is called spectrogram. It belongs to the quadratic TF repre-
sentations. In order to improve concentration in the TF plane,
other quadratic distributions are introduced [11]. The Wigner
distribution (WD) originally defined in quantum mechanics is
commonly used as a basic (and the best concentrated signal
independent [12]) quadratic TF representation. In order to re-
duce undesired nonlinearity effects, manifesting themselves as
the cross-terms, various reduced interference distributions have
been introduced [11].

When the instantaneous frequency (IF) is a nonlinear
function of time, concentration of the signal’s TF represen-
tation could be improved by using higher order multidimen-
sional time-varying spectra, e.g., the Wigner higher order
spectra, and its dual form—the multitime Wigner distribu-
tions [14], [31]. Other approaches are based on the specific
representations for the assumed signal forms [2]–[6], [15],
[16], [18], [22]–[24]. Interesting higher order representa-
tions, from the practical realization standpoint, are those
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that can be reduced to the two-dimensional (2-D) TF plane.
This reduction can be achieved either by projections or by
slicing, resulting in, for example, the L-Wigner distributions
or the polynomial Wigner–Ville distributions [9], [10], [25],
[30], [31].

Based on the initial idea from [28], in this paper, we intro-
duce and develop the complex argument distributions. They are
interesting from thetheoretical point of viewsince they use com-
plex frequency argument (in the Laplace domain) and a cor-
respondingcomplex-lag argumentin the time domain. These
forms are able to produce almost completely concentrated rep-
resentations along the group delay or the IF. A method for the re-
alization of the signal with complex-valued argument, based on
the signal with real-valued argument, is presented. It uses the re-
lation between the Fourier transform and the Laplace transform
and the analytic extension (continuation) of the signal [20]. A
procedure for application of this distribution on the TF anal-
ysis of multicomponent signals is presented. It may produce
cross-terms reduced (or cross-terms free) forms of the com-
plex argument distribution. This procedure is also efficient in
reducing the noise influence on the TF representation of mono-
component noisy signals. The complex argument distribution,
as an IF estimator in the noisy signal cases, is analyzed. The es-
timator’s variance and bias are derived.

The paper is organized as follows. A TF representation highly
concentrated along the group delay is introduced in the next sec-
tion. Its definition is based on the complex-frequency and the
Laplace transforms. Properties and various forms of this rep-
resentation are given. Since the IF is practically more impor-
tant parameter than the group delay, dual representation to the
former is defined next. A notion dual to the complex-frequency
referred to as the “complex-time” or complex-lag argument is
used for this purpose. Since the signal is available along the real
time axis only, the tools for calculation of a complex-valued ar-
gument form of the signal are considered and proposed. Prop-
erties of the complex argument TF representation are studied at
the end of this section. Section III gives the discrete forms of the
proposed representations, including the one that could be con-
sidered to be a corrected form of the scaled WD. This interpreta-
tion is convenient for numerical realizations. Realization of the
proposed distributions for multicomponent signals is studied in
Section IV. Influence of noise to the IF estimation, based on the
complex argument TF representation, is the topic of Section V
and the Appendix. The theory is illustrated on examples with
monocomponent signals and IF estimation as well as on the TF
representation of multicomponent signals.

1053–587X/02$17.00 © 2002 IEEE
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II. COMPLEX ARGUMENT DISTRIBUTION:
DEFINITIONS AND PROPERTIES

A. Complex-Frequency Distribution

The Fourier transform pair of a signal is defined by

(1)

The WD may be written in terms of either the signal itself or its
Fourier transform

(2)

In the analysis that follows, we will first use the WD expressed
in terms of the signal’s Fourier transform since it will be con-
ceptually much easier to introduce a complex argument in this
domain.

Consider a signal whose Fourier transform is of the form

(3)

where is a slow varying function with respect to . For
these kinds of signals

(4)

where has been expanded into the Taylor series
around . The WD is concentrated along the group delay

with a spread function depending on the
higher (third, fifth, …) order derivatives of , i.e.,

(5)

where IFT denotes the inverse Fourier transform. For
and , the WD is completely con-

centrated along the group delay .
When the higher order derivatives exist, then the concentra-

tion can be improved by introducing a distribution with the com-
plex argument. In the frequency domain, the notion of complex
frequency is well established and studied in signals and systems,
within the Laplace transform framework [17].

Definition 1: The complex argument distribution is defined
as

(6)

Fig. 1. Complex argument distribution illustration in the Laplace transform
domain.

where is the Laplace transform of at

(7)

It converges for . Integration
in (6) is performed over the entire complex argument plane,
i.e., for all and ; see Fig. 1. Note that the Laplace transform

may not exist for some even if the associated
Fourier transform exists [17]. The convergence of (7) is guar-
anteed for any finite for absolute values-limited
and time-limited signals for .1 The problem
may appear in numerical calculation since (7), although being
finite, can assume large values for some. This is the reason
why a special attention will be paid to the discrete formulation
and calculation of the complex-argument terms in (6).

A complex-valued number may easily be raised to
the th power according to . A procedure for
raising the signal’s Laplace transform to theth power, avoiding
problems that may occur due to the specific form of the complex
function , will be discussed later.

Property: For time-limited signals for ,
we have

(8)

Proof: For the assumed time-limited signals, by substi-
tuting signal from (1) into (7), we get (8). It converges for
any finite and if .

Expression (8) can be understood as a relation between the
Fourier transform and the Laplace transform ,

for time-limited signals.
Property: The complex argument distribution of a signal

is concentrated along the group delay

1For the analysis of signals with a finite bandwidth and infinite duration in
time, the “complex-time” distribution could be used. It is introduced in Sec-
tion II-B as a tool for the instantaneous frequency estimation. Signals with in-
finite duration, in both the time and frequency domain, can be analyzed by the
complex argument distributions using a general mathematical concept of ana-
lytic extension [see the text after (20)in Section II-B].
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with the lowest spreading term being of the
fifth order, i.e.,

(9)

Proof: Expansion of the complex argument function
into a complex-valued Taylor series results in

(10)

By substituting this expression and (4) and (5) (with instead
of ) into , we get (9).

Relation (9) means that is a distribution with am-
plitude concentrated along the group delay with the lowest
disturbing term depending on the fifth derivative of the phase
function divided by a factor of . There-
fore, we will get a completely concentrated distribution for the
phase of up to the fourth-order polynomial function of time. The
first disturbing term is of the fifth order. It is divided by , as
compared with the same term in the spectrogram, or bywith
respect to the same term in the WD. The next disturbing term
is of the ninth order . Therefore, we may
expect a highly (almost ideally) concentrated distribution, along
the group delay, for any signal whose Fourier transform is of the
form .

Numerical realization of complex frequency distribution can
be simplified by using the following.

Property: For signals of the form , it
holds that

(11)
Proof: Consider

(12)

It may be concluded that

resulting in

(13)

producing exactly the term
, which is given by (10). This completes the proof of (11).

Note that the ratio is real-valued,
thus eliminating a possible phase ambiguity in calculating itsth
power.

Note: Based on the relation between and

(14)

which follows from (12), we can use only one of these terms in
calculation of (13).

Now, the complex-argument distribution can be written as

(15)

This form reduces the complexity and also gives the possibility
of avoiding the problem of cross-terms when one generalizes
the numerical approach to the multicomponent signals. Based
on (15), the complex argument distribution can be related to the
general quadratic class of distributions [11].

B. Complex-Lag Distribution

It has been shown that the concentration along thegroup
delay can be improved by using the complex-frequency
argument in the TF representation. In practice, the IF is more
commonly used signal parameter than the group delay. TF
representation producing improved concentration along the IF
can be introduced by replacing frequency with time since any
definition in frequency domain can be reintroduced in its dual
form. In order to define a representation with complex-valued
argument, we have to introduce the quantity that will be related
to the time axis in the same way as the complex frequency is
related to the frequency axis. This mathematical quantity will
be referred to as the “complex time” or complex-lag argument.

For an FM signal

(16)

TF representations may be written as

(17)

where
factor causing distribution spread around the IF;
lag-window’s Fourier transform;
constant.

According to the analysis in the Fourier domain, we can con-
clude that a significant improvement in concentration, along the
IF, can be achieved by defining a distribution with the com-
plex-lag argument [28], which is dual to (6).
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TABLE I
SPREAD FACTOR Q(t; �) IN SOME TIME-FREQUENCYDISTRIBUTIONS

Definition 2: The complex-lag distribution is defined by

(18)

The spread factor for this distribution, according to
(9), is

(19)

The dominant term in is of the fifth order. All existing
terms are significantly reduced as compared with the respec-
tive ones in the WD. Some distributions, which are interesting
from the point of view of concentration along the IF, are pre-
sented in Table I. The artifacts in the L-Wigner distribution
[30], [31], [34] are reduced with respect to the ones in the WD.
By increasing the distribution order L, we can additionally im-
prove its concentration. The polynomial Wigner–Ville distribu-
tion [7], [9], [10] produces complete concentration along the IF
for the order adjusted to the signal, whereas it is sensitive to the
fifth-order term (in this case a higher order polynomial Wigner
distribution should be used). Comparison of the complex-lag
distribution and the polynomial Wigner–Ville distribution, in-
cluding illustrative examples, is performed in [32] as well. In
order to improve the concentration property of the polynomial
WV distribution, its complex-lag counterpart is introduced in
[21].

Definition 3: The continuous form of the “complex-time”
signal

(20)

is dual to the Laplace transform of . Complex time is de-
noted by .

The signal with a “complex-time” argument could be calcu-
lated in the same way as the Laplace transform is calculated
from the Fourier transform. According to the analysis for the
complex-frequency, it is easy to conclude that converges
within the entire complex planeif is a bandlimited signal.

Signals with infinite duration in both time and frequency, in
general, do not satisfy the convergence conditions either for (7)

or for (20). Although these signals are not of practical interest
(since they can not be sampled and processed numerically),
they still can be treated analytically, within the framework of
complex argument distributions, but with an appropriate formal
mathematical interpretation of the complex argument function

as an analytic extension (continuation) of the
real-valued argument function [20]. This extension has al-
ready been implicitly used in the analysis of the distribution with
complex frequency [for writing the expression of
based on ]. For example, an analytic exten-
sion of the signal is

. By inserting this form into the definition of
, we get the expected result

.
Property: In analogy with (15), the complex-lag distribution

(18) of a signal can be considered to be a fre-
quency-scaled and corrected WD, where the correcting factor is
both signal and TF dependent.

Proof: The correcting term can be obtained by using time-
domain form of relations (12)–(15), which reads

(21)

and

(22)

The complex-lag distribution satisfies some other important
TF representation.

Properties:

1) The complex-lag distribution is realfor the frequency
modulated signals .

This property follows from



STANKOVIĆ: TIME-FREQUENCY DISTRIBUTIONS WITH COMPLEX ARGUMENT 479

2) For any signal, the complex-lag distribution satisfies the
time-marginal property

(23)

since

3) The unbiased energy condition

(24)
is satisfiedfor any signal. This property follows directly
from Property 2.

4) The frequency-marginal property is satisfied, provided
that the spread factor may be neglected.

5) If is a distribution of , then
is the distribution of .

This property is evident from the definition of
.

6) If is the complex-lag distribution of ,
then is the distribution of signal

.
For the signal , we have

, producing the above
property.

Generalization of 6:For the signal ,
the complex-lag distribution is of the form

for such that .
7) The complex-lag distribution of the scaled signal

is .

III. D ISCRETE FORMS OF THE COMPLEX

ARGUMENT DISTRIBUTIONS

Theoretically, numerical realization of the complex argument
distributions will be simple if we know the analytic expression
for the signal. However, in practical realizations, the values of

are available as a set of data along the real axis only.The
values of signal with complex argument are not known. They
must be determined from the values on the real-time axis. This
problem can be solved in the same way as the Laplace trans-
form is calculated from the Fourier transform. Note that it is
a mathematically well-studied problem known as an analytical
extension (continuation) of the real argument function [20].

A. -Transform Based Discrete Form of the Complex
Frequency Distribution

Consider a discrete-time signal of a finite duration .
The discrete Fourier transform pair reads

(25)

The values of complex argument discrete Fourier transform are
the samples of the-transform (see Fig. 2)

(26)

Therefore, the discrete complex frequency distribution can be
written as

(27)

B. Discrete Complex-Lag Forms

According to (18), the discrete pseudo form of the com-
plex-lag distribution is given by

(28)

where is a lag window. A constant factor of 4 is omitted
in (28). Formally, the interpretation of can be done in
the same way as in (26). However, since the complex argument
in time is not so common as the complex frequency, we will also
introduce an interpretation of in terms of the analytic
signal extension. It is known that the analytical extension of
function is , where is a complex argument.
This analytical extension is valid for . Consequently,
the following definition can be given.

Definition 4: An analytic extension of the signal is de-
fined as a sum of the analytic extensions of complex exponential
functions. It is of the form

(29)

corresponding to (7), (20), or (25) with the region of conver-
gence for a finite .

This is just a discrete dual form of (7). Expression (29)
can now be used for an efficient numerical realization [28].
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Fig.2. Illustrationofcomplex frequencydistribution in thez domain forp = 0.

If we multiply by , for
a given , then is obtained as

.
The presented form of could directly be used for

the realization of a complex-lag distribution. Real exponential
functions , for large , may be out of the
computer precision range, significantly worsening the results.
Thus, one should carefully use the above relations in the direct
numerical realization.

Note that (29) is a dual-transform, where the Fourier trans-
form samples play the role of a signal, and

is its -transform. For , we get the
complex-lag signal (see Fig. 2) in a dual form.

C. Discrete Complex-Lag Distribution as a Corrected Wigner
Distribution

According to (21), we have

(30)

For any complex number, we can write
, . For the com-

plex number, holds
for the signals with constant amplitude.

If the signal’s amplitude is time varying, we can omit the
term corresponding to in (30) since we have
introduced the complex-lag term in order to correct the phase
function only.

In this way, the complex-lag distribution can be calculated as
a corrected form of the WD (22)

(31)

This relation may be used for an efficient realization of a re-
duced interference form of the complex-lag distribution.

IV. REDUCED INTERFERENCESREALIZATION FOR

MULTICOMPONENT SIGNALS

Next, we will present a procedure that can be generalized for
application of the complex-lag distribution on the multicompo-
nent signals.

Consider a multicomponent signal

whose components are well separated in the frequency direction
for a given time instant . Then, the short-time Fourier trans-
form (STFT) of is of the form

(32)

The algorithm for cross-terms reduced realization of the com-
plex-lag distribution is presented in the sequel.

Algorithm:

1) Calculate the cross-terms reduced pseudo WD by using
the method [26], [27], [29], [31], which will be referred
to as the S-method

(33)

The value of is such that a few samples of the STFT
around frequency are taken for calculation. Details
about are given within the examples and the mentioned
references.

2) Calculate the correction term for the , based
on (30).

The cross-terms reduced version of is calcu-
lated in the following way.

a) For a given time instant, find the position
of the transform maximum

(34)

b) Consider the region
around as a signal component, and calcu-
late (35), as shown at the bottom of the page.
The maximal calculated value in the sums is
related to the expected component width. It is of

order. The cross-terms will be

(35)
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Fig. 3. TF representation of a signal with highly nonlinear instantaneous frequency. Spectrogram (first column), Wigner distribution (second column), S-method
(third column), complex-lag distribution (fourth column). Upper row: signal with a relatively high noise such that20 log(r=� ) = 10 dB. Lower row: signal with
a small noise such that20 log(r=� ) = 30 dB.

completely avoided if the distance between two
auto-terms is at least samples. The number of
terms can also be adjusted to each signal
component [29]. Then, the cross-term removal
will be guaranteed for all components whose
STFT do not overlap. This form of realization
will be discussed in the next section as well. It
is interesting to note that for the lag window of
the form , we have

.
c) Put for

, and repeat the procedure from a) to c)
times, where is the expected number of signal
components. If the number of componentsis not
known, then the following procedure can be used.
After the correction signal is calculated for the
first component and the region around the trans-
form maximum, which is used in
calculation of the correction component ,
is excluded, the maximum
in the remaining part of the frequency pointsis
determined. If this maximum is above an assumed
level for a signal component, then the second
correction component is calculated
for the frequency region around , where
the second maximum is found. The procedure
should be continued in this way until the value
of , within the remaining
frequency domain, is below the assumed level for
a signal component.

The correction signal is then formed as

(36)

3) Convolve results from 1) and 2), according to (31), in

(37)

The cross-terms reduced complex-lag distribution is
obtained for the given time instant.

V. INFLUENCE OFNOISE ON THEIF ESTIMATION

Consider the complex-lag distribution of a signal
corrupted by a Gaussian white noise [1],

(38)

where is defined, according to (30), by

In order to simplify the notation, assume that the signal is of
unity amplitude, when, according to (14), we can write

(39)

For small noise, the following approximation could be used:

(40)
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Fig. 4. IF estimation based on Wigner distribution (first row), S-method (second row), spectrogram (third row), complex lag distribution (fourth row).
First column:20 log(r=� ) = 30 dB. Second column:20 log(r=� ) = 10 dB. Third column:20 log(r=� u) = 3 dB. Fourth column:20 log(r=� ) = 0 dB.

where

Re

Re

(41)

is a phase deviation of the correction term caused by a small
noise.

The IF is estimated as

(42)

The estimation variance is (see the Appendix)

var

var

TABLE II
MEAN SQUARED ERROR OF THEINSTANTANEOUSFREQUENCYESTIMATION

BY USING VARIOUS DISTRIBUTIONS AND SIGNAL TO NOISERATIO

(43)

In order to keep the variance low, we have to keepas low as
possible. Thus, we can do either of the following.

1) Use the correction interval of
a constant width such that the signal component is within
this interval.

2) Assume, for each time instant, a level for the cor-
rection interval determination as
a fraction of the maximal STFT value at that instant

, where
is a constant [29]. Summation in (35) is done until

. For example,
means that, in the correction calculation (35), the algo-
rithm will take all STFT values around the considered
point , where is greater than 10%
of the maximal value for that component. Two extreme
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Fig. 5. TF representation of a multicomponent signal with highly nonlinear instantaneous frequency: Spectrogram (first column), Wigner distribution (second
column), S-method (third column), complex-lag distribution (fourth column). Upper row: noisy signal with20 log(r=� ) = 30 dB. Lower row: noisy signal with
20 log(r=� u) = 20 dB.

cases are a) For , the correction would not be done,
thus producing calculations corresponding to the spec-
trogram; and b) for , all points would be included,
corresponding to the WD. For FM signals, according to
the stationary principle [7], the auto-term form is defined
by the lag window form and the IF derivative [33]. Thus,
we can conclude that the auto-term transition along the
frequency axis is fast, meaning that the method will not
be too sensitive on the variations of parameter.

In both cases, the variance var could
be slightly increased with respect to the WD. Having in mind
that the bias is decreased for several orders of magnitude, we
can expect a significant IF estimation improvement.

VI. EXAMPLES

Example 1: Consider a noisy monocomponent signal

(44)

within the interval , with , and .
The STFT calculation is done according to

(45)

The sampling rate for the lag coordinate allows
maximal signal frequency . Note that the
maximal IF in the signal is . The window
of the form is used, with

. For the correction term , (35), which is the signal
is oversampled by a factor of 2

(46)

with . The correction interval,
which is defined by , and the number of terms in the

S-method calculation, was . Note that, due
to the fact that the lag windows are narrower than the whole
considered lag interval, this value forand means only a
few significant samples in the correction calculations. The same
sampling interval should be used for the WD calculation,
according to

(47)

The WD, the S-method, the spectrogram, and the complex-lag
distribution are shown in Fig. 3. Based on the distributions from
Fig. 3, the IF is estimated for various values of the noise standard
deviation: , , , and .
The estimated IF is shown in Fig. 4. We can see that although the
lag window is quite narrow, the bias in the WD and the spectro-
gram is significant and dominates in the estimation error. Vari-
ance in the complex-lag distribution is slightly higher, whereas
the bias is significantly lower, thus improving the overall estima-
tion. When the noise is increased, the number of instants where
the IF estimator completely misses the IF increases [13] in the
WD and the spectrogram. Therefore, although the variance of
the estimation should not be large, the misses degrade the per-
formance of these distributions.

Mean square errors calculated in 128 realizations are pre-
sented in Table II. The main difference between the WD and
the S-method comes from a small cross-term that starts to ap-
pear in sharp IF transition region. There, the S-method behavior
is between the behavior of the WD and the spectrogram. How-
ever, it is far from the complex-lag distribution performance in
all considered cases.
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Example 2: Multicomponent signal representation will be il-
lustrated next. Consider the signal

(48)

with all discretization parameters as in the first example, and
. According to the procedure for a multicomponent

signal realization, we get the representations shown in Fig. 5.
The case of real-valued signal

(49)
whose components intersect, is shown in Fig. 5, as well. Cross-
terms between positive and negative frequencies are removed in
the same way as other cross-terms.

VII. CONCLUSION

The complex argument distributions are proposed and ana-
lyzed. It has been shown that the inner artifacts in the repre-
sentation of signals with fast varying frequency or group delay
could be significantly reduced. A procedure for the reduced
interferences (noise and cross-terms) realization of the com-
plex-lag distribution is presented. The complex-lag distribu-
tion as an IF estimator is analyzed. The procedure for realiza-
tion, and its application in the IF estimation, is demonstrated
on numerical examples. Further research could be directed to-
ward a wider application of the complex-lag argument in other
TF, and not only TF, problems.

APPENDIX

IF ESTIMATION VARIANCE AND BIAS

The IF of at is estimated
by using the complex-lag distribution (38) and (42).

Assuming that all disturbances are small, then the lineariza-
tion of around the position where the distri-
bution maximum is detected (denoted by subscript 0) gives [34]

(50)

Here, we assume that all sources of errors are small; therefore,
a linear model with respect to each one of them separately can
be used. The possible sources of errors are

• the window form [first and second term in (50)];
• the bias caused by the signal form (third term);
• the noise (the last term).

1) The distribution first derivative of (38) at the stationary
point when there is no disturbance is

It is equal to zero for a symmetric window , where
is equal to the correct IF.

2) The second derivative of the distribution when there is no
signal or noise disturbance is

(51)

where

(52)

are the moments of the lag window.
3) The distribution derivative around the stationary point

when there is only a small disturbance caused by the
signal spread factor is of the form

(53)

since . This factor causes the IF
estimation bias. The notation means
at .

4) The last term is the distribution derivative variation
around the stationary point caused by a small noise.
Then, the component due to noise in , which is
denoted by , also
exists. This term has the form

(54)

It causes random variations of the estimated IF. The
higher order noise terms are neglected.

According to (50), (51), and (53),the biasis

(55)
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For an ideally concentrated distribution (producing the unbiased
IF estimator), the factor should be equal to zero (see
Table I).

Varianceof the IF estimate, according to (50), is

var

(56)

According to (41), and Re Re Re
Re , we have

Re

Re

Since the model assumes independent error analysis,
we may take that the signal itself is not disturbed by
the finite summation in (41), i.e., that it takes the form

. The analysis will be simplified
by assuming a rectangular window in the initial STFT that is
used for the calculation of signal with complex argument. Then,

, and
. With this assumption,

we get

Therefore, neglecting the error cross-covariance terms, the vari-
ance is obtained in form of (43).

For a rectangular window of the width in (38),
the first term is of order, whereas the second term is
of order; thus, we get

var (57)

The variance in complex-lag distribution is of the same order
as the variance in the WD, as far as

, since the frequency in (38) is scaled by a
factor of 2 [19]. This is the case, for example, for ,

, and . By using signal-dependent ,

as it is described in the last paragraphs of Section V, then
its value could be quite small, resulting in a small variance
and robust IF estimation. However, a direct calculation of the
complex argument distributions, corresponding to a full range
of , will result in a representation that is very
sensitive to additive noise.
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