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Time—Frequency Distributions
With Complex Argument

LJubiSa StankovicSenior Member, IEEE

Abstract—A distribution highly concentrated along the group that can be reduced to the two-dimensional (2-D) TF plane.
delay or the instantaneous frequency (IF) is presented. It has This reduction can be achieved either by projections or by
been defined by introducing signal with a complex argument in slicing, resulting in, for example, the L-Wigner distributions

time—frequency (TF) analysis. Realization of a signal with com- - . C
plex argument, using signal with a real argument, is described. or the polynomial Wigner-Ville distributions [9], [10], [25],

The reduced interference realization of the complex argument [30], [31].
distribution, in the case of multicomponent signals, is presented. ~ Based on the initial idea from [28], in this paper, we intro-

The proposed distribution has been used for the IF estimation. duce and devek)p the Comp|ex argument distributions. They are
It has been shown that the estimation could be improved with intaresting from théheoretical point of viewsince they use com-
respect to the Wigner distribution based one since the bias could . .
be significantly reduced with only a slight increase of the variance. plex frequency argument (in the_ Laplage domam_) and a cor-
The theory is illustrated by examples. respondingcomplex-lag argumenh the time domain. These
_— . forms are able to produce almost completely concentrated rep-
Index Terms—Estimation, instantaneous frequency, non- .
stationary signal analysis, signal analysis, spectral analysis, f€Sentations along the group delay or the IF. Amethod for the re-
time—frequency analysis, Wigner distribution. alization of the signal with complex-valued argument, based on
the signal with real-valued argument, is presented. It uses the re-
lation between the Fourier transform and the Laplace transform
and the analytic extension (continuation) of the signal [20]. A
IME-FREQUENCY (TF) analysis deals with signal repprocedure for application of this distribution on the TF anal-
resentations in the joint TF plane. The simplest TF reprgsis of multicomponent signals is presented. It may produce
sentation (the short-time Fourier transform) is aStraighthl’Wﬁ&Oss_terms reduced (or cross-terms free) forms of the com-
extension of the Fourier transform obtained by introducing @lex argument distribution. This procedure is also efficient in
lag window that localizes the spectral content around the ca@ducing the noise influence on the TF representation of mono-
sidered time instant. The energetic version of this tl’anSfOﬂE@mponent noisy Signa|s_ The Comp|ex argument distribution,
is called spectrogram. It belongs to the quadratic TF reprgs an IF estimator in the noisy signal cases, is analyzed. The es-
sentations. In order to improve concentration in the TF plarmnator’s variance and bias are derived.
other quadratic distributions are introduced [11] The Wigner The paper is Organized asfollows. ATF representation h|gh|y
distribution (WD) originally defined in quantum mechanics igoncentrated along the group delay is introduced in the next sec-
commonly used as a basic (and the best concentrated sigis. Its definition is based on the complex-frequency and the
independent [12]) quadratic TF representation. In order to neaplace transforms. Properties and various forms of this rep-
duce undesired nonlinearity effects, manifesting themselvesrasentation are given. Since the IF is practically more impor-
the cross-terms, various reduced interference distributions hgygt parameter than the group delay, dual representation to the
been introduced [11]. former is defined next. A notion dual to the complex-frequency
When the instantaneous frequency (IF) is a nonlinegsferred to as the “complex-time” or complex-lag argument is
function of time, concentration of the signal's TF represefysed for this purpose. Since the signal is available along the real
tation could be improved by using higher order multidimenime axis only, the tools for calculation of a complex-valued ar-
sional time-varying spectra, e.g., the Wigner higher ordg{iment form of the signal are considered and proposed. Prop-
spectra, and its dual form—the multitime Wigner distribugrties of the complex argument TF representation are studied at
tions [14], [31]. Other approaches are based on the specifie end of this section. Section Ill gives the discrete forms of the
representations for the assumed signal forms [2]-[6], [13)roposed representations, including the one that could be con-
[16], [18], [22]-[24]. Interesting higher order representagigered to be a corrected form of the scaled WD. This interpreta-
tions, from the practical realization standpoint, are thosg is convenient for numerical realizations. Realization of the
proposed distributions for multicomponent signals is studied in
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1. COMPLEX ARGUMENT DISTRIBUTION: Jjo Laplace domain
DEFINITIONS AND PROPERTIES X
A. Complex-Frequency Distribution ; 5=0-
The Fourier transform pair of a signa{t) is defined by
e
X(jw) = / z(t)e It dt 3| ja 812
1 R L 8 i
z(t)=— / X(jw)e?“t dw. (1) 0
2 J_ o
The WD may be written in terms of either the signal itself or its
Fourier transform
ad T T L Fig. 1. Complex argument distribution illustration in the Laplace transform
WD(t, w) = / z (t + 5) z* (t - 5) e I¥T dr domain.
1 [ . 0N i f 0N ey . ,
WD(t, w) = — X(|jw+7 3 X" jw—17 3 et df. where X (jw £ 6/4) is the Laplace transform cf(t) ats =
T oo +60/4 + jw
(2)
_In the analysis th_at follows, we will first use _the WD _expressed X <jw " Q) _ /Oo x(t)eqzet/4e—jwt dt. @)
in terms of the signal’s Fourier transform since it will be con- —c0

ceptually much easier to introduce a complex argument in this
domain. It converges for[”_ |z (t) exp(F6t/4)|dt < co. Integration
Consider a signal whose Fourier transform is of the form in (6) is performed over the entire complex argument plane,
L o) i.e., for allw and8; see Fig. 1. Note that the Laplace transform
X(jw) = Alw)e ®) X(jw + 6/4) may not exist for somé even if the associated

whereA(w) is a slow varying function with respect ig(w). For Fourier transform exists [17]. The convergence of (7) is guar-

these kinds of signals anteed for any finité for absolute values-limitetl:(¢)| < oo
and time-limited signals:(¢) = 0 for |¢| > ¢,,.2 The problem
X <jw ny Q) X+ <jw _j Q) may appear in numerical calculation since (7), although being
2 2 finite, can assume large values for sotheThis is the reason
~ A2(w)ea’(w(uw/?)—w(w—e/?)) why a special attention will be paid to the discrete formulation

o 42 (2 ()82 ()07 /(273012609 ()67 /(2550 4-1) and calculation of the complex-argument terms in (6).

= A(w)e A complex-valued number = re¢?¢ may easily be raised to
(4)  the jth power according ta? = e/™(")¢= A procedure for

where o(w + 6/2) has been expanded into the Taylor Serieré':lising the signal’s Laplace transform to ttke power, avoiding

aroundw. The WD is concentrated along the group dela%rob[ems thatmay oc_curdug to the specific form of the complex
nction f(z) = 27, will be discussed later.

ty(w) = —¢'(w) with a spread function depending on the ) T . o
higher (third, fifth, ...) order derivatives af(w), i.e.,  Froperty: For time-limited signalsr(f) = 0 for [f] > m,

WD(t, w) = AH(W)S(t + ¢' (@))% o . .
e o a5 (g (o x(jo-2) 22 [T xSl A=W)tn)
IFT, {ea(s@( ) (@)67 /(27804617 ()6 /(2 6!)+---)} (5) ATl Iy J 0/4+ i\ —w) :
(8)
where IFT denotes the inverse Fourier transform ¢éh(w) =
#)(w) j I = OhandA(w)dzl 4, the WD_'S CQOmpIete/Iy con- Proof: For the assumed time-limited signals, by substi-
centrated along the group e_wﬂ_)(t, w) . A%6(t + ¢ (). tuting signalz(¢) from (1) into (7), we get (8). It converges for
When the higher order derivatives exist, then the concentrgﬁy finited and+... if f°° IX(GA)]dA < oo
tion can be improved by introducing a distribution with the com- Expression (8) canikche) understood as a relation between the

plex argument. In the frgquency dome}in, _the'notion of complex ey transform¥ (j\) and the Laplace transforfi(s), s =
frequency is well established and studied in signals and systegn&,_ 6 /4 for time-limited signals.

Within.th(.a Laplace transform framework [.17].' . ) Property: The complex argument distribution of a signal
Definition 1: The complex argument distribution is deflnedX(jw) = Aef?@) s concentrated along the group delay

time, the “complex-time” distribution could be used. It is introduced in Sec-

as
1 [~ 0 0
CD{#, w) = — Xljw+i-)1X"jw—-7~-
( ’ ) 27 [m <‘1 N 4 J J 4 tion II-B as a tool for the instantaneous frequency estimation. Signals with in-
finite duration, in both the time and frequency domain, can be analyzed by the

« X7 <jw + Z) X7 <jw _ Z) It P (6) complex argument distributions using a general mathematical concept of ana-

) IFor the analysis of signals with a finite bandwidth and infinite duration in

lytic extension [see the text after (20)in Section II-B].
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t,(w) = —¢'(w) with the lowest spreading term being of theproducing exactly the teri(w, 6) = X7 (jw+6/4)X ~7 (jw—
fifth order, i.e., 6/4), which is given by (10). This completes the proof of (11).
Note that the ratid( (jw+(0/4))/ X (jw—(8/4)) is real-valued,
CD(t, w) = A26(t 4 ¢ (w))*: thus eliminating a possible phase ambiguity in calculatingtits
power.
Note: Based on the relation betweeti(jw — (6/4)) and
X(jw + (6/4))
Proof: Expansion of the complex argument function
¢(w % j6/4) into a complex-valued Taylor series results in

IFT, {78 @@ ) (g

A2

) 0
il O\ . @ ‘X<Jw——)‘=7 (14)
X! <‘7W+Z>X ! <‘7w— Z) 4 X <jw+§)
o (it /4) —p(w—i8/4)
o3 (1 ()8/2=2¢13) ()67 /(4784203 ()67 / (47 51)4---) (10) which follows from (12), we can use only one of these terms in
' calculation of (13).
Now, the complex-argument distribution can be written as

By substituting this expression and (4) and (5) (wifH instead

of 8/2) into CD(¢, w), we get (9). 1 e P P
Relation (9) means th&t D(¢, w) is a distribution with am- CD(¢, w) = —/ X <jw +7 —) X <jw -7 —)

plitude A? concentrated along the group delay with the lowest 2m 4 , 4

disturbing term depending on the fifth derivative of the phase x O(w, )’ df.  (15)

function divided by a factor o4*5! = 30545 ~ 10*. There-

fore, we will get a completely concentrated distribution for th&his form reduces the complexity and also gives the possibility

phase of up to the fourth-order polynomial function of time. Thef avoiding the problem of cross-terms when one generalizes

first disturbing term is of the fifth order. It is divided by*, as the numerical approach to the multicomponent signals. Based

compared with the same term in the spectrogram, @*oyith  on (15), the complex argument distribution can be related to the

respect to the same term in the WD. The next disturbing tegeneral quadratic class of distributions [11].

is of the ninth orde( (w)6°/(4%9!) — 0. Therefore, we may o

expect a highly (almostideally) concentrated distribution, aloryy COmPplex-Lag Distribution

the group delay, for any signal whose Fourier transform is of thelt has been shown that the concentration alonggtwip

ade o)

form X (jw) = Ael?), delay can be improved by using the complex-frequency
Numerical realization of complex frequency distribution caargument in the TF representation. In practice, the IF is more

be simplified by using the following. commonly used signal parameter than the group delay. TF
Property: For signals of the formX (jw) = Ae/¥), it representation producing improved concentration along the IF

holds that can be introduced by replacing frequency with time since any

definition in frequency domain can be reintroduced in its dual

X <jw + Q) x—J <jw—g> — o X Gwto/4)/ X (je-0/4)|  form. In order to define a representation with complex-valued

4 4 argument, we have to introduce the quantity that will be related

(11) to the time axis in the same way as the complex frequency is

related to the frequency axis. This mathematical quantity will

9 be referred to as the “complex time” or complex-lag argument.
(o)

Proof: Consider

Jw=x 1 For an FM signal

— AIP(@wFie/4) x(t) = red®®) (16)
— Acdelw)Ee (€)8/4—je P ()67 / (472)F( P («)8% /(47 3) -

(12) TF representations may be written as

It may be concluded that TFR(t,w) = 20218 (w—¢' (1)) %0 W (w) %o FT{CJ'QM}
(17)
e 0
X <jw + —)
4 _ e?(,c'(w)@/472<,c(3>(w)(-)g/(433!)+~~~ where
X <jw _ Q) Qt, ) factor_ causing dist_ribution spread around the IF;
4 W(w) lag-window’s Fourier transform;
. q constant.
resulting in

According to the analysis in the Fourier domain, we can con-
clude that a significant improvement in concentration, along the
IF, can be achieved by defining a distribution with the com-
(13) plex-lag argument [28], which is dual to (6).

o WX (Get8/4) /X (Guw—6/4)] _ Gj¢’(w)0/2—j2¢<3>(w)03/(433!)4—---
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TABLE |
SPREAD FACTOR Q(¢t, 7) IN SOME TIME-FREQUENCY DISTRIBUTIONS
I . Definition
Distribution Spread factor
STFT(t,w) = [7. w(r)x(t + 7)e~ 3 dr
STFT Qt,7) = ¢ (t)% + ¢(3)(t)’;—? + ¢(4)(t)_;; +
WD(t,w) = [°. w(rT)z( + )"t — T)e ?“dr
Wigner distribution Qt, 1) = 4)(3)(,:)5% + ¢(5)(t)2i4i—, ¥
. S LWD(t,w) = ff“oo ’l:;u(T)ZL(t + %)Sx*L(t —5p)e?Tdr
L-Wigner distribution Qt, 1) = ¢(3)(t)52;.—,5 + ¢(5)(t) e
PWD(t,w) = ["._w(r)z(t + 0.6757)x* (¢t — 0.6757)
Fourth order polynomial x z*(t + 0.857)z(t — 0. 857) —Jerdr
Wigner-Ville distribution Q(t,7) = —0.327¢0) (¢ t)% — 0. 3860 (t)f7_

Definition 2: The complex-lag distribution is defined by  or for (20). Although these signals are not of practical interest
(since they can not be sampled and processed numerically),
( T) " ( T) they still can be treated analytically, within the framework of
zlt+-)az" (t—— TR . .

4 4 complex argument distributions, but with an appropriate formal
mathematical interpretation of the complex argument function
x(s) = z(t + j7) as an analytic extension (continuation) of the
real-valued argument functics(¢) [20]. This extension has al-
The spread factof)(t, r) for this distribution, according to ready been implicitly used in the analysis of the distribution with

oo

OTD(t, w) = /

— o0

X a7 (t —|—J£) ol (t —J i) e¢T dr.  (18)

9), is complex frequency [for writing the expression®{jw + 6/4)
based onX (jw) = Ae’#(~)]. For example, an analytic exten-

Qt, 7) = ¢t ) +¢(9)( t) —— 7° +- (19) sion of the signal:(t) = exp(jat?) is 2(s) = exp(jas?) =
489! ' exp(ja(t + j7)%). By inserting this form into the definition of

The dominant term i§)(¢, ) is of the fifth order. All existing CTD(t, w), we getthe expected resall” D(f, w) = 2md(w—

terms are significantly reduced as compared with the respeg

tive ones in the WD. Some distributions, which are mterestlrﬁs) of a signake(t) — rei®(®) can be considered to be a fre-
from the point of view of concentration along the IF, are pre

sented in Table |. The artifacts in the L-Wigner d|str|but|oquency -scaled and corrected WD, where the correcting factor is

[30], [31], [34] are reduced with respect to the ones in the WSOth s;gg? | ?’22 -(I:-cl):rrdeecrt)|irg];(jtgrr1rtr1 can be obtained by using time-
By increasing the distribution order L, we can additionally i M4 0main form of relations (12)—(15), which reads
prove its concentration. The polynomial Wigner—Ville distribu-

Property: In analogy with (15), the complex-lag distribution

tion [7], [9], [10] produces complete concentration along the IF i N T

for the order adjusted to the signal, whereas it is sensitive to the (t,7)=a (t +2J —) (t —J Z)

fifth—_ord(_er term (in this case a higher o_rder polynomial Wigner — I Wlz(t—i(r /) /2(t+i(r/4)]

distribution should be used). Comparison of the complex-lag 097 /2326 (1) /(4930 - (21)

distribution and the polynomial Wigner—Ville distribution, in-
cluding illustrative examples, is performed in [32] as well. In
order to improve the concentration property of the polynomiand
WYV distribution, its complex-lag counterpart is introduced in

[21] . X . CTD(t, w) = / T (t + I) x* (t — Z) C(t, T)e—jw‘r dr
Definition 3: The continuous form of the “complex-time” oo 4 4
signal =2WD(t, 2w) *, FT {ct, 7)}. (22)
2(s) = z(t + j7) / X(jw)e ™ e dw  (20) The complex-lag distribution satisfies some other important
TF representation.

Properties:
1) The complex-lag distribution is redbr the frequency
modulated signals(t) = re/¢®),
This property follows from

is dual to the Laplace transform eft). Complex time is de-
noted bys = ¢ + jr.

The signal with a “complex-time” argument could be calcu-
lated in the same way as the Laplace transform is calculated

from the Fourier transform. According to the analysis for the B *

complex-frequency, it is easy to conclude thét) converges [ ( ) (t_Z) ! (t +J —)wl (t—l Z)}

within the entire complex plangif =(¢) is a bandlimited signal. [ 256/ (BT +56D (O /435 46 (8)(°/4591) 4 }
Signals with infinite duration in both time and frequenty

general, do not satisfy the convergence conditions either for (7) =R(t, —7).
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2) For any signa) the complex-lag distribution satisfies theA. z-Transform Based Discrete Form of the Complex
time-marginal property Frequency Distribution

Consider a discrete-time signa{n) of a finite duration/V.

1 [ ) The discrete Fourier transform pair reads
—/ CTD(, w)dw = |z(t)| (23)
21 J oo N/2-1
X(k) = Z x(n)eI2mk/N
since n=—N/2
1 N/2—1
g 2(n) = % > X (k)N (25)
x (t -J Z) . k=—N/2
——2< -1.
x (t + Z) r=0 The values of complex argument discrete Fourier transform are

the samples of the-transformX (z) (see Fig. 2)

3) The unbiased energy condition .
X(jw +0) = X(2)|z=exp2r(ipta)/N) =

N/2—1
%/ / CTD(t, w)dt dw = / lz(t)|? dt = E, Xpp—joy= Y a(n)e>ei0/N (26)
—oo J —oo —00 (24) n=—N/2
is satisfiedfor any signal This property follows directly ~ Therefore, the discrete complex frequency distribution can be
from Property 2. written as
4) The frequency-marginal property is satisfied, provided N/2-1
that the spread fact@p(¢, 7) may be neglected. CD(n, k) = 4 Z X(k+ ) X*(k — q)
5) If CTD(t, w) is a distribution ofz(t), thenCT D(t — N

T, w) is the distribution ofe(¢ — T).

This property is evident from the definition of
CTD(t, w).

6) If CTD(t, w) is the complex-lag distribution of(¢), B. Discrete Complex-Lag Forms

then CTD(t, w — wo) is the distribution of signal  according to (18), the discrete pseudo form of the com-
z(t) exp(jwot). plex-lag distribution is given by

For the signalexp(jwot), we have R(t, r) =
exp(jwo(t + 7/4) — jwo(t — 7/4) + wo(t + jr/4) — .
wo(t — j47/4)) = exp(jwor), producing the above CTD(n, k) = Z w(m)a(n +m)a*(n —m)

X X7 (k= jq)X I k + j)e/ 2/ (27)

N/2—1

property. m==—N/2

Generalization of 6:For the signalz(t) exp(ja(t)), x 27 (n+ jm)z! (n — jm)e I/ NAmk  (28)
the complex-lag distribution is of the for(iT’D(¢, w — ) ) ) )
o (1)) for a(t) such tha™®(t) = 0. wherew(m) is a lag window. A constant factor of 4 is omitted

(28). Formally, the interpretation @{n+jm) can be done in

e same way as in (26). However, since the complex argument

in time is not so common as the complex frequency, we will also

introduce an interpretation ef n £ jm) in terms of the analytic

signal extension. It is known that the analytical extension of

functione/®™ is ¢/*", wheren = n+jm is a complex argument.

This analytical extension is valid fdn| < oco. Consequently,

IIl. DISCRETE FORMS OF THE COMPLEX the following definition can be given.
ARGUMENT DISTRIBUTIONS Definition 4: An analytic extension of the signa(n) is de-
fined as a sum of the analytic extensions of complex exponential
Theoretically, numerical realization of the complex argumeffignctions. It is of the form

distributions will be simple if we know the analytic expression

for the signal. However, in practical realizations, the values of

z(n) are available as a set of data along the real axis ditig. 1

values of signal with complex argument are not known. They -N

must be determined from the values on the real-time &kis

problem can be solved in the same way as the Laplace trassrresponding to (7), (20), or (25) with the region of conver-

form is calculated from the Fourier transform. Note that it igence|n + jm| < oo for a finite N.

a mathematically well-studied problem known as an analytical This is just a discrete dual form of (7). Expression (29)

extension (continuation) of the real argument function [20]. can now be used for an efficient numerical realization [28].

7) The complex-lag distribution of the scaled signaiu
la]x(at) is CTD(at, w/a). t

x(n) =x(n+ jm)
Nj2—1

X(If)C_(Qﬁ/N)rnij(Qﬁ/N)nk (29)
k=—N/2
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This relation may be used for an efficient realization of a re-
duced interference form of the complex-lag distribution.

IV. REDUCED INTERFERENCESREALIZATION FOR
MULTICOMPONENT SIGNALS

Next, we will present a procedure that can be generalized for
application of the complex-lag distribution on the multicompo-

nent signals.
Consider a multicomponent signal
r
Fig.2. lllustration of complexfrequency distribution in thdomainforp = 0. x(n) = Z zp(n)
p=l1

If we multiply X (k) = FFT[x(n)] by exp(—2mmk/N), for whose components are well separated in the frequency direction

a givenm, then z(n + jm) is obtained asc(n + jm) = foragiventime instgnh. Then, the short-time Fourier trans-
IFFT[X (k) exp(—27mk/N)). form (STFT) ofz(n) is of the form
The p_res_ented form aof(n + jm) _com_Jld c_;lirectly be used for_ |STFTu(n, k)|? = | F T {w(m)a(n +m)}|?
the realization of a complex-lag distribution. Real exponential P
functionsexp(—2nmk/N), for large—mk, may be out of the _ Z \STFT,. (n, k)|2. (32)

computer precision range, significantly worsening the results.

Thus, one should carefully use the above relations in the direct , L

numerical realization. The algorl_thm fo_r crpss—terms rec_iuced realization of the com-
Note that (29) is a dual-transform, where the Fourier transplex'Iag distribution is presented in the sequel.

form samples y (k) = X (k)/N play the role of a signal, and  Al90rithm: _
1) Calculate the cross-terms reduced pseudo WD by using

p=1

N2l § the method [26], [27], [29], [31], which will be referred
@)= Y. Xn(k) to as the S-method
k=—N/2 I
is its z-transform. Fo = exp(j2n(n + jm)/N), we getthe SM(n, k)= > STFT.(n, k+1)STFT;(n, k—1). (33)
complex-lag signat:(n + jm) (see Fig. 2) in a dual form. l=—1.

) o _ The value ofL is such that a few samples of the STFT
C. Discrete Complex-Lag Distribution as a Corrected Wigner around frequencys are taken for calculation. Details

Distribution aboutL are given within the examples and the mentioned
According to (21), we have references.
. o ) 2) Calculate the correction term for ti&" D(n, k), based
c(n, m) =z (n+ jm)z’ (n — jm) on (30).
= nleln—ym)/z(ntim)] (30) The cross-terms reduced versionctfi, m) is calcu-

lated in the following way.

a) For a given time instant, find the positionk; (n)
of the transformST FT,.(n, k) maximum

For any complex number, we can write= |z| exp{j arg
{z}}, 27 = exp(jln|z|)exp(—arg{z}). For the com-
plex number,c(n, m) = (z(n — jm)/x(n + jm))? holds
|e(n, m)| = 1 for the signalsz(n) with constant amplitude.

If the signal’'s amplitude is time varying, we can omit the
term corresponding texp(— arg{z}) in (30) since we have
introduced the complex-lag term in order to correct the phase
function only.

In this way, the complex-lag distribution can be calculated as
a corrected form of the WD (22)

ki(n) = arg {IHIELX STFT,(n, k)} . (34)

b) Consider the regiofk;(n) — My, ki(n) + My]
aroundk;(n) as a signal component, and calcu-
late (35), as shown at the bottom of the page.
The maximal calculated value in the sums is
related to the expected component width. It is of

CTD(n, k) =2WD(n, k) =i, FT,,{c(n, m)}. (31) exp(2nmM, /N) order. The cross-terms will be

c(n,m) = w(m)cj In|zy (n—jm)/z1 (ntjim)|

My

Z STFT,(n, k + ky(n))ed @™/ N)n—jm)k
k=—M,,

M,

> STFTu(n, k + ky(n))ed@r/Nntimk
k=—M,,

=w(m)ed &/ NImkL ) exp | j1n

(39)
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Fig. 3. TF representation of a signal with highly nonlinear instantaneous frequency. Spectrogram (first column), Wigner distribution (sewon®eiethod
(third column), complex-lag distribution (fourth column). Upper row: signal with a relatively high noise sucttthat(r /o, ) = 10 dB. Lower row: signal with
a small noise such tha0log(r/c,) = 30 dB.

completely avoided if the distance between two 3) Convolve results from 1) and 2), according to (31), in
auto-terms is at leagt\/;, samples. The number of L

terms2M;, + 1 can also be adjusted to each signal OTD(n, k) = Z SM(n, k+0CF(n, k—1). (37)
component [29]. Then, the cross-term removal ’ = ’ ’

will be guaranteed for all components whose

STFT do not overlap. This form of realization The cross-terms reduced complex-lag distribution is
will be discussed in the next section as well. It ~ Obtained for the given time instant

is interesting to note that for the lag window of

the form w(m) = exp(—(m/M,)*), we have

w(im) = w(—jm) = w(m). V. INFLUENCE OFNOISE ON THEIF ESTIMATION

€) PUSTET,(n, k) = Ofor [kx(n) — My, ki(n) + Consider the complex-lag distribution of a signéh) =
M), and repeat the procedure from a) t0£) ..jé() corrupted by a Gaussian white noig@) [1],
times, whereP is the expected number of signal

components. If the number of compone#tss not

known, then the following procedure can be used N2l
After the correction signal is calculated for thel TP, w) = Z/ w(m)(s(n +m) +v(n +m))
m=—N/2

first component and the region around the trans- ) )
form STFT,(n, k) maximum, which is used in X (°(n —m) + 1" (n — m))e 2On M gmitem (3
calculation of the correction componentn, m),

is excluded, the maximumuax;, [STFZ;(n, k)| where®(n, m) is defined, according to (30), by

in the remaining part of the frequency poiritss

determined. If this maximum is above an assumed

level for a signal component, then the second O(n, m) = 3ln|z(n+ jm)/x(n — jm)|.
correction componentes(n, m) is calculated

for the frequency region arounélz(n), where |y order to simplify the notation, assume that the signal is of

the second maximum is found. The procedurgnity amplitude, when, according to (14), we can write
should be continued in this way until the value

of maxy |[STFT,(n, k)|, within the remaining

frequency domain, is below the assumed level for

a signal component. = In|s(n + jm) + v(n + jm)]|. (39)
The correction signal is then formed as

O(n, m) = ln|z(n + jm)|

For small noise, the following approximation could be used:

CF(n, k) = FT,, {Z ep(n, m)} . (36)

r=1

O(n, m) =Inl|s(n + jm)| + AB,(n, m) (40)
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Fig. 4. IF estimation based on Wigner distribution (first row), S-method (second row), spectrogram (third row), complex lag distribution @Qurth ro
First column:20log(r /o, ) = 30 dB. Second columr20log(r/o, ) = 10 dB. Third column20log(r/o,,u) = 3 dB. Fourth column20log(r/c,) = 0 dB.
where TABLE I
MEAN SQUARED ERROR OF THEINSTANTANEOUS FREQUENCY ESTIMATION
BY USING VARIOUS DISTRIBUTIONS AND SIGNAL TO NOISE RATIO
AB,(n, m)
. Mean squared error 0,=0031|0,=031]0,=0707 |0, =1
—Re v(n+jm) Wigner distribtution 26.69 28.96 12040 | 440.16
s(n+ jm) S-method 21.11 23.18 76.95 267.73
N + Iy Spectrogram 32.18 40.01 81.62 325.75
1)+ M , , ) Complex-lag distribution | 3.50 159 3406 | 54.28
S° [STFT(n, k)esm(mtimk/N]
k=ki(n)— M,
= . 2
Re Ky (n)+ M, 1 M, N/2—-1 )
. . N - —(2w/N)Ykm
S [STFT(n, k)eszrintimk/N] + % > > mw(m)e . (43)
k=Fkq (n)— My k==M; \m=-N/2

(41)
In order to keep the variance low, we have to kéépas low as
is a phase deviation of the correction term caused by a sm@dssible. Thus, we can do either of the following.

hoise.. 1) Use the correction interv@t, (n) — My, k1 (n) + My] of
The IF is estimated as a constant width such that the signal component is within
this interval.
Oi(n) = arg {mr?x CTD(n, w)}. (42) 2) Assume, for each time instamt, a level for the cor-

rection interval M, = Mj(n, k) determination as
a fraction of the maximal STFT value at that instant
R, = Mmax{|STFT,(n, k)|}, where0 < X < 1

is a constant [29]. Summation in (35) is done until
|STFT,(n, ki(n) + k)| = R,. For exampleA = 0.1

The estimation variance is (see the Appendix)

var{@;(n) — ¢'(t)}

= va{Aw} means that, in the correction calculation (35), the algo-
o2 N/2-1 rithm will take all STFT values around the considered

> v Z m2w?(m) point (n, k), where|STFT,(n, k)| is greater than 10%
8r=M; of the maximal value for that component. Two extreme

m=—N/2
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Fig. 5. TF representation of a multicomponent signal with highly nonlinear instantaneous frequency: Spectrogram (first column), Wignérd{seitord
column), S-method (third column), complex-lag distribution (fourth column). Upper row: noisy signat@itigz(r /o, ) = 30 dB. Lower row: noisy signal with
201og(r/o,u) = 20 dB.

cases are a) For = 1, the correction would not be done,S-method calculation, was = M; = 16. Note that, due
thus producing calculations corresponding to the speo-the fact that the lag windows are narrower than the whole
trogram; and b) fox = 0, all points would be included, considered lag interval, this value farand A4;, means only a
corresponding to the WD. For FM signals, according tfew significant samples in the correction calculations. The same
the stationary principle [7], the auto-term form is definedampling intervalA /2 should be used for the WD calculation,
by the lag window form and the IF derivative [33]. Thusaccording to

we can conclude that the auto-term transition along the

frequency axis is fast, meaning that the method will ng§, (5, £)

be too sensitive on the variations of parameter Ar Ar
In both cases, the variance Yat(n) — ¢'(¢)j;=na¢} could = FTm{w <71At +m 7) z* <71At —m 7) wc(m)} -
be slightly increased with respect to the WD. Having in mind (47)

that the bias is decreased for several orders of magnitude, we

can expect a significant IF estimation improvement.
The WD, the S-method, the spectrogram, and the complex-lag

distribution are shown in Fig. 3. Based on the distributions from
] ) ] Fig. 3, the IF is estimated for various values of the noise standard
Example 1: Consider a noisy monocomponent signal deviation:o, = 0.031, o, = 0.31, 5, = 0.707, ando, = 1.
(t) = exp [j(6 cos(nt) + 2 cos(3mt) + 2 cos(5mt))] + v(t) The e_stimat_ed IEis shownin Fig._4. We can see that although the
lag window is quite narrow, the bias in the WD and the spectro-
(44) o . . o .
gram is significant and dominates in the estimation error. Vari-
within the intervalt € [—1, 1], with At = 2/N, andN = 128. ance in the complex-lag distribution is slightly higher, whereas
The STFT calculation is done according to the bias is significantly lower, thus improving the overall estima-
tion. When the noise is increased, the number of instants where
STFT(n, k) = FIn{z(nAt +mAr)w(m)}. (45) the IF estimator completely misses the IF increases [13] in the
The sampling rate for the lag coordinater = 1/16 allows WD and the spectrogram. Therefore, although the variance of
maximal signal frequency,, = /A7 = 16x. Note that the the estimation should not be large, the misses degrade the per
maximal IF in the signal isnax{w;(¢)} = 11.3x. The window formance of these distributions.

VI. EXAMPLES

of the formw(m) = exp(—(mA7/T)*) is used, with2Z' = Mean square errors calculated in 128 realizations are pre-
1/2. For the correction term(n, m), (35), which is the signal sented in Table Il. The main difference between the WD and
is oversampled by a factor of 2 the S-method comes from a small cross-term that starts to ap-

pear in sharp IF transition region. There, the S-method behavior
is between the behavior of the WD and the spectrogram. How-
with w.(m) = exp(—(mA7/2/T)*). The correction interval, ever, it is far from the complex-lag distribution performance in
which is defined byAf,, and the number of termé in the all considered cases.

STEFT,.(n, k) = FT,,{z(nAt + mA7/2)w.(m)} (46)



484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

Example 2: Multicomponent signal representation willbe il- 1) The distribution first derivative of (38) at the stationary
lustrated next. Consider the signal point when there is no disturbance is
N/2—-1
2(t) = exp(§7.57(0.5¢% — 0.8¢2) — j8.5nt) 9CTD(n, ) _ S djrtmu(m).
Ow |0

+ exp(j(3 cos(mt) + cos(3nt)/2
+ cos(bnt)/2 + 8.57t)) +w(t)  (48)

m=—N/2

It is equal to zero for a symmetric window(r), where
&i(n) is equal to the correct IF.

with all discretization parameters as in the first example, and 2) The second derivative of the distribution when there is no
0, = 0.1. According to the procedure for a multicomponent  signal or noise disturbance is

signal realization, we get the representations shown in Fig. 5.

. N/2—-1
The case of real-valued signal 8*CTD
g gCTDn, w) Aw=— Z 16]7[*m*w(m)Aw
duw? o
m=—N/2
z(t) = cos [9cos(mt) + 3 cos(3nt) + 2 cos(5mt)] + v(t) = —16r2MyAw (51)
(49)
whose components intersect, is shown in Fig. 5, as well. Cross-  where
terms between positive and negative frequencies are removed in
the same way as other cross-terms. N2t
My= Y m*w(m), k=234, ... (52)
m=—N/2

VII. CONCLUSION are the moments of the lag window.

3) The distribution derivative around the stationary point
when there is only a small disturbance caused by the
signal spread facta@(n, m) is of the form

The complex argument distributions are proposed and ana
lyzed. It has been shown that the inner artifacts in the repre-
sentation of signals with fast varying frequency or group delay
could be significantly reduced. A procedure for the reduced

N/2—1
interferences (noise and cross-terms) realization of the com- 9CTD(n, w) 50— Z 4 2
=S VISR o — " 8 = mQ(n, myw(m)r
plex-lag distribution is presented. The complex-lag distribu- dw o e N2
tion as an IF estimator is analyzed. The procedure for realiza- i} 16M;
tion, and its application in the IF estimation, is demonstrated = (n+ny) ——=r? (53)

. . 5!
on numerical examples. Further research could be directed to-

ward a wider application of the complex-lag argument in other  sincec/@Q(™ ™) = 145Q(n, m). This factor causes the IF

TF, and not only TF, problems. estimation bias. The notatiaft® (n) meansd®¢(t)/dt?
att = nT.
4) The last term is the distribution derivative variation
APPENDIX around the stationary point caused by a small no{sg.
IF ESTIMATION VARIANCE AND BIAS Then, the component due to noisexin, m), which is

denoted bye—7220»(mm) = 1 _ j29A0,(n, m), also

The IF ofx(t) = rexp(jp(t)) + 1/(t) att = nT is estimated exists. This term has the form

by using the complex-lag distribution (38) and (42).
Assuming that all disturbances are small, then the Iineariza—aCTD(m w)

tion of 9CT D(n, w)/Ow around the position where the distri- I |05v
bution maximum is detected (denoted by subscript ) gives [34] Nj2—1
= Z Jdmaw(m)

9CTD(n, w) n 9?CTD(n, w) A m=—N/2

dw [0 Ow? [0 “ X [s(n+m)s*(n —m)j2A0,(n, m)

TD TD — *(n — — *(pn —
n CTD(n, w) Sa0 + 9CTD(n, w) 5,=0. (50) 's(ln +m)v (n —m)—v(n+m)s (n —m)]
dw 0 Ow |0 « e—i2¢ (mym (54)

Here, we assume that all sources of errors are small; therefore, It causes random variations of the estimated IF. The
a linear model with respect to each one of them separately can higher order noise terms are neglected.

be used. The possible sources of errors are According to (50), (51), and (53)he biasis
 the window form [first and second term in (50)]; . 1 Gy Mo ).y Mio
« the bias caused by the signal form (third term); bias(Aw) = M, <¢ (n) T ¢ (n) o1 T ) :

« the noise (the last term). (55)
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For anideally concentrated distribution (producing the unbiased it is described in the last paragraphs of Section V, then
IF estimator), the factof)(n, m) should be equal to zero (seeits value could be quite small, resulting in a small variance

Table I).
Varianceof the IF estimate, according to (50), is

2

> ‘BCTD(n, w) ;
(Aw) Ow |0
va W) =
9?CTD(n, w) 2
Ow? o
1 N/2-1  Nj2—-1
T 16riM2 2. 2.

m1=—N/2 ma=—N/2

x mymaw(my w(my) x e~I2¢ (M)mi—ms)

and robust IF estimation. However, a direct calculation of the
complex argument distributions, corresponding to a full range
of My
sensitive to additive noise.

N/2, will result in a representation that is very
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