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Abstract—Blind Source Separation techniques are widely used
in the field of wireless communication for a very long time
to extract signals of interest from a set of multiple signals
without training data. In this paper, we investigate the problem of
separation of human voice from a mixture of human voice and
sounds from different musical instruments. The human voice
may be a singing voice in a song or may be a part of some
news, broadcast by a channel with background music. This
paper proposes a generalized Short Time Fourier Transform
(STFT)-based technique, combined with filter bank to extract
vocals from background music. The main purpose is to design a
filter bank and to eliminate background aliasing errors with best
reconstruction conditions, having approximated scaling factors.
Stereo signals in time frequency domain are used in experiments.
The input stereo signals are processed in the form of frames,
and passed through the proposed STFT-based technique. The
output of the STFT-based technique is passed through the
filter bank to minimize the background aliasing errors. For
reconstruction, first an inverse STFT is applied and then the
signals are reconstructed by the OverLap Add method to get
the final output, containing vocals only. The experiments show
that the proposed approach performs better than the other state-
of-the-art approaches, in terms of Signal to Interference Ratio
(SIR) and Signal to Distortion Ratio (SDR), respectively.

Index Terms—Blind Source Separation, Short Time Fourier
Transform, OverLap Add, SIR, SDR.

I. INTRODUCTION

A
UDIO source separation is always considered as a chal-

lenging task with many applications, such as polyphonic

music separation, speech recognition, and automatic meeting

transcriptions. In such tasks, usually the channel characteristics

between sources are always unknown and this is called a Blind

Source Separation (BSS) problem [1]. As the sources and

underlying mixture operators are assumed to be unknown, the

term ”Blind” can easily be justified. Many techniques to solve

the BSS problem have been explored deeply in recent years to

generate unknown signal sources from known signal mixtures,

especially the speech mixtures [2], [3]. There are many popular

and effective algorithms, available for exploring such signal

mixtures, which include Principal Component Analysis (PCA),
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Singular Value Decomposition (SVD), Canonical Correlation

Analysis (CCA), Dependent Component Analysis (DCA),

Independent Component Analysis (ICA), Non-negative Matrix

Factorization (NMF), Low Complexity Coding and Decoding

(LCCD), Stationary Subspace Analysis (SSA) and Common

Spatial Pattern (CSP) [4]–[7]. These algorithms have also

been widely used in many applications, such as bio-medical

signal processing, radar signal processing, wireless communi-

cation, geographical analysis, Electroencephalography (EEG)

and Electrocardiogram (ECG) technologies [8], [9]. Based on

the separation procedures and mathematical representations,

the BSS algorithms can be classified into two general cate-

gories, namely linear and non-linear algorithms [10].

Time domain frequency representation has been widely used

as a tool to classify a mixture of signals into N components

(i.e., signals), and has applications in bio-medical processing,

radar processing, speech processing, and audio signal process-

ing [11]–[13]. For these applications, many convolution-based

BSS approaches target at continuous signals. However, these

approaches are computationally very expensive and demand

complicated hardware resources for implementation [14]. To

tackle the concerns, Short Time Fourier Transform (STFT)

has been used to determine the individual/local frequency

components and phase values, as the signal changes over time.

The STFT divides the whole signal into smaller segments

of equal lengths to calculate Fourier spectrum of individual

components in order to plot the changing spectrum as a

function of time [15], [16].

The STFT uses Time Window (TW) of fixed sizes in order

to obtain the local signals. After getting the local components,

Fourier Transform (FT) is applied for further analysis. This

analysis may produce poor results in temporal domain [17].

In order to minimize fluctuations from obtained results, many

adaptive algorithms are introduced in STFT domain [18]–

[22]. These adaptive algorithms can broadly be classified into

two categories, i.e. Chirp Rate (CR) class and Concentration

Measure (CM) class [23]–[25]. In the CM-based approaches,

specific parameters of input signal are examined in time fre-

quency domain to find out energy variation before applying the

STFT at selected parameters [26], [27]. Such techniques are

useful in finding optimum results at the cost of computational

complexity. On the other hand, the CR-based approaches use

wavelets and their derivation to calculate the optimum size of

the STFT window in order to find out signal characteristics

under the selected window with fixed sampling rate and less

computational complexity [28].

Although the CM-based approaches are computationally
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complex, they are still preferred due to their fine results.

Another main reason behind using the CM-based approaches

is that, in many cases, especially the speech and music signals,

various signal bands are very narrow and appear around

a certain range of frequencies [29]. Therefore, sometimes

it becomes possible to reduce computational complexity by

restricting the computation onto the narrow range in the

frequency domain, in order to extract spectral information.

However, our proposed approach is a combination of both CR

and CM-based techniques with the contributions as follows.

• Estimation of individual signal sources along with phase

and channel coefficients information using an STFT-

based technique

• Development of a filter bank to minimize the aliasing

error with a check of minimum computational cost and

stages

• Less stages of filter bank and fixed point STFT-based

processing to support real-time processing

The rest of this article is structured as follows. The Section

II describes the principles and notations used in the STFT.

The proposed technique is presented in Section III. Section

IV contains experimental setup and simulation results. Finally,

the article is concluded in Section V.

II. THEORETICAL DETAIL

In general, the blind source separation is used to extract the

original signal, x(n), from a perceived signal, x̄(n). Here, the

term “Blind” stresses on the fact that there is no prior informa-

tion available about the source signal. The BSS can fall into the

Semi-Blind category when making some assumptions on the

source signal’s characteristics. The perceived signal can be a

natural mixture or a studio mixture of different signals. Studio

mixtures can be linear or instantaneous, and they have no

guarantee to be like natural mixtures. However, noise is always

present in either type of mixtures, and becomes challenging

for a BSS method to deal with it. In this paper, we focus on

the linear studio mixtures. Independent Component Analysis

(ICA) is very popular in the BSS approaches. It exploits the

non-Gaussianity of a perceived signal to estimate the original

signal sources. Many BBS approaches have been proposed

using ICA in either the time or frequency domain [30]. The

approaches in the time domain are computationally expensive,

as they require multiple convolutions. The approaches in the

frequency domain are preferable because 1) they transform

convolutions into multiplications, and 2) signals have non-

Gaussian nature in the frequency domain, on which the STFT

is an ideal framework for ICA.

The STFT is usually used for the time frequency represen-

tations of local sections of a time varying signal with the help

of a TW function. Fig. 1 represents a sample of a time varying

signal with varying frequencies over time.

If the input signal is represented by x(t) (t ∈ (−∞,∞)),
then its STFT can be performed as shown in Eq.1.

STFT{x(t)}(m,ω) ≡ X(m,ω) =

∫ ∞

−∞

x(t)w(t−m)e−jωtdt,

(1)

Fig. 1: Sample Time Varying Signal

where w(t) represents the sliding window function, X(m,ω)
is the FT of x(t)w(t−m), m represents the time axis, and ω

represents the frequency axis [31].

In the case of discrete time processing, input data can be

chopped into chunks or frames. To reduce artifacts at the

boundaries, the frames are usually overlapped. The FT is

computed for each frame, resulting in the form of a complex

function. The results of the complex function are recorded into

a matrix, which records the phase and magnitude of each point

in both frequency and time domains. The discrete-time STFT

with signal x[n] and window w[n] can be expressed by the

following equation [31].

STFT{x[n]}(m,ω) ≡ X(m,ω) =

∞
∑

n=−∞

x[n]w[n−m]e−jωn,

(2)

where, both m and ω are discrete and quantized.

Size and shape of the TW play important roles in signal

analysis. The size of the TW shares a complicated relationship

with the time and frequency resolutions of the STFT. The

shorter the size of the TW is, the higher the time resolution

and the lower the frequency resolution are. On the other

hand, increasing the size of the TW increases the frequency

resolution but decreases the time resolution. This rule is known

as the Heisenberg’s uncertainty principle [32], [33].

There are different TW shapes available to handle various

needs in different situations. The overlapping sections, espe-

cially, the non-zero overlapping sections in the TW also play

important roles and require a careful consideration when their

sizes are chosen. The size of a small non-zero overlapping

section helps to detect smaller changes in adjacent data frames

at the cost of computational complexity. The size of a non-

zero overlapping section is also directly related to the size of

the STFT matrix [22]. Some sample TWs are shown in Fig.

2. The schematic diagrams for forward and inverse STFTs are

shown in Fig. 3.
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Fig. 2: Time Windows in Frequency Domain
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Fig. 3: Forward and Inverse STFTs

III. THE PROPOSED APPROACH

In the proposed approach, we first convert an input audio

signal into time frames. The obtained time frames are then

passed through a selected TW before the STFT is applied.

After the STFT is applied, the time frames are filtered through

a filter bank. The output of the filter bank is passed through

an inverse STFT module to generate an output signal. The

generated output signal is passed through an OverLap Add

(OLA) module to get vocals only. The details are described in

the following subsections.

A. Time Framing

For analyzing an audio signal, the most famous and suitable

approach is a short term analysis. The reason to perform

the short term analysis is because audio signals are usually

stable within a short duration of time, e.g., between 10ms to

30ms. Therefore, the audio signals are usually divided into

short time frames, although there may be some overlapping

in neighboring frames. We set the frame duration to be 20ms,

which is the average of 10ms and 30ms. If the duration value

is too large, time varying properties of audio signals may not

be properly obtained. On the other hand, if the duration value

is too small, valid acoustic features may not be extracted [34].
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In our proposed approach, we pay attention on the following

parameters: frame size, size of frame overlapping, frame step

and frame rate.

The frame size is the total number of sampling points in

a frame. If the frame size is represented by α, sampling

frequency by Ω, and frame duration by d, then the frame size

is calculated by the following equation.

α = Ω× d. (3)

Data set that we use in our approach is sampled at 16KHz.

Therefore, the frame size calculated by Eq. 3 is 320 sample

points in our approach.

The size of frame overlapping (i.e., f̄ ) is calculated by the

following equation.

f̄ =
α

2
. (4)

It is very common that neighboring frames are usually

identical. Overlapping of up to 1
2 of data is still common

between a frame and its neighboring frame. To save the

computational time, we set the overlapping data to be 2
3 of the

sample points. Therefore, the frame overlapping calculated by

Eq. 4 is 160 sample points in our approach.

The frame step (i.e., γ) is computed by the following

equation.

γ = α− f̄ . (5)

In our proposed approach, the frame step computed by Eq.

5 is 160 sample points.

The frame rate (i.e., β) is the total number of frames per

time unit and is computed by the following equation.

β =
Ω

γ
. (6)

The frame rate calculated by Eq. 6 is 100 frames per second

in our proposed approach.

B. Windowing

Window is a mathematical function in signal processing,

also known as apodization or tapering function, having zero

values outside a defined interval [35]. The applications of

Window Functions (WFs) can be found in spectral analysis,

filter design and beam-forming [36]. There are different classes

of WFs, such as B-spline, polynomial, Hamming, higher-

order generalized cosine, power of cosine, adjustable and

hybrid windows. Each class of WF contains sub-categories

as well [37]. The most commonly used class of WF is B-

spline, containing rectangular, triangular, and parzen windows.

We use Blackman-Harris Window (BHW), a sub-category of

polynomial windows, as a WF in our proposed approach.

The reason to choose BHW is because of more cosine terms

as compared to the other windows. The additional cosine

terms lead to more powerful computations and accurate results.

Furthermore, the additional cosine terms reduce the sizes of

side lobe areas, and hence ultimately control the leakage of

power. Because of smaller side lobe areas, the BHW has been

considered to be an ideal to design finite impulse response

filters [38].

The WF is used to eliminate the effects of signals before and

after a specified interval. When a time frame of an input signal

is multiplied with the WF, the effects of discontinuity at each

corner of the time frame can be minimized. This multiplication

of the WF is performed by modifying Eq. 2 to

Xi(mi, ωi) =

I
∑

i=1

N−1
∑

n=0

xi[n]w[n−mi]e
−jωin, (7)

where xi[n] represents a time frame of the input signal

x[n], mi represents the corresponding time, ωi represents the

corresponding frequency, i is the time frame index, Xi(mi, ωi)
is the STFT of the xi[n], I is the total number of time frames,

and N is maximum number of sampling points in a time frame

(i.e., the frame size α).

In this paper, w[n] is the BHW function and is represented

by the following equation [39]:

w[n] =a0 − a1 cos

(

2πn

N − 1

)

+ a2 cos

(

4πn

N − 1

)

− a3 cos

(

6πn

N − 1

)

.

(8)

For each n, the a0 is 0.35875, a1 is 0.48829, a2 is 0.14128,

and a3 is 0.01168 [39].

Fig. 4a shows an input audio signal, Fig. 4b shows a short

duration sample of the input audio signal, Fig. 4c shows a

sample BHW function, and Fig. 4d shows the output signal

as a result of the convolution process (shown in Eq. 7) of the

sample signal and the window function.

C. Enhanced Forward Short Time Fourier Transform

Compared Eq. 2 with the above time framing and window-

ing processes (Eq.7), it is obvious that both equations are the

same. Therefore, we can say that the output obtained after the

windowing is actually the output of the STFT. Furthermore, we

can improve the spectral information of the windowing output.

If the output of the time framing and windowing processes is

represented by Xi(mi, ωi), then the spectral resolution of the

STFT of the x[n] can be improved till N1 points by modifying

Eq. 7 as follows [40].

X1(m1, ω1) =

N1−1
∑

n1=0

x[n1 +N1m1]w[n1 −m1].e
−j2πn1ω1

N1 ,

(9)

where N1 (i.e., α) represents the total number of samples in

the time frame and n1 represents the index of samples in the

time frame.

The Eq. 9 can be used to produce finer resolution till N2

points as shown in the following equation.

X2(m2, ω2) =

N1−1N2−1
∑

n1=0,n2=0

x[n1 +N1n2 +N1N2m2]w[n2 −m2]

.e
−j2π(n1+N1n2)ω2

N1N2 ,

(10)
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(a) Original Audio Signal (b) Sample of Original Audio Signal

(c) Window Function (d) Output Signal

Fig. 4: Plots of Signals and Window

where ω2 = ω0 + N2ω1 and ω0 represents the finer spectral

components generated by N2 times wider time frame. More-

over, m2 ∈ {1, 2, ...,M2}, where M2 = N2N3.

The N2-points STFT can be rearranged in terms of N1-

points as shown in the following equation.

X2(m2, ω2) =

N2−1
∑

n2=0

N1−1
∑

n1=0

x[n1 +N1n2m2]w[n1 −m2]

.e
−j2π(ω0+N2ω1)(n1+N1n2)

N1N2 ,

(11a)

X2(m2, ω2) =

N2−1
∑

n2=0

N1−1
∑

n1=0

x[n1 +N1n2m2]w[n1 −m2]

.e
−j2πω0n1

N1N2 .e
−j2πω0n2

N2 .e
−j2πω1n1

N1 .e−j2πω1n2 .

(11b)

Eq. 11b can also be seen as a two Dimensional Fast Fourier

Transform (2D-FFT) as shown in the following equation.

X2(m2, ω2) =

N2−1
∑

n2=0

N1−1
∑

n1=0

Q[n1, ω0].e
−j2πω1n1

N1

.e
−j2πω0n2

N2 ,

(12)

where

Q[n1, ω0] =x[n1 +N1n2m2]w[n1 −m2].e
−j2πω0n1

N1N2

.e−j2πω1n2 .
(13)

The relationship between X1(m1, ω1) and X2(m2, ω2) can

be derived by using the multiplication-convolution duality

property of the FT as shown in the following equation.

X2(m2, ω2) =

N2−1
∑

n2=0

[(N1−1
∑

n1=0

x[n1 +N1n2m2]w[n1 −m2]

.e
−j2πω1n1

N1

)

⊛

(N1−1
∑

n1=0

e
−j2πω0n1

N1N2 .e
−j2πω1n1

N1

)]

.e−j2πω1n2 ,

(14a)

X2(m2, ω2) =

N2−1
∑

n2=0

(

X1(m2, ω1)⊛H12(ω0, ω1)
)

.e−j2πω1n2 .

(14b)

D. Filter Bank

After applying STFT, we get STFT coefficients matrix. The

next step is to select and filter out certain STFT coefficients

from the STFT matrix. Time-frequency analysis is very pop-

ular in signal processing, which helps in analyzing a signal
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in both time and frequency domains, simultaneously. Filters

designed through time-frequency analysis help in eliminating

the unwanted components of a signal [41], [42]. To eliminate

the unwanted STFT coefficients, we construct a filter bank.

The filter bank mainly uses Wiener filters, proposed in [17].

The STFT matrix is processed through the filter bank in order

to keep the selected STFT coefficients and making rest of the

coefficients zero.

The filter bank consists of two independent modules. The

first module is based on panning while the second module is

based on inter-channel phase difference. Panning is a process

to distribute an audio monotonic signal into two or multiple

stereo channels. In recording and mixing, panning law is

widely used for this purpose [43]. The inter-channel phase

differencing is used to minimize the time or phase difference

between different channels of a recording [44]. It is possible

that the Pan-based module may leave noise, especially the

drum residuals and reverberations [45]. Therefore, the main

purpose of the inter-channel phase difference module is to

eliminate any left noise and reverberations by making phase

difference zero between the stereo channels.

E. Pan Filter

Mono signals are panned in both channels to form a stereo

mixture. The non-reverberated tracks do not show significant

overlapping and it is easier to define a range in order to select

their STFT coefficients. However, if the tracks are overlapping,

their coefficients may change in time and cannot be estimated

correctly, as the coefficients belong to either one source or the

other source in the mixture. Here, we assume that we are not

using such files in which stereo reverberation is added to one

mono track to form a stereo file. As voice is a pure mono

track present in an audio signal, therefore, we define a mask

in pan filter to select the STFT coefficients of this mono signal

only. In our proposed approach, we define the mask for the

pan filter, based on the following panning law,















∆L
i = cos

(

δπ
2

)

∆R
i = sin

(

δπ
2

)

δ = arctan
(

∆R
i

∆L
i

)

2
π

(15)

where δ is the value of pan knob and δ ∈ [0 1], L denotes

the left channel, R denotes the right channel, and i denotes

the sample index. As the range of the pan is between 0 and

1, the center of this range is 0.5. The mono signal voice is

always found around the central pan values; therefore, we set

the mask range of the pan filter to be from 0.4 to 0.6. This

defined mask passes those STFT coefficients that are within its

range, while setting other values to zero. The mask should be

defined very carefully. If one of its boundaries is near to zero,

it pans maximum values to the left channel while boundary

near one means maximum values panned to the right channel

[43].

F. Inter-Channel Phase Difference Filter

To further refine the output and to minimize the processing

overhead, the output generated by the pan filter is passed

through the Inter-Channel Phase Difference Filter (IPDF).

Sometimes, it is possible to have monotonic signals with

following types of channels:

• Pure stereo channels

• Channels with artificial stereo reverberation

• Identical channels

In the first two types, the phase spectrum of both channels

is different while in the third type, both channels contain

identical phase spectrum. If the phase spectrum is identical,

the phase difference computed by Discrete Fourier Transform

(DFT) will be zero, i.e.,

|Arg(DFT(L))−Arg(DFT(R))| = 0. (16)

In the first two types, the phase difference will always be

non-zero, i.e.,

|Arg(DFT(L))−Arg(DFT(R))| > 0. (17)

However, in the case of artificial stereo reverberation, some

DFT coefficients may have identical phases, which make it

easy to differentiate. Therefore, IPDF performs two tasks, i.e.,

firstly, classify the STFT coefficients as either pure stereo or

non/artificial stereo, and secondly, minimize the noise effect, if

any. In the case of pure non-stereo channels, only one channel

is targeted, which minimizes the computing load. In the case

of artificial stereo, it is treated just like pure stereo signal.

To minimize any remaining noise effect, we define a mask to

perform further filtering. The range of the mask is defined from

−π to +π. If the coefficients have the phase values around

the zero, then it can be assumed that the input signal is a

pure non-stereo track which is mirrored in both channels with

a constant ratio. If the phase values are not around zero, it

means that artificial reverberations have been introduced and

it is an artificial stereo track. This mask also eliminates all

those coefficients, having phases out of this range.

G. Signal Reconstruction

In this last step, first the inverse of filtered STFT coefficients

is calculated. The inverse procedure starts with the inverse

STFT of Xi(mi, ωi), i.e.,

xi[n] = STFT−1{Xi(mi, ωi)}. (18)

In the inverse STFT, we first multiply Xi[mi, ωi] with

e+jωit and then divide the result by 2π, in order to get back

the product of time frames (i.e., xi[n]) and window function

(i.e., w[n]), i.e.,

xi[n]w[n] 0 ≤ n ≤ N − 1. (19)

The final step is to add all the processed frames to get the

extracted vocal back. For this purpose, we use OverLap Add

(OLA) technique, which adds partially overlapped frames to-

gether. For this process, we use Eq. 19 with some modification,

i.e.,

y[n] =

I
∑

i=1

N−1
∑

n=0

xi[n]w[n−mi]. (20)
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Here we keep the window size the same as we previously

have used; otherwise reconstruction results will be different.

Due to multiple time frames, each time frame needs to be

convolved with the same BHW. In terms of different time

frames, the signal x[n] can be rewritten as

xi[n] =

{

x[n+ i(N − 1)], n = 0, 1, 2, ..., N − 1

0, Otherwise.
, (21)

x[n] =
∑

i

xi[n− i(N − 1)]. (22)

Based on Eq. 22, the Eq. 20 can be rewritten as

y[n] =

(

∑

i

xi[n− i(N − 1)]

)

w[n] =
∑

i

yi[n− i(N − 1)].

(23)

The entire procedure of the proposed approach as described

in the above subsections is summarized in Algorithm 1.

Algorithm 1: Proposed Algorithm

Input: x[n] - Input Signal

Output: y[n] - Extracted Vocal Signal/Data

Distribute x[n] into Xi[n]
where

x[n] =
∑I

i=1 Xi[n]
while True do

X̄i = Xi(n)w(n)
end

Calculate Forward STFT Xi[mi, ωi] using (9) to (14b)

while True do
¯̄Xi[mi, ωi] = PFB(Xi[mi, ωi])
Xi[mi, ωi] = IPDFB( ¯̄Xi[mi, ωi])

end

Calculate Inverse STFT xi[n] using (18)

Obtain y[n] via (23)

while 0 ≤ n ≤ N − 1 do
y[n] =

∑

i yi[n− i(N − 1)]
end

IV. EXPERIMENTAL SETUP

In this section, we evaluate the performance of our proposed

approach in two phases. The evaluation of the first and second

phases is performed based on the detection of the singing

vocal in a test audio sample and the extraction of singing

vocal from background music, respectively. The proposed

approach is evaluated on a publicly available data sets, i.e.,

TIMIT and MIR-1K [46]. As compared to the other publicly

available data sets, TIMIT and MIR-1K are basically designed

to extract singing vocals. There are almost 100 random mix-

tures of musical instruments. The mixtures also contain male-

female singing and speech voices, with 16KHz sampling

rate. The duration of samples ranges from 4 to 13 seconds.

These samples are mixtures of vocal and musical instruments

and recorded at Texas Instruments, Inc (TI), transcribed at

Massachusetts Institute of Technology (MIT) and verified by

National Institute of Standards and Technology (NIST). The

evaluation phases are illustrated in Fig. 5.

Fig. 5: Evaluation Phases

A. Performance Evaluation of Singing Vocal Detection

In this phase, we use twenty different samples from MIR-

1K and TIMIT data sets. The samples contain both male

and female voices with varying durations. In the selected

samples, the singing vocals and background music are mixed

at −5dB, 0dB, and 5dB Signal-to-Noise-Ratio (SNR). The

performance evaluation is based on a three-level accuracy,

i.e., Fair Detection (FD), Better Detection (BD) and Accurate

Detection (AD). The FD represents the accuracy percentage in

terms of frames, classified as vocal frames over all the sample

frames. The BD represents the accuracy percentage in terms

of frames, classified as vocal frames over all the FD classified

frames. The AD represents the overall accuracy percentage

in terms of frames, classified as vocal frames over all the

BD classified frames. To classify the frames as vocal and/or

non-vocal, the Viterbi algorithm [47] is modified and used

iteratively to produce the three-level accuracy.

Fig. 6 shows the performance of vocal detection. The

algorithm is evaluated for all selected samples. As shown

in Fig. 6, the accuracy level of detection increases with an

increased number of iterations of modified Viterbi algorithm.

Fig. 6: Accuracy Performance of Voice Detection
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In Fig. 6, the blue, red and green lines show the first,

second and third iterations, respectively. Here, we consider the

blue line as the performance of the original form of Viterbi

algorithm. It is very clear that the performance of classification

increases with the iterative approach. The experimental results

show that the iterative approach works better in the presence

of multiple musical instruments in the background.

B. Performance Evaluation of Singing Vocal Extraction

For singing vocal extraction, we choose frame size (i.e., α)

as 320 for a better perceived quality of the output sound. We

set hop size as α
4 . The BHW is used as the window function, as

it shows good performance with reduced spectral leakage. Fig.

7a shows a test sample, mixed with both music and singing

vocals while Fig. 7b shows the singing vocal extracted from

the selected test sample. In Fig. 7, the horizontal and vertical

axes represent time duration and amplitude of the selected test

sample, respectively. It can be seen clearly in Fig. 7, that the

maximum number of frequencies is omitted from the selected

test sample. The spectrograms of both channels of the selected

test sample and the output of the filter bank are shown in

Fig. 8. Fig. 8a and Fig. 8b show the spectrograms of the left

and right channels of the selected test sample, respectively.

Fig. 8c and Fig. 8d show the spectrograms of the left and

right channels, respectively, after passing through the pan filter.

Fig. 8e and Fig. 8f show the spectrograms of the left and

right channels, respectively, after passing through the IPDF.

The horizontal and vertical axes represent the total number of

frames and the frequency of the samples, respectively.

We measure Signal to Interference Ratio (SIR) and Signal

to Distortion Ratio (SDR) to evaluate the performance of our

proposed approach. Both SDR and SIR are quite similar. The

SDR measures the total amount of distortion, introduced to the

original signal by both interfering signals and the processing

algorithms while the SIR focuses on distortions, introduced by

interfering signals only. For input signal x[n], the total relative

distortion (i.e., D) can be measured by the following equation.

D
∆
=

‖x̂[n]‖2− | 〈x̂[n], x[n]
‖x[n]‖ 〉 |

2

| 〈x̂[n], x[n]
‖x[n]‖ 〉 |

2
, (24)

x̂[n] =

〈

x̂[n],
x[n]

‖x[n]‖

〉

x[n]

‖x[n]‖
+ e, (25)

where ‖.‖2 is the second norm, x̂[n] is the estimated signal,

D corresponds to the ratio of energy of two norms in the

decomposition and e is the total relative energy.

The e can be computed by the following equation.

e = ei + en + ea, (26)

where ei, en and ea are the relative energies of interference,

noise and artifacts, introduced in the source signal, respec-

tively.

The e can also be computed by the following equation.

‖e‖2 = ‖x̂[n]‖2 −

∣

∣

∣

∣

〈

x̂[n],
x[n]

‖x[n]‖

〉
∣

∣

∣

∣

2

. (27)

If the estimated signal is orthogonal to the original signal,

then ‖〈x̂[n], x[n]〉‖ → 0, which makes D → +∞. Thus, the

SDR can be computed by the following equation.

SDR
∆
= 10log10D

−1. (28)

The relative distortion due to the interference (i.e., Di) and

SIR can be estimated by the following equation.

Di
∆
=

‖ei|
2

∣

∣

∣

〈

x̂[n], x[n]
‖x[n]‖

〉∣

∣

∣

2 , (29)

SIR
∆
= 10log10D

−1
i . (30)

To compute performance measurements, such as the SIR

and SDR, we use BSS eval toolbox [49]. Table I summarizes

the computational results, based on the SIR and SDR. To test

the performance of our proposed approach, we use various

combinations of audio signals and music, e.g., human speech

mixed with trumpet, human singing voice mixed with trumpet,

etc. For a fair comparison, we select a BSS technique based on

the spatial covariance, presented in [48]. This targeted work

separates the original sound sources from a mixture of vocal

and music by using the spatial features, which is common

to our proposed approach. For completeness, we follow the

same test conditions, both for targeted and our proposed

approach. Columns two to five represent the values of SIR and

SDR, computed by comparing the output of the targeted and

proposed approaches, with the original sources, respectively.

The mixtures are also compared with the original sources for

a better baseline, as shown in sixth and seventh columns. A

significant increase in both the SIR and SDR indicates a better

performance. It is clearly shown in Table I that our proposed

approach outperforms the targeted approach by achieving a

higher increase in both the SIR and SDR values. In the last

two columns, only one of the sources, i.e., audio signal in

terms of speech or singing vocal or music only is compared

with the mixture at a time. As can be seen, our proposed

approach outperforms the simple comparison by showing a

significant improvement, both in the SIR and SDR values. For

different test samples, the performance comparisons between

the proposed approach and the approach presented in [48], in

terms of SIR and SDR values, are shown in Fig. 9a and Fig.

9b, respectively.

V. CONCLUSION

In this paper, we have dealt with the blind audio source

separation problem by proposing an approach to remove the

background music and leaving only foreground vocals in

the stereophonic audio signals using modified STFT. Sig-

nals have been observed in the time-frequency domain. The

TIMIT and MIR-1K data sets have been used for experi-

mental purpose and contain synthetically created mixtures of

songs. The evaluation has been performed using the SIR and

SDR metrics. We have also shown the performance of the

proposed approach on the original mixtures with significant

improvements. The proposed approach may show degraded

performance in situations where the musical instruments are
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(a) Input Stereo Signal (b) Output Stereo Signal

Fig. 7: Stereo Outputs

(a) Left Channel Spectrogram (b) Right Channel Spectrogram

(c) Left Channel Spectrogram After Panning (d) Right Channel Spectrogram After Panning

(e) Left Channel Spectrogram After Inter-Phase Difference (f) Right Channel Spectrogram After Inter-Phase Difference

Fig. 8: Spectrogram, Pann and Inter-Phase Difference
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Mixtures SIR [48] SDR [48] SIR (Proposed) SDR (Proposed) SIR (Mix) SDR (Mix)

Speech and Trumpet 16.22 7.56 21.09 9.47 7.98 and -4.71 7.98 and -4.71
Singing and Trumpet 13.85 5.22 16.44 8.59 -2.04 and 2.20 -2.05 and 2.19

Speech dB (Mean) 8.67 2.11 10.49 5.36 1.21 and -0.70 1.21 and -0.70
Music dB (Mean) 5.45 3.02 8.63 5.85 0.38 and 0.16 0.38 and 0.16
Singing and Cello 5.26 3.52 7.99 4.98 -3.00 -3.00

Speech and Bubbles 7.83 3.85 10.79 5.04 7.22 7.19

TABLE I: SIR and SDR Comparisons

(a) SIR Performance Graph

(b) SDR Performance Graph

Fig. 9: SIR and SDR Performance Graphs

mostly panned near the center, where the voice resides and

as a result, the background music may dominate the singing

vocal. In such a situation, there will be some interference

between the music and the voice, and the background music

cannot be removed completely. Future work needs to deal with

scenarios having maximum overlapping of vocals and music

or where the musical frequencies are dominating. Moreover,

the proposed approach needs to be tested with modifications

on test samples, having mixture of professional background

music and professional singer’s vocals.
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