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Time- Frequency Localization Operators: 
A Geometric Phase Space Approach 

INGRID DAUBECHIES 

Abstract -We define a set of operators which localize in both time and 
frequency. Tltese operators are similar to but different from the low-pass 
time-liting operators, the singular functions of which are the prolate 
spheroidal wave functions. Our construction differs from the usual ap 
proach in that we treat the time-frequency plane as one geometric whole 
(phase space) rather than as two separate spaces. For disk-shaped or 
ellipse-shaped domains in the time-frequency plane, the associated local- 
ization operators are remarkably simple. ”heir eigenfunctions are Hermite 
functions, and the corresponding eigenvalues are given by simple explicit 
formulas involving the incomplete gamma functions. 

I. INTRODUCTION 

PERATORS which localize in both time and 0 frequency are of interest for many applications in 
optics and signal analysis. More generally, the operators 
may localize in a phase space associated with two sets of 
complementary variables that may have more than one 
dimension, such as, e.g., position and spatial frequency. In 
many cases one can observe signals (time-dependent sig- 
nals or optical data) only within a certain frequency 
window W and during a limited time interval T (or, in the 
case of optical data, in a limited space interval). This 
implies that one effectively observes only 

LT, wf = QTPwf (1) 
where f is the original signal and where QT, P ,  are 
projection operators on the relevant intervals in, respec- 
tively, time and frequency, i.e., 

sin [ W( t - t’)] 
(P,f ) ( t )  = Jm dt’ f ( t ’1 . 

--m ~ ( t - t ’ )  

The operator L ,  , is effectively a phase space localization 
operator, i.e., it selects out of the signal f that part which 
is associated with the rectangle [ - T, TI X [ - W, W] in the 
time-frequency plane and filters out the rest. The singular 
functions of the operator L ,  ,, or equivalently, the eigen- 
functions of L ? , , L , ,  = PWQTPW, are the prolate 
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spheroidal wave functions. They have been extensively 
studied in a series of excellent papers by Slepian and 
Pollak [l], Landau and Pollak [2], [3], and Slepian [4], [5]. 
For a review, see [6], [7]. These functions are extremely 
useful in the discussion of optimal recovery of information 
from data restriction in the sense of (1) (see, e.g., [6], [SI). 

As eigenfunctions of a phase space localization operator, 
the prolate spheroidal wave functions can also be used to 
filter out noise from given (noisy) signals. Applications of 
this type can be found in [9]-[ll]. 

Time-frequency localization operators other than L ,  , 
are sometimes considered, in which QT and P ,  are re- 
placed by smoother versions. More explicitly, one may 
take 

where g is a smooth positive function centered around 
r = 0 and tending to zero for t + co. A similar change 
may be made in P,. In optics, for instance, this change 
corresponds to a nonuniform illumination of the object 
[12], [13]. The resulting operators eT, , = QTp,, and the 
associated singular values and singular vectors can again 
be used in the recovery and in the filtering of signals (see, 

The same kind of analysis can of course be done in more 
than one dimension. See [4] for a study of the opera- 
tor L , ,  in the case where the two conjugated variables 
are both two-dimensional, and where the intervals 
[ - T, TI,[ - W, W] are replaced by disks. 

As stated, the operator L , ,  and its generalizations are 
operators which “project” onto a subset of phase space or, 
more generally, weight different parts of phase space dif- 
ferently. Clearly, this phase space (or time-frequency 
plane) picture is important in signal analysis. This is also 
illustrated by the use of the Wigner distributions in signal 
analysis. Originally, the Wigner distribution was intro- 
duced as a means to keep track of quantum mechanical 
phenomena in phase space. Precisely because the Wigner 
distribution is a phase space concept, it turns out to be 
useful also for signal analysis; by means of the Wigner 
distribution one can convert &y time-dependent signal 
into a detailed representation in the time-frequency plane. 
See [14] for an example of this kind of analysis applied to 
the study of characteristics of loudspeakers. 

We propose here a family of operators, different from 
LT, , and its natural generalizations, which also localize in 

e%., WI, [131). 
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the time-frequency plane or, more generally, in phase 
space. Their generalization to more than one dimension is 
straightforward. The construction of these operators in- 
volves the so-called "coherent states." This terminology 
was coined in a quantum optics context where the coherent 
states do indeed express coherence. They have since spilled 
over to many other areas in physics, where their meaning is 
often different. The quantum optics terminology has stuck, 
however. As we shall see, the coherent states are again 
linked closely to the phase space, and, as such, are a 
natural tool in the construction of phase space localization 
operators. Coherent states have been used extensively in 
theoretical physics and in many different applications; for 
a review see [15]. The remainder of this paper is organized 
as follows. 

In Section I1 we give a precise definition of coherent 
states, and we review some of their properties. In Section 
I11 we give our construction of phase space localization 
operators, using these coherent states. In Section IV we 
single out an important family of special cases. For these 
special operators the eigenvectors are the Hermite func- 
tions, and the eigenvalues are given by simple, explicit 
formulas. The nonuniform Gaussian filter (in which e,, P, 
are replaced by QT,pW,  as defined in (2) ,  where g is a 
Gaussian), discussed in, e.g., [13], [18], turns out to be a 
special case of our construction. Other examples corre- 
spond to a "projection" onto a bounded subset of phase 
space and are thus closer in spirit to the nonsmoothed 
LT,w itself, which singles out the subset [ -  T , T ] x  
[ - W,  W] in the time-frequency plane. The subsets of the 
time-frequency plane singled out by our localization oper- 
ators are disks; the corresponding eigenvalues are given by 
incomplete gamma functions (see Section IV). We also 
give a short discussion of the asymptotic behavior of the 
eigenvalues and eigenvectors of the localization operators 
constructed here. In Section V we show how our disk-type 
operators can be generalized to deal with elliptical and 
other subsets of phase space. 

11. COHERENT STATES 

Coherent states are L2 functions (i.e., square integrable 
functions) labeled by phase space points. Since we want to 
treat functions depending on n-dimensional Cartesian 
variables, the associated phase space is R " X R ". 

To construct a family of coherent states, one starts by 
choosing one vector (sometimes called the "fiducial 
vector"; see [15]) + in L2(R"). The associated coherent 
states are then generated from + by phase space transla- 
tions. More precisely, for any phase space point ( p ,  q )  E 

R "  XR", the associated coherent state +p,q is defined by 

The function may be chosen arbitrarily in 
L2(R"). A "canonical" choice for + is 

+'( x)  = v-"l4exp ( - x 2 / 2 ) .  (4) 
The resulting coherent states +;,q are often called canoni- 
cal coherent states in the physics literature [15] or Gabor 
wave functions in the engineering literature (after Gabor 
[16]). The +j,9 are localized, in phase space, around ( p ,  q ) ,  
i.e., 

j -  . . * j -  d"kk,l( +;, ( k )  12 = p,, j = 1,. . . , n 

where fdenotes the Fourier transform of f ,  

f ( k )  = ( 2 v ) - " / 2 / .  . . j d " r e - ' y x ) .  

Except when specified otherwise, all the integrals below 
will be n-dimensional; we shall replace 1 . . .1 d"x by 1 dx 
for brevity. 

The C$;,q also minimize the uncertainty relation in- 
equality: 

In t h s  sense the function C$;,9 is the L2 function which 
achteves, of all the L2 functions, the best phase space 
localization around the phase space point ( p ,  q).  

Perhaps the most important property of the coherent 
states is the "resolution of identity" [15]. This states that 
any function f E L2(R")  can be reconstructed easily from 
the scalar products 

In the one-dimensional case, n =1, ths  does indeed corre- 
spond to a translation by q in time (if x is taken to be 
time), and to a shift by p in frequency. 

The resolution of the identity operator as given by (5) is 
valid for any choice of + E L2(R"). However, if one makes 
the "canonical choice" + = Go, then (5) has the following 
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nice physical interpretation. For all phase space points 
( p ,  q ) ,  one first projects f onto the best localized function 
around ( p ,  q) ,  by means of the operation 

+;.9(+;,97f 1; 
integrating over all of phase space then regenerates f. 

Remarks 
1) Note that the map f -+ @ ( p ,  q )  = ( + p , q ,  f) sends a 

function of one variable into a function of two. This new 
function is square integrable, 

J~PJdSl@(PJdl2 = ( 2 n ) " j - ~ x l f ( x ) l 2  < 03 

(this immediately follows from (5)) .  Because there is re- 
dundancy in @, the range of this map is a subspace much 
smaller than L2(W2). For special choices of +, this sub- 
space has been explicitly characterized. For + = +', for 
instance, one finds that any such @ can be written in the 
form 

1 
@ ( P 3 4 ) = exp [ - 4 ( P 2  + 4 7 1  J /  ( P + iq ) 9 

where J /  is an entire analytic function on C". Conversely, 
any square integrable @ of this form lies in the range of 
the map f + @ (see [15] for more details, and for the 
original references). 

2) The choice + = +' is special in more than one respect. 
Since (+') = +', we have 

c_ 

- 
( Gp, q 1 ( k ) = e f p  ' 9+ - q ,  p ( k ), 

and 

This means that, except for an unimportant phast factor, 
the phase space pictures associated with f and f can be 
obtained from each other by a simple 90" rotation in phase 
space. 

111. CONSTRUCTING PHASE SPACE LOCALIZATION 
OPERATORS USING THE COHERENT STATES 

From the preceding interpretation of the "resolution of 
identity" for canonical coherent states, it is clear how one 
can build phase space localization 'operators using these 
canonical coherent states. Restricting the integral in (5) to 
a subset S of the phase space R " x W " results in a function 
P, f reconstructed from only those phase space projections 
of f corresponding to points in S ,  i.e., 

Cf = ( 2 n ) - " J d p J d q + ~ , q ( + ~ , 9 , f ) .  ( 6 )  
( P . 4 ) E S  

The operator P,, defined in (6),  is positive and bounded by 
one. There is no restriction on the shape of S,  apart from 
the fact that S should be measurable. This contrasts with 
the operators L , ,  discussed before, which focus on rect- 
angles [ - T,  TI x [ - W, W]. 

Note that the phase space cutoff defined by Ps is not 
"sharp," in the sense that the function P, f will have some 
phase space content outside the set S. T h s  is illustrated 
by the fact that at least for some ( p ' ,  q') 4 S ,  we have 
(c#$,,~,, P,f) # 0. The following lemma provides us with an 
upper bound on these inner products. 

1-€ 
Lemma: For any € between 0 and 1, one has 

1 Psf)~5€-"~211fllexP[ - ,dist((p,q),S)'  ? 

(7) 
where dist(( p ,  q) ,  S )  is the Euclidean distance, in phase 
space, between ( p ,  q )  and S:  

dis t ( (p ,q) ,  S ) ' =  inf [ ( p  - p ' ) 2 + ( q  - q')*] 
( P ' . 9 ' ) E S  

Proof: An easy calculation, using the definitions ( 3 )  
and (4), leads to the following expression for the inner 
product between canonical coherent states, 

- < (2n)-"/2r-n/2exp[ - - - d i ~ t ( ( p , q ) , S ) ~ ]  1 - €  
4 

X [ / dP ' /dq '  I( (Pj,,9,7 f ) 1'1 1/2 (by Cauchy-Schwarz) 

<c-'/=exp -- dist(( p , q ) ,  S)2]l/fll (by the resolution of identity ( 5 ) ) ,  
- [ lie 

which concludes the proof. 
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In particular, (7) implies that for dist (( p ,  q) ,  S )  
2@, 

. 

This shows that the "tail" of P,f outside S decays very 
fast. Note that such tails are unavoidable. It is well-known 
that for a bounded subset S of phase space, no "sharp" 
phase space filter for S exists. In the case of the prolate 
spheroidal wave functions, for instance, the operator 
L;, w, LT, = PwQTPw is sharp in the frequency variable 
but has a tail in the time variable behaving as r-'.  The 
converse is true, of course, for L ,  wL;, = QTPwQT. Our 
operators P, are not sharp in any phase space direction, 
but on the other hand, their tails decay as a Gaussian 
rather than as a negative power. By using a dilation 
argument (see also Section V) one can choose the tails to 
decay faster in one direction (at the expense of other 
directions), but they cannot be made to disappear al- 
toget her. 

All this can be generalized to operators which use a 
weight function F ( p , q )  on phase space rather than a 
cutoff. Thus one defines 

If F is positive, and bounded by one, then so is PF. 
The operators PF, P, are in fact integral operators, 

with 

(For P, it suffices to replace F ( p , q )  by the function 
F,( p ,  q )  = 1 if ( p ,  q )  E S ,  0 otherwise). 

If S is bounded, or if F is in L'(R" X R"), then the 
operator P,, respectively PF, is trace-class, i.e., its spectrum 
is then purely discrete, and the sum of the eigenvalues is 
finite. One finds indeed, for any orthonormal basis { G I }  of 
L 2 ( R  "), that 

1 

Since PF is positive, this implies that PF is trace-class if F 
is integrable. This means, in particular, that the eigenval- 
ues A, tend to zero for k + 00. It follows that all functions 

i.e., f = P,f, can be represented up to an error c as linear 
combinations of a finite number of eigenfunctions of P,; 
the "effective dimension," i.e., the number of eigenfunc- 
tions needed, here only depends on c. 

In general, the eigenfunctions of P,, PF will not be easy 
to construct, however. In the next section we shall restrict 
ourselves to an important family of special cases in whch 
this problem does not occur. 

IV. SPHERICAL SYMMETRY IN PHASE SPACE 

Throughout this section we shall restrict ourselves to 
functions F( p ,  q )  (or subsets S of phase space) which only 
depend on the n variables rJ' = p,? + q;, j = 1 , .  . . , n ,  i.e., 

~ ( p ,  q )  = F ( r ; ; .  - ,  r:) .  (9) 
For such functions F the eigenvectors and eigenvalues are 
given explicitly by the following theorem. 

Theorem: Let F be a function of phase space which 
depends only on r J ' = p : + q j ,  as in (9). Then 1) the 
eigenfunctions of PF are the n-dimensional Hermite func- 
tions 

n 

with [ k ]  = ( k , ;  . - ,  k , )  E N" and 

and 2) the corresponding eigenvalues 

' F H [ k ]  = ' [ k I H [ k ]  (10) 
are given by 

-1 

h [ k l  = ( k j ! )  Jrn ds, . . . /om ds, F (2s1,. . . ,2s,) 
0 

Proof: We shall prove (10) and (11) by showing that 
n 

( H [ k ] ,  ' F H [ k ' ] )  = ' [ k ]  n ' k , , k ;  (12) 
/ = I  

where a,, is the Kronecker-delta ( a k /  = 1 if k = 1, a,, = 0 
otherwise). Since the Hermite functions H [ k ]  are an ortho- 
normal basis in L2(R") ,  t h s  proves all our assertions. The 
only ingredient needed to prove (12) is the inner product 
(H,,,, +:,,). This can be calculated in many ways (e.g., by 
using the generating function for the Hermite polynomials). 
The result is 

- 1/2 

where r' = 0 2  + a2. Introducing the angles 8: defined bv 
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q, = r, cos e,, p, = r, sine,, we can rewrite t h s  as 

r n  

n 
. e - ( r : +  . .+r ,?) /4  n ( r . e - l k , e , ) .  

J - 1  

We can now use this to calculate (H,,,, PFH[hG']). Since F 
depends only on r:,. . ., r:, the e, integrations can be 
carried out immediately, and we find 

( H [ k ] ,  ' F H [ k ' ] )  

which concludes the proof. 

The above proof has the virtue of leading directly to an 
explicit expression, namely ( l l ) ,  for the eigenvalues A [ k l .  

The very special role of the Hermite functions here may, 
however, seem magical to readers less familiar with coher- 
ent states. The key to this magic is simple: we are dealing 
with operators commuting with a family of second-order 
partial differential operators. This is similar to the case of 
the prolate spheroidal wave functions. There it turned out 
to be crucial that the operator L , ,  commutes with a 
second-order differential operator; the discovery of this 
fact [ l ]  marked a breakthrough in the analysis of band- 
limited signals. Several generalizations of the original work 
on the prolate spheroidal wave functions have con- 
centrated on this commutation aspect; see, e.g., [4], [17], 
[ 181. All these generalizations have, however, concerned 
themselves only with operators of the type L , ,  or LT,, ,  
(as defined by (l) ,  (2)); in the present situation, as ex- 
plained above, our construction is based more on a geo- 
metric picture of phase space as a whole rather than on a 
picture of switching back and forth between two comple- 
mentary variables (e.g., time and frequency). The commut- 
ing second-order partial differential operators in our pre- 
sent situation are suggested naturally by t h s  geometric 
phase space picture. The following argument shows how. 
For the sake of simplicity we restrict ourselves to n = 1. (In 
more than one dimension the argument is entirely similar; 
it then has to be carried out in each of the n variables 
xl,. . . , x, ) .  In classical mechanics, the harmonic oscillator 
Hamiltonian leads to a time evolution which is represented 
by circles on phase space. More explicitly, the solution of 
the Hamilton-Jacobi equations associated with the Ham- 
iltonian h( p ,  q )  = $( p 2  + q2) ,  with initial conditions p ( 0 )  

= po, q(0) = qo, is given by 

( p ( t  ), q( t )) = ( pocos t - qo sin t ,  qocos t + po sin t ) (13) 

where we have taken units such that the harmonic oscilla- 
tor frequency o = 1. These phase space rotations occur in 
quantum mechanics as well. Expressed in differential 
equations, one finds that the solution to the equation 

(i.e., the quantum mechanics time evolution equation for 
the harmonic oscillator Hamiltonian; readers familiar with 
quantum mechanics will recognize that the ground state 
energy has been subtracted from the Hamiltonian, whch 
leads to a simpler expression for formula (14) below), with 
initial condition 

+ ( x , O )  = e-iPq/2+j,q(x) 

is given by 

(14) + (x, t )  = e - i P ( f ) q ( t ) / 2  0 
+ P u ) , q ( t A x ) ~  

where p ( t ) , q ( t )  are given by (13). This means that, in a 
coherent state picture, the time evolution generated by 
+( - ( a 2 / a x 2 ) +  x 2  - 1) corresponds to rotation in phase 
space. Given this geometric picture, it is natural that a 
construction using coherent states and following a rota- 
tionally symmetric procedure (that is essentially what (9) 
means) leads to operators which are invariant under the 
time evolution generated by the harmonic oscillator Ham- 
iltonian $( - (8  ' / a x 2 )  + x2 - 1). The invariance of PF un- 
der this time evolution is but another way of saying that 
PF and $( - ( a  2 / a x 2 )  + x 2  - 1) commute. 

In n dimensions ( n  f 1) one argues similarly that PF 
and +(( a ' / a x : )  + x/' - 1) commute, for all j = 1; . . , n. 
Since the common set of eigenvectors of these n second- 
order partial differential operators are the Hermite func- 
tions H [ k l ,  this explains the role of the Hermite functions 
as the eigenvectors of PF. One can of course also check 
these commutations by direct computation, using (8) and 
substituting (9) for F. In what follows, we shall have a 
closer look at two examples. For the sake of simplicity of 
notation, we again restrict ourselves to the case n = 1. 

A .  Gaussian Weights in Time and Frequency 

In this case, we take 

F ( P 4 )  = exp [ - 4 P 2 +  q2)1. 

This is clearly a special case of (9). Hence 

PFHk = A Hk 

with 

The integral kernel of PF given by (8) can be calculated 
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explicitly. One finds 

K F ( x ,  

1 
= -[7ra(a+1)] -l/’ 

2 

z a  Y )  - ~ 4(1+ a) 
1 

2 
= - [ 7ra( a + l)] -l/’ 

2 a + 1 1  a 
(x  - y)’- - 

4 a ( a + l )  2(1+ a) 

From this expression for the integral kernel KF it is easy 
to check that the operator PF can also be written as 

pF = (2a + 1) - LZL, 
with 

where 

y(a) ={a(. + 1)/(2a + 1) (17) 

P W  =mm. (18) 
In the form (16) the operator La has been studied previ- 
ously in [13]. The singular functions for La are indeed the 
Hermite functions, and the expression for the singular 
values of La given in [13], 

p k =  ( P / ( Y + / m ) ) ’ k + l ,  

does indeed lead to the eigenvalues (15) for PF, when y, p 
are replaced by their expressions (17), (18) in function 
of a. 

Note that La, and hence PF, might seem slightly less 
general than the Gaussian operators in [13], in which the 
parameters y and p are independent. The present ap- 
proach, with only one parameter (i.e., a), can, however, 
easily be extended to a two-parameter situation by the use 
of a dilation argument (see also Section V). The fact that 
the Hermite functions are the singular functions of La, as 
already pointed out in [13], thus finds a natural geometric 
explanation in our present approach. 

B. Localization on Disks in the Time - Frequency Plane 

In this case we revert to our original interpretation of 
the operator P,, corresponding to a projection onto the 
subset S of phase space. To fit into the rotational symme- 
try of the time-frequency plane, the function F, (defined 
by F,( p, q )  =1 if (p,  q )  E $0 if (p ,  q )  4 S) must satisfy 
(9). This condition holds in the special case where S is a 
disk in the time-frequency plane, centered around the 

origin, 

SR= { ( p , q )  E W’, p’ + 4 ’ 2  R’}. 

The operator PR = PsR, corresponding to the projection 
onto the disk SR in phase space, satisfies all the conditions 
of the theorem above. Its eigenfunctions are therefore the 
Hermite functions, independently of R, 

P R H k =  Xk(R)Hk. 

Applying formula (11) we find that the eigenvalues of PR 
are given by incomplete gamma functions [19] 

1 
k! Ak(R) = - y ( k + l ,  R2/2) 

10 15 

Fig. 1. EigenvduesX,(R),n=0,1,...,30forR=3, R - 5 , a n d  R - 7 .  

Fig. 1 shows a plot of X,(R), in function of k, for 
different values of R. For low values of R, the eigenvalues 
Xk(R) are close to one; near an R-dependent threshold 
value for k, they plunge to zero, and for higher values of k 
they stay close to zero. Using various asymptotic expan- 
sions for incomplete y-functions [19], [20] one can make 
these statements more precise. One finds the following. 

Asymptotic behavior of the Ak(R) (kfixed): 1) 
1 

--* 1 

Ak(R) - 1-LR2k2-ke- ‘*/’(l+ O( R-’)). 
R - + ~  k! 

(these can easily be deduced from (19b), (19~)). 
Threshold value for k, for large R: 2) 

Xk(R) 11/2-k1R’/2+0(1). (20) 
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3) Width of the “plunge” region: For all 6 E [0,1/2), 
define y, by 

Then 

# { k ;  C l <  h k ( R )  <I- C 2 )  

= (A, + Y€’)(R + YE, - A,> + 00)  (21) 

(where #I‘ denotes the number of elements of the set V ) .  
Formulas (20) and (21) follow from the following asymp- 
totic formula due to Tricomi [20]: 

1 1  

The behavior of the eigenvalues X k ( R ) ,  as described, is 
qualitatively very similar to that of the singular values of 
LT, , which correspond to the prolate spheroidal wave 
functions. Note also that the number of eigenvalues larger 
than 1/2, viz., R2/2, is exactly equal to the area of 
S,, vR2 ,  multiplied by the Nyquist density ( 2 ~ ) - ’ .  Thls is 
again similar to what happens for LT, , ,  where the number 
of singular values larger than 1 / 2  is given by 2TW/77 = 

( 2 ~ ) ~ ’  area of [ - T, TI X[  - W, W ] .  All these similarities 
are hardly surprising since the operators PR and L , ,  
both prescribe a “projection” onto a subset of phase space, 
in one case the disk S,  in the other the rectangle [ - T, TI 
X[  - W ,  W ] .  However, because of the dstinctly different 
construction, there are a few significant differences, and 
we end this section with a short discussion of them. 

First, note that the eigenfunctions of PR do not depend 
on R;  the R-dependence is completely contained in the 
eigenvalues. This is not the case for the prolate spheroidal 
wave functions associated with LT,w. It is well- 
known that, apart from the scaling factor (T/ W)l/’, the 
+ T ,  W, depend on T, W via the product TW, 

$ T ,  W, k ( ) = ( T/ )‘I4$@.@, k (mx ) *  

To make the fairest possible comparison with PR, one 
should choose units such that T =  W. (If T #  W,  one 
should compare L ,  , to a localization operator singling 
out an elliptical rather than a circular subset of phase 
space; see Section V.) In this case the scale factor 
(T/W)’/* = 1, but the singular functions $ T , T , k  still de- 
pend on T. 

A comparison between L , ,  and PR leads to the follow- 
ing heuristic asymptotic argument. Since the differences 
between the two operators LT,T and PR concern mainly 
boundary effects (difference in the tails, and the difference 
between a square and a circular boundary), one expects 
that the effect of these differences on the kth singular 
function, k fixed, would tend to disappear as R,  T tend to 
infinity. Since the eigenfunctions of PR do not depend on 

R ,  this means that one expects 

+ T , T , k , ~ m H k .  

It is well-known that t h s  is indeed the case [21]. 
Apart from being independent of R ,  the eigenfunctions 

Hk of PR also have the virtue of being extremely easy to 
calculate. As for any family of orthogonal polynomials, 
there exists a simple recursion formula, in t h s  case a 
three-term recursion, which can be used to calculate the 
H k ( x )  even for very large values of k. Similarly, the 
eigenvalues X k ( R )  are given by a very simple formula. In 
both theory and practice, the algorithms for calculating 
prolate spheroidal wave functions and their associated 
singular values are much more complicated. On the other 
hand, as has been proved in [2], [3], the prolate spheroidal 
wave functions are optimal for the analysis of bandlimited 
signals. However, for some applications the greater sim- 
plicity of calculation offered by PR (as contrasted with 
L ,  w) and the Hermite functions and associated eigenval- 
ues might outweigh the loss of optimality suffered from 
choosing a different set of basic analyzing functions. 

V. SOME GENERALIZATIONS 

A. Domains Not Centered Around the Origin 

point ( P O ,  qo )  in phase space other than the origm, say 
If the function F has spherical symmetry around a 

F ( P 4 )  = ~ ( ( P 1 - P ~ ) 2 + ( 4 1 - 4 1 0 ) 2 . . . . ,  

then the spectral analysis of PF is essentially the same, up 
to a shift in phase. The eigenvalues of PF are still given by 
formula (11) and are thus independent of po,qo. The 
eigenvectors of PF are phase space shifted Hermite func- 
tions 

B. Elliptical Rather than Spherical Symmetry 

The analysis of Section IV can be adapted to situations 
where ellipses rather than disks in time-frequency plane 
are singled out, as in chirped radar. This is done by using a 
simple dilation argument. Let us illustrate this for the case 
n =1,  and for the case where the set S is the ellipse 

Sa , ,=  { ( p , q ) E R 2 ; a 2 q 2 + a - 2 p 2 <  R 2 )  

where a # 0. 
In that case we introduce the dilation operator B,, 

( B , f ) ( x )  = m ( 4  

+(O,* ) (x )  = (B,+O)(X) =&r-’/‘eexp(-a2x2/2) 

Define also 

+i:q)(x) = e’px+(O*a)(x - 4). 
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One easily checks that REFERENCES 

Let us now define the phase space localization operator 
“projecting” onto Sa, by 

1 
p;f = - JdP j 4  +E;)( +E;), f ). 

2.rr ( P ,  4 )  E sa, R 

Since is centered, in phase space, around ( p ,  q) ,  the 
heuristical arguments of Section I1 still apply; Pg does 
describe a phase space locakation operator singling out 
the phase space subset Sa, R .  The “tails” associated to Pg 
(in the sense given to them in Section 11) are not isotropic 
in phase space, however. 

From (22) one finds that 

= P R f .  

Hence the eigenvalues of P i  are the same as those of PR, 
i.e., the A , ( R )  gven by (19), and the eigenvectors of Pg 
are dilated Hermite functions, 

H;(x) = ( B;~H,)(x), B ; ~  = B,,, 
= -Hk( 1 t). 
6 
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