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Time–Frequency Masking for Speech
Separation and Its Potential for
Hearing Aid Design

DeLiang Wang, PhD

“masking” here means weighting (filtering) the mix-
ture, which is different from the same term used in
psychoacoustics where it means blocking the target
sound by using acoustic interference. Figure 1 illus-
trates a typical T-F masking system for speech separa-
tion. A noisy speech signal first undergoes T-F
analysis, resulting in a T-F representation. A separa-
tion algorithm then operates on the representation,
and the outcome of the separation is a T-F mask,
which can be used in a synthesis step to convert sep-
arated speech and background noise from the T-F
representation back to the waveform representation.

This article is not intended to be a general topic
survey as typically found in the literature. Rather it is
written with focus on those studies that have at least
some promise for benefiting listeners with hearing
loss. As a result, more space is devoted to speech sep-
aration algorithms that use two or more microphones
(monaural separation is discussed relatively briefly)
and studies with human listeners.

The basic idea behind using T-F masking as a tech-
nique for sound separation is not new and has been
explored for decades. For example, in the field of speech
enhancement (Loizou, 2007), the classical Wiener filter
can be viewed as a T-F mask where each T-F unit (ele-
ment) of the mask represents the ratio of target energy to
mixture energy within the unit, and so can the commonly

It is well documented that listeners with hearing
loss have greater difficulty in understanding
speech with background noise. Modern hearing

aids improve the audibility of a speech signal and the
comfort of noisy speech. However, the ability of hear-
ing aids to improve the intelligibility of noisy speech
is rather limited (Dillon, 2001; Moore, 2007).
Because of the ever-present nature of background
noise, it is very important for hearing aid research to
develop speech separation methods that have the
potential to enhance speech intelligibility in noise.

This article intends to review speech separation
research under the heading of time–frequency (T-F)
masking and appraise the potential of this recent
development for hearing aid design. A T-F mask is
based on a T-F representation of the signal. Such a
representation can be obtained either by a short-
time Fourier transform (STFT) or a windowed audi-
tory filterbank in the form of a cochleagram (Wang
& Brown, 2006). It should be noted that the term
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used spectral subtraction technique. In addition, time-
frequency gain control in hearing aid processing (Dillon,
2001) and binaural systems that perform multiband spa-
tial separation (Bodden, 1993; Kollmeier, Peissig, &
Hohmann, 1993) may be treated as cases of T-F mask-
ing. The recent development of T-F masking differs,
however, in two main aspects. First, T-F masks often take
the values of 0 and 1, resulting in binary T-F masking for
separation. Second, algorithms for computing T-F masks
are typically of the kinds of computational auditory scene
analysis (CASA) or independent component analysis
(ICA). This review focuses on this recent development.
Broadly speaking, CASA aims at segregating sound
sources on the basis of perceptual principles of auditory
scene analysis (Bregman, 1990). ICA, on the other hand,
assumes that source signals are statistically independent,
and formulates the separation problem as that of estimat-
ing a demixing matrix through machine learning tech-
niques (Hyvärinen, Karhunen, & Oja, 2001).

This article is organized as follows. The next sec-
tion introduces the concept of binary T-F masking for
separation and traces its origins. The subsequent sec-
tion gives a short description on monaural separation
systems. This is followed by reviews of the T-F masking
algorithms using two or more microphones and a sec-
tion that considers perceptual studies that test intelligi-
bility or quality of separated speech produced by T-F
masks. In the penultimate section, we assess the poten-
tial of the reviewed studies for hearing aid application
that places limits on the processing complexity and
especially the processing delay. The final section dis-
cusses several issues and concludes the article.

Time–Frequency Masking
Concept and Its Origins

Although time-varying filters have long been used in
signal processing, current interest in T-F masking
originates from different considerations. A main

motivation behind the current interest is sound sep-
aration through binary masking in the T-F domain.

The use of a binary T-F mask for sound separation
can be traced back to a 1983 article by Lyon and a
1985 dissertation by Weintraub, which started the
field of computational auditory scene analysis or
CASA. From the outset, CASA adopts the cochlea-
gram representation, which is created by time win-
dowing responses from a filterbank representing the
frequency analysis of the cochlea, hence having 
the two dimensions of frequency and time (Wang &
Brown, 2006). CASA then attempts to segment 
the cochleagram of a mixture into contiguous T-F
regions, or segments, on the cochleagram and then
groups segments into streams corresponding to differ-
ent sound sources. In this framework, the result of the
grouping is naturally a binary T-F mask indicating
which parts of the input scene belong to the segre-
gated target. The clearest examples of using binary
masks include Brown and Cooke (1994) and Wang
and Brown (1999). Figure 2 illustrates a binary mask
output from the Wang and Brown model in response
to a mixture of speech and trill telephone. Figure 2A
shows the cochleagram of the mixture and Figure 2B
the binary mask as the output of segregation, where a
mask value of 1 indicates that the segregation system
considers that the acoustic energy in the correspon-
ding T-F unit contains mostly the target signal and
hence should be retained and the mask value of 0 indi-
cates that the energy in the corresponding unit should
be removed. With this output mask, the segregated
speech waveform can be easily constructed in a syn-
thesis step (see Figure 1) by applying the mask as a
binary weight matrix to the mixture in the T-F domain
(Weintraub, 1985; see also Wang & Brown, 2006).

Several interesting developments have been
made on binary T-F masks in the last several years.
First, Cooke, Green, Josifovsski, and Vizinho (2001)
proposed the missing data approach to robust auto-
matic speech recognition (ASR), where a binary T-F

Figure 1. Block diagram of a typical time–frequency (T-F) masking system for speech separation.
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mask plays a key role in informing the recognizer
which T-F units provide reliable data for target
speech recognition. To evaluate their approach, they
introduced the so-called a priori mask as one that is
supposed to provide a ceiling mask for recognition.
The a priori mask is 1 for a T-F unit if the mixture
energy is within 3 dB of the premixed target speech
energy, and it is 0 otherwise.

Second, Jourjine, Rickard, and Yilmaz (2000)
and Roweis (2001) observed that the energy of a
speech signal has a sparse distribution in time and
frequency (see also Nadas, Nahamoo, & Picheny,
1989), that is, significant energy occurs only in
small, isolated regions of a T-F representation. In
voiced speech, for example, speech energy is con-
centrated at frequencies that are multiples of the
fundamental frequency F0. As a result of sparsity, the
overlap between different speech signals is small
with a high-resolution T-F representation and can be
quantitatively measured (Yilmaz & Rickard, 2004).
In the extreme case of sparsity where different
sources are orthogonal, a binary mask is sufficient to
fully extract a single source from the mixture. In
practice, high-quality separation can be obtained as
long as orthogonality holds approximately.

Third, Wang and colleagues suggested the
notion of an ideal binary mask (IBM) as a major
computational goal of CASA (Hu & Wang, 2001;

Roman, Wang, & Brown, 2003; Wang, 2005), which
can then be used as an explicit criterion for evaluat-
ing a CASA system. Specifically, within T-F unit u(t,
f), let s(t, f) denote the target energy and n(t, f)
denote interference energy, both in dB. The ideal
binary mask is defined as

IBM(t, f) = {1   if s(t, f) − n(t, f) > LC
0   otherwise (1)

The threshold LC (standing for local signal-to-noise
ratio [SNR] criterion) in dB is typically chosen to be
0, giving a 0-dB SNR criterion, although other SNR
criteria can also be chosen. One thing special about
the 0-dB criterion is that, under certain conditions,
the IBM thus constructed gives the highest SNR
gain of all the binary masks treating clean target as
the signal (Ellis, 2006; Hu & Wang, 2004; Li &
Wang, in press). Figure 3 shows the IBM for a mix-
ture of two speech utterances, whose cochleagrams
are shown in the top two panels. The middle left
panel shows the cochleagram of the mixture with 0-
dB SNR. The IBM is given in the middle right panel.
The lower panel of the figure illustrates the masked
or IBM-segregated mixture.

The notion of the IBM as a CASA objective is
directly motivated by the auditory masking phenome-
non, which is a fundamental characteristic of auditory

Figure 2. Binary time–frequency mask. (A) Cochleagram of a mixture of speech and trill telephone. (B) Target binary mask as seg-
regation output, where white pixels denote 1 and black pixels denote 0.
Source: Reprinted from Wang and Brown (1999), with permission from IEEE Transactions on Neural Networks.
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perception. Auditory masking refers to the perceptual
effect that, roughly speaking, a louder sound renders a
weaker sound inaudible within a critical band (Moore,
2003). This justification based on auditory masking
should be contrasted with that based on signal sparsity.

In addition to SNR gain, the IBM has proven to
be highly effective for robust ASR (Cooke et al.,
2001; Roman et al., 2003) and human speech intel-
ligibility in noise (see section titled “Perceptual
Studies”). The term has since been used in the com-
munity (see, e.g., Li, Guan, Xu, & Liu, 2006; Yilmaz
& Rickard, 2004), although it does not always mean
the same thing (see “Perceptual Studies” section for
a different definition).

Monaural Time–Frequency
Masking Algorithms

Much of the work in CASA, where the binary T-F
masking concept is originated, is about monaural 
(single-microphone) processing (see Wang & Brown,
2006, for a comprehensive review). Monaural algo-
rithms typically make use of intrinsic sound properties
to perform separation, or auditory scene analysis. For
speech separation, commonly used properties include
harmonicity, onset and offset, amplitude and frequency
modulations, temporal continuity, and trained speech
models. As will be discussed in the section titled
“Assessment from the Hearing Aid Perspective”,

Figure 3. Ideal binary mask. Top left: Cochleagram of a target utterance (“Primitive tribes have an upbeat attitude”). Top right:
Cochleagram of an interfering utterance (“Only the best players enjoy popularity”). Middle left: Cochleagram of the mixture. Middle
right: Ideal binary mask. Bottom left: Masked mixture using the ideal binary mask. 
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although promising, monaural T-F masking algorithms
for speech separation are either too complex or per-
formance is too limited, to be directly applicable to
practical hearing prosthesis. As a result, I will describe
just a few representative systems to illustrate how T-F
masking is done with monaural mixtures and briefly
mention other systems.

One of the early CASA models for voiced speech
separation was proposed by Brown and Cooke (1994).
Their model starts with peripheral processing using a
gammatone filterbank (a gammatone filter has an
impulse response that is the product of a gamma
function and a tone) and a model for hair cell to audi-
tory nerve transduction, leading to a two-dimensional
(2-D) cochleagram. The model then computes a
number of auditory maps corresponding to frequency
modulation (FM), pitch, and onset/offset. The FM
map and the correlation of the correlogram (autocor-
relation) responses between neighboring filters are
then used to segment the cochleagram into a collec-
tion of segments. Grouping is based on pitch contour
similarity as well as common onset and offset. More
specifically, they compute a pitch contour for each
segment and then measure similarity between the
pitch contours of two segments that overlap in time.
In addition, similarity between two segments is
increased if they start or end at approximately the
same time. With the similarity measures for pitch
contours and common onsets and offsets between
pairs of segments, the Brown and Cooke system per-
forms scene analysis using an iterative procedure as
follows. The system starts a new stream by selecting
the longest ungrouped segment, and then evaluates
each segment not yet in any stream for potential
grouping. An ungrouped segment joins the current
stream only when it is similar enough to every seg-
ment in the stream. The grouping process repeats
until no segment is ungrouped in the auditory scene.
Note that each stream thus separated is a binary T-
F mask, which is then used to mask the original mix-
ture to produce a separated signal in waveform (see
previous section).

Partly motivated by the evidence that the audi-
tory system appears to use different mechanisms to
analyze resolved and unresolved harmonics, Hu and
Wang (2004, 2006) proposed a CASA model for
voiced speech separation that groups resolved and
unresolved harmonics in different ways. This model
employs the cochleagram representation, and per-
forms auditory segmentation on the basis of cross-
channel correlation and temporal continuity. To
estimate a pitch track corresponding to the target

speech, initial grouping is conducted using the dom-
inant pitch in each time frame. Given the target
pitch track, the system labels T-F units as to whether
they belong to the target speech using a periodicity
criterion in the low-frequency range and an ampli-
tude modulation (AM) criterion in the high-
frequency range. The AM criterion is used because
channels at high frequencies respond to multiple
harmonics (hence unresolved harmonics), resulting
in amplitude-modulated responses fluctuating at the
F0 rate of the speech source (Helmholtz, 1863).
With all T-F units labeled, a segment is grouped to
the target stream if the acoustic energy correspon-
ding to its T-F units labeled as the target exceeds
half of the total energy of the segment. Finally, each
target segment expands by iteratively grouping its
neighboring T-F units with the target label that do
not belong to any segment. The resulting target
stream is a binary mask. Hu and Wang explicitly esti-
mate the IBM with LC = 0 dB, and evaluate their
system performance according to an SNR metric
that measures the difference between a computed
binary mask and the IBM.

The grouping in the above two studies is based
on periodicity, and hence is applicable only to voiced
speech. Recently, Hu and Wang (2008) made the
first systematic effort to segregate unvoiced speech.
Their CASA system has two stages. In the segmen-
tation stage, the input mixture is segmented into T-
F regions based on a multiscale analysis of onsets
and offsets. In the grouping stage, segments are
grouped into the target speech or the background
using Bayesian classification of acoustic–phonetic
features. This system and their earlier system on
voiced speech segregation (Hu & Wang, 2004,
2006) together produce a binary mask for both
voiced speech and unvoiced speech that are sepa-
rated from background interference.

Generally speaking, monaural T-F masking 
systems for speech separation can be divided into
feature-based and model-based (Wang & Brown, 2006).
The aforementioned systems belong to the feature-
based category. Other feature-based systems include
those by Li et al. (2006), Deshmukh, Espy-Wilson,
and Carney (2007), and Pichevar and Rouat (2007).
Model-based systems use trained speech and noise
models to separate noisy speech (Ellis, 2006), and
include those by Roweis (2001), Radfar, Dansereau,
and Sayadiyan (2007), and Reddy and Raj (2007). In
Roweis’s system, for instance, each of the speech
sources in a mixture is modeled using a hidden
Markov model (HMM). During the separation
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process, the mixture is decomposed into the underly-
ing HMMs for individual sources using a factorization
technique, corresponding to binary T-F masking. The
feature- and model-based systems produce either
binary or ratio (soft) masks, and the IBM is often used
as a measure of ceiling performance.

Binaural and Array-Based
Time–Frequency Masking Algorithms

Whereas most of the monaural separation algorithms
are developed in the field of CASA, T-F masking tech-
niques using two or more microphones have been
developed in both CASA and ICA communities. As
noted in the section “Time–Frequency Masking
Concept and Its Origins”, T-F masking is based on two
different principles: the principle of auditory masking
and the principle of signal sparsity. Studies on two-
microphone source separation are usually based on
one, but not both, of the two principles, depending on
which community the studies fall into (CASA or ICA).
It is worth pointing out that, although the sparsity
principle applies to a range of important signals,
including speech and music, the auditory masking
principle is more general; for speech separation, it
applies whether or not the background is diffusely
(e.g., speech babble) or sparsely distributed (e.g.,
another speech utterance).

Basic Approach

The main approach for two-microphone (or binau-
ral) speech separation is established in two studies
by Roman et al. (2003) and Yilmaz and Rickard
(2004). Although the backgrounds of these two
studies are different, the proposed approaches have
similar features: they both employ characteristic
clustering in feature space to perform separation
and use the IBM as ground truth for performance
evaluation. Each is described below.

The segregation system of Roman et al. (2003) is
motivated by binaural processing of the human
auditory system. Their model starts with the binau-
ral input of a KEMAR dummy head that realistically
simulates the filtering process of the head, torso,
and external ear (Burkhard & Sachs, 1975). Then
binaural cues of interaural time difference (ITD)
and interaural intensity difference (IID) are
extracted within each corresponding pair of T-F
units in the left ear and right ear KEMAR responses.
They find that, within a narrow frequency band,
modifications to the relative energy of the target

source with respect to the interfering energy trigger
systematic changes of the binaural cues. This results
in characteristic clustering in the joint ITD–IID fea-
ture space for a given spatial configuration. The
objective of their system is to estimate the IBM at a
given ear, which amounts to binary classification in
the feature space. The classification is based on a
maximum a posteriori (MAP) decision rule, where
the likelihood is given by a nonparametric density
estimation method. To obtain best results, the train-
ing is performed for each frequency channel and
each spatial configuration, although training signals
need not be similar to test signals.

Roman et al. (2003) evaluated the performance
of their model for two- and three-source configura-
tions in anechoic conditions. Estimated binary
masks match the IBM very well. They also tested
their system using ASR and human speech intelligi-
bility, and reported large improvements (particularly
in low SNR conditions).

Unlike Roman et al. (2003) who used the binau-
ral input, Yilmaz and Rickard (2004) used the two-
microphone input that was obtained from two
omnidirectional microphones placed 1.75 cm apart.
Their system is based on the sparsity (orthogonality)
principle, and they suggested a measure of approxi-
mate orthogonality. As expected, sparsity decreases as
the number of speech signals comprising a mixture
increases or as the amount of reverberation increases.
For source separation, Yilmaz and Rickard proposed
an algorithm called DUET (degenerate unmixing esti-
mation technique) for underdetermined mixing condi-
tions where the number of microphones is smaller
than the number of sources. Similar to Roman et al.,
the key observation behind the DUET algorithm is the
characteristic clustering of pairs of phase and ampli-
tude differences between the corresponding T-F units
of the two microphone recordings. This is illustrated
in Figure 4, which plots a 2-D histogram along the
phase difference and amplitude difference dimen-
sions. Their objective is to separate all the sound
sources from the two mixtures. As a result, they use
an unsupervised clustering algorithm to extract indi-
vidual sources. Specifically, the training process
amounts to the generation of a 2-D histogram as
shown in Figure 4. The histogram is then smoothed,
and peaks are located that correspond to distinct
sources. Each peak is used to construct a binary T-F
mask. The binary mask can then be used to recover an
individual sound source from the mixture.

Yilmaz and Rickard (2004) tested their system
for separating synthetic mixtures of 6 and 10 speech
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sources. In both cases, they reported large SNR
gains although in the latter situation separated sources
become highly corrupted and barely intelligible. For
tests with actual recordings from two microphones,
separation performance is very good in anechoic con-
ditions, but drops significantly in reverberant condi-
tions even with three sources placed at very different
arrival angles.

In addition to the differences in motivation and
input format, there are several other distinctions
between the above two studies. The most important
one is the objective: Roman et al. (2003) aim to sep-
arate a target signal from the mixture whereas
Yilmaz and Rickard (2004) strive to separate all the
signals. The different objectives lead to diverging
separation algorithms: Roman et al. use a binary
classification algorithm whereas Yilmaz and Rickard
use a multicluster clustering algorithm. Another dif-
ference is that Roman et al. perform classification
within individual frequency bands and Yilmaz and
Rickard carry out clustering in all frequencies.
Roman et al. report that pooling all frequency bands
for classification gives worse performance, presum-
ably because their use of the head-related transfer
function (HRTF) which yields large interaural inten-
sity differences in the high-frequency range; such

differences are absent in the two-microphone setup
of Yilmaz and Rickard.

Variations

Aarabi and Shi (2004) presented a related T-F mask-
ing approach for speech enhancement. Different
from the two studies discussed above, the Aarabi
and Shi system uses only intermicrophone differ-
ences of arrival time, or phase differences. Similar to
Roman et al. (2003), they study the relationship
between SNR within each T-F unit and deviations
from the phase difference of the given target direc-
tion. Given the observed monotonic relationship,
the SNR can then be derived from the computed
phase deviations. Note that they do not address the
issue of sound localization; instead sound directions
are provided to their algorithm. This system does not
use a binary mask, but a ratio (or soft) mask—a
Wiener filter—that optimizes the output SNR. They
call it phase-error filter. They evaluate their system
on a digit recognition task, and report substantial
improvements over standard beamformers in both
anechoic and reverberant conditions. In addition,
they compare performing T-F masking on each
microphone separately and on both microphones
followed by a combination. Interestingly, the com-
bined processing does not give better results, even
performing a little worse than those at the better-
performing microphone.

Linh-Trung, Belouchrani, Abed-Meraim, and
Boashush (2005) studied spatial T-F distributions
and derived a clustering algorithm to separate sound
sources of different spatial origins. They analyze
the different properties of same-source cross-
correlations (between microphones) versus different-
source cross-correlations. These properties are then
used in their clustering algorithm which uses the
matrix analysis of different T-F distributions, and
the clustering amounts to binary T-F masking as
done in Yilmaz and Rickard (2004). However, their
evaluations are limited to synthetic frequency-
modulated tones.

Recognizing the importance of sparseness for
the success of T-F masking, Molla, Hirose, and
Minematsu (2006) proposed a signal decomposition
technique that leads to higher T-F resolutions than
STFT and cochleagram. Specifically, they suggested
the use of the so-called Hilbert spectrum, which can
be derived from empirical mode decomposition and
Hilbert transform. The derived Hilbert spectrum has
the property that its time resolution is the same as

Figure 4. Two-dimensional smoothed histogram. The his-
togram is generated from two 6-source mixtures, where α indi-
cates amplitude difference and δ indicates time difference.
Source: Reprinted from Yilmaz and Rickard (2004), with per-
mission from IEEE Transactions on Signal Processing.
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that of signal sampling and the frequency resolution
is limited only by the Nyquist frequency (hence the
same as the Fourier spectrum). Using this represen-
tation, source separation becomes identifying peaks
in the 2-D histogram of time and intensity differ-
ences. They compared their Hilbert spectrum repre-
sentation with STFT and found performance
improvements. They also report that a mixing model
based on HRTF gives better separation results than
the two-microphone model. However, their ad hoc
evaluation criterion makes it hard to decipher the
meaning of the reported performance.

Further Developments

The basic T-F masking approach described earlier has
been further developed in many subsequent studies.
The later studies are motivated by two primary con-
cerns: (a) the existence of signal distortion referred to
as musical noise resulting from a binary mask and (b)
the handling of room reverberation. The musical
noise is the residual noise after processing that
exhibits strong fluctuations in the time-frequency
domain (Cappe, 1994). It is called “musical noise”
because isolated noise energies resemble and sound
like narrowband tones. Although the musical noise
problem occurs and has been well studied in speech
enhancement algorithms, such as spectral subtrac-
tion, the use of binary gains in binary T-F masking
algorithms exacerbates the problem.

The following survey is organized depending on
whether T-F masking is derived along with ICA or
beamforming.

ICA and T-F masking. A main appeal of the T-F
masking concept is its ability to deal with underde-
termined blind source separation, which poses a
major difficulty for ICA. The standard formulation
of ICA requires that the number of microphones be
no smaller than the number of sources, an often
impractical constraint. On the other hand, impres-
sive separation can be obtained when ICA assump-
tions are met.

The idea of combining the ICA approach and T-
F masking was probably first published by Araki,
Makino, Blin, Mukai, and Sawada (2004) and
Kolossa and Orglmeister (2004). Araki et al. pro-
posed to first extract one source from a mixture by
using binary T-F masking and then separate the
remaining mixture by using frequency domain ICA.
Their system is designed to deal with the situation

with two microphones and three sources, an under-
determined situation. One can imagine that this
method should be able to extend to extract the first
N–M sources using T-F masking and the remaining
M sources using ICA, where N refers to the number
of sources and M the number of microphones. Their
evaluation shows that signal distortion is reduced,
but at the expense of reduced output SNR, com-
pared to the binary masking approach without ICA.
Kolossa and Orglmeister (2004) proposed a different
approach for combining T-F masking and ICA in the
determined case, but with reverberation. Their
method first applies ICA and then a binary T-F mask
to further suppress interference, which is called
nonlinear postprocessing. The binary mask is given by
comparing the two separated signals from ICA. They
observed an average SNR gain of more than 3 dB due
to the postprocessing.

A note of caution on the evaluation measure is
in order. Studies using binary masks often measure
their output SNR on the basis of only active T-F
units (those with the value of 1), where the amount
of target energy passed through by the same units is
considered as the signal and the amount of interfer-
ence passed through by such units is considered as
the noise (see, e.g., Kolossa & Orglmeister, 2004;
Wang & Brown, 1999; Yilmaz & Rickard, 2004).
Such a measure does not penalize the loss of target
energy. For example, one can produce a very conser-
vative mask (i.e., with few active units) and get a
very high SNR—indeed infinite SNR results if pro-
cessing results in a single active unit that contains
no intrusion. Such a measure often inflates the out-
put SNR (Hu & Wang, 2004), and hence reported
SNR gains should be viewed in this light.

In a later study, Araki, Makino, Sawada, and
Mukai (2004) abandoned the use of a binary mask
for extracting the first N–M sources in favor of a
continuous T-F mask derived from a directivity pat-
tern. The overall processing follows the same two
stages as in Araki, Makino, Blin, et al. (2004). In T-
F masking, the soft mask is estimated using the
directivity pattern of a null beamformer, with a given
source direction. Such a beamformer is known to
produce little signal distortion. They find that a
modified directivity pattern with constant gains in
certain regions of the directivity pattern performs
better. Again, reduced signal distortion is accompa-
nied by reduced SNR gain.

Saruwatari et al. (2005) investigated two differ-
ent ways of combining binary masking and ICA. A
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simple way is to generate a binary mask by compar-
ing ICA-separated sources directly. A more sophisti-
cated way, the one proposed by the authors, is to
perform the so-called single-input multiple-output
ICA, where multiple outputs are generated at each
microphone. They then calculate a separate T-F
mask at each microphone to further remove interfer-
ence. Their comparison using recorded mixtures
from a head and torso manikin shows that their pro-
posed combination outperforms the simple method
of integration, which in turn is better than using
ICA alone. Similar conclusions are drawn from a
later evaluation using two directional microphones
(Mori et al., 2006).

Sawada, Araki, Mukai, and Makino (2005, 2006)
used T-F masking and ICA together for a somewhat
different task: extraction of dominant sources—those
close to sensors—rather than all sources. Different
from their previous work, they first apply ICA to
extract M independent components, M being the
number of microphones. From the estimated mixing
matrix, they obtain a set of basis vectors. T-F masking
is then used to attenuate the residual noise from
extracted components which, in the underdetermined
case, do not necessarily correspond to individual
sources. They adopt a sigmoidal mask rather than a
binary one, and each mask value is determined by
the angle between the basis vector for each extracted
component and a T-F sample vector. They experi-
mented with a number of choices for the two param-
eters of the sigmoid. Their evaluation results
demonstrate significant SNR improvements with lit-
tle more distortions in comparison with just ICA.

A recent study by Araki, Sawada, Mukai, and
Makino (2007) addresses the underdetermined separa-
tion problem by using normalized amplitude and phase
differences between multiple sensor inputs in the k-
means clustering method, which is the most commonly
used clustering algorithm (Duda, Hart, & Stork, 2001).
The normalized features do not require sensor position
information, and as a result their separation algorithm
can be applied to situations where multiple sensors are
arbitrarily arranged. Unlike Araki, Makino, Sawada,
et al. (2004), this study uses binary masks, probably
necessitated by the use of k-means clustering. As
pointed out by the authors, typical musical noise exists
in their separation results due to binary masking. On
the other hand, they obtain good SNR results. Their
algorithm has been evaluated in a number of configu-
rations involving two or more microphones and modest
amounts of room reverberation.

Based on a geometrical interpretation of instan-
taneous ICA, Pedersen, Wang, Larsen, and Kjems
(2005, 2008) devised an algorithm for separating
many speech sources on the basis of two closely
spaced microphones. The key idea of this algorithm
is to apply ICA and binary T-F masking iteratively to
separate underdetermined mixtures until each sepa-
rated signal is deemed to contain a single speech
utterance. An ICA operation in the underdeter-
mined situation gives two outputs, each of which is
generally another linear mixture of the sources.
From the two outputs, they compute two binary
masks, treating each output as the target. The two
binary masks are then applied to the two original
mixtures, producing two pairs of separated signals. A
stopping criterion is introduced to decide whether a
pair of separated signals contains a single source
from the one spatial direction or more than one
source. In the former case, no further processing is
necessary; in the latter case, the separation process
continues where the two signals are fed to the same
ICA and binary masking operations. The application
of the same binary mask to the two mixtures is jus-
tified by the use of the closely spaced microphones.
They have shown that this iterative algorithm can
successfully separate mixtures of up to seven speech
signals and also achieve significant SNR gains for
recordings in a reverberant room.

Beamforming and T-F masking. Beamforming, or spa-
tial filtering, is a standard signal processing technique
that enhances the signal arriving from a specific direc-
tion through the use of an array of two or more micro-
phones (van Veen & Buckley, 1988). Beamformers are
divided into fixed beamformers and adaptive beam-
formers. A fixed beamformer, such as a delay-and-sum
beamformer, boosts the sound energy from the target
direction by arranging the microphones to form a spa-
tial beam. An adaptive beamformer, on the other hand,
aims to cancel or attenuate interfering sources
through weight adaptation. Beamforming methods
have been implemented in hearing aids (Dillon, 2001;
Greenberg & Zurek, 2001).

To deal with the difficulty posed by room rever-
beration, Roman and Wang (2004) and Roman,
Srinivasan, and Wang (2006) proposed using adap-
tive beamforming to provide the basis for binary T-F
masking in order to segregate a target source from a
reverberant mixture. This use of beamforming to
generate a binary mask should be contrasted with
the use of a beamformer to produce a soft mask in
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conjunction with ICA (see Araki, Makino, Sawada,
et al., 2004). The basic idea of the Roman et al. sys-
tem is to first cancel the target source from a known
direction using adaptive beamforming. Then an esti-
mate of the IBM is made by comparing the mixture
signal and the output from the beamformer within
each T-F unit. This algorithm is described in more
detail in the section “Assessment From the Hearing
Aid Perspective.”

In an attempt to directly calculate the IBM for a
mixture input, Boldt, Kjems, Pedersen, Lunner, and
Wang (2008) made use of a first-order differential
beamformer to produce limacon patterns of directiv-
ity (Thompson, 2000). With known directions of a
target signal and an interfering signal, the basis of
IBM calculation is a comparison between a front
cardioid and a back cardioid. More specifically, they
derive a theoretical relation between the ratio of the
front and back cardioid responses and the LC
parameter in the IBM definition of Equation (1).
The relation is given in terms of the directional gains
of the two cardioids, and thus enables highly accu-
rate estimation of the IBM for the case of two
sources with no reverberation. In addition, they
show that reasonable IBM estimation can be
obtained by simply deciding whether the front car-
dioid gives a stronger response than the back car-
dioid. This algorithm is also described in the Section
“Assessment From the Hearing Aid Perspective.”

Related Studies

Dubnov, Tabrikian, and Arnon-Targan (2004, 2006)
proposed a two-microphone method to separate spa-
tially disjoint sources in two stages. In the first 
stage, T-F units responding to a single source are
extracted. This is done by analyzing the cross-correlation
matrix of the two mixture signals at every frequency.
Note that a single source with uncorrelated white
noise gives the largest eigenvalue of the cross-correla-
tion matrix that is greater than the remaining eigen-
values, which are all equal. The single-source T-F
units are clustered for direction estimation. In the
second stage, a Gaussian mixture model is used to
describe multiple clusters at each frequency, and a
Kalman filter is used to track the cluster means across
frequencies for an individual source; the Kalman fil-
ter is a classical method in control theory for estimat-
ing the state of a dynamical system from noisy
measurements. The second stage gives a solution to
the permutation problem in the frequency domain,
which is the problem of grouping the separated

subband signals of the same source across frequency.
This method is proposed for the convolutive case with
a relatively small amount of reverberation. Although it
does not employ T-F masking explicitly, the underly-
ing approach bears resemblance to the basic
approach described in an earlier section.

Blin, Araki, and Makino (2005) described an algo-
rithm for separating convolutive and underdeter-
mined mixtures. The system is tailored for two
microphones and three sources. This is a three-step
algorithm. In the first step, for each frequency, the
algorithm detects the time frames where only a single
source is active. This is done through a geometrical
analysis of scatter plots of measured amplitude pairs.
In such a plot, points are scattered around three
straight lines corresponding to vectors of the mixing
matrix. With this geometrical analysis, binary T-F
masks are designed to extract single source T-F units.
On the basis of these extracted units, the second step
estimates the mixing matrix. In addition, the first
step also identifies the T-F units where two sources
are simultaneously active (their empirical analysis
shows very few units containing significant energy
from all three sources hence this scenario can be
ignored.) This information is necessary for the third
step where the mixing matrix becomes determined
and can be inverted. Like the related study by Araki,
Makino, Sawada, et al. (2004), this work mainly tar-
gets the signal distortion problem. Unfortunately, no
comparison with their other methods is mentioned.

Not all the work in T-F masking aims at the
source separation problem. Several studies have
explored binary T-F masks for robust ASR. In the pre-
vious subsection, I have discussed a separation tech-
nique by Kolossa and Orglmeister (2004) that
performs ICA first and then binary T-F masking
where the mask is constructed from the ICA outputs.
Subsequently, Kolossa, Klimas, and Orglmeister
(2005) applied their technique to ASR for noisy and
convolutive speech mixtures. The binary mask pro-
vides reliable features in the T-F domain. However,
high-performance ASR typically uses mel-frequency
cepstral coefficients (MFCC) derived in the cepstral
domain rather than in the spectral domain. Kolossa
et al. suggested techniques that transform spectral
features to MFCC for use in ASR. Without feature
transformation, SNR gains obtained by T-F masking
do not translate to recognition gains. With feature
transformation, they report substantial ASR improve-
ments from ICA and T-F masking. In another study,
Harding, Barker, and Brown (2006) extended the
Roman et al. (2003) approach to estimate a soft T-F
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mask which is then applied to missing data ASR. In
a supervised training process, they obtain within
each frequency channel histograms in the ITD–IID
space for mixtures as well as for targets presented
alone. These two histograms are then used to make
a Bayesian decision for estimating the posterior
probability of the target occurring in a particular T-
F unit given the observed ITD and IID values. A T-F
mask thus obtained is a soft mask, which can be
used directly in a missing data approach for robust
ASR. The difference from the Roman et al. system
lies in the use of the histogram data to derive a prob-
ability mask. The main purpose of the Harding et al.
study is for ASR in reverberant environments, and
their evaluations demonstrate good recognition per-
formance using estimated soft masks.

Summary

Table 1 gives an at-a-glance summary of the studies
discussed in this section, along five columns: the
method used for mask generation, whether a binary
or soft mask is computed, whether reverberation is
addressed, the mixture type (determined or underde-
termined), and the evaluation metrics employed. In
addition to SNR and ASR, the following abbrevia-
tions are used:

DOA: direction of arrival
HSI: human speech intelligibility
HSQ: human speech quality
NRR: noise-residual ratio
RSR: retained-speech ratio
SDR: speech-to-interference ratio

Although none of these studies are formulated
for real-time implementation, some algorithms are
more suitable for real-time operations than others.
Of these, the following algorithms that use beam-
forming to produce T-F masks are most promising:
Aarabi and Shi (2004), Roman et al. (2006), and
Boldt et al. (2008). The Aarabi and Shi algorithm
based on phase analysis can be viewed as a form of
fixed beamforming with given directions of arrival.
The Roman et al. algorithm uses adaptive beam-
forming which is somewhat more complex to imple-
ment than fixed beamforming.

In reviewing studies in this section, I focus on
binaural or two-microphone mixtures. There are also
studies that employ more than two microphones.
Examples include Takenouchi and Hamada (2005),
Cermak, Araki, Sawada, and Makino (2006), Togami,
Sumiyoshi, and Amano (2006), and Araki et al.
(2007). Generally speaking, systems with more than 2
microphones employ the same principles as those

Table 1. Summary of Time–Frequency Masking Algorithms for Speech Separation

Author(s) (Year) Method Mask Type Reverberation Mixture Type Evaluation

Roman et al. (2003 Classification Binary No Underdetermined SNR, ASR, HSI
Yilmaz and Rickard (2004) Clustering Binary Yes Underdetermined SNR, RSR
Aarabi and Shi (2004) Phase analysis Soft Yes Determined ASR
Araki, Makino, Blin, et al. (2004) DOA Binary Yes Underdetermined SNR, SDR
Araki, Makino, Sawada, et al. (2004) Beamforming Soft Yes Underdetermined SNR, SDR
Kolossa and Orglmeister (2004) ICA Binary Yes Determined SNR
Blin et al. (2005) DOA Binary Yes Underdetermined SNR, SDR
Linh-Trung et al. (2005) Clustering Binary No Underdetermined NRR
Saruwatari et al. (2005) ICA Binary Yes Determined SNR
Kolossa et al. (2005) ICA Binary Yes Determined SNR, ASR
Dubnov et al. (2006) Classification Soft Yes Determined SNR
Roman et al. (2006) Beamforming Binary Yes Underdetermined SNR, RSR, ASR
Sawada et al. (2006) ICA Soft Yes Underdetermined SNR, SDR
Harding et al. (2006) Classification Soft Yes Underdetermined ASR
Molla et al. (2006) Clustering Binary No Underdetermined NRR
Mori et al. (2006) ICA Binary Yes Determined SNR
Araki et al. (2007) Clustering Binary Yes Undetermined SNR, SDR
Pedersen et al. (2008) ICA Binary Yes Underdetermined SNR, RSR, NRR
Boldt et al. (2008) Beamforming Binary No Determined HSI

NOTES: ASR = automatic speech recognition; DOA = direction of arrival; HSI = human speech intelligibility; HSQ = human speech quality;
ICA = independent component analysis; NRR = noise-residual ratio; RSR = retained-speech ratio; SDR = speech-to-interference ratio; SNR =
signal-to-noise ratio.
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with two microphones. Actually, many of the two-
microphone algorithms are originally formulated for
an arbitrary number (greater than 1) of microphones
and then tested in two-microphone settings.

Perceptual Studies

Speech Quality

A number of the systems described in the section
“Binaural and Array-Based Time–Frequency
Masking Algorithms” have been evaluated with lis-
tening tests. Except for Roman et al. (2003), these
tests are all conducted on some form of speech qual-
ity, not speech intelligibility. For example, Araki,
Makino, Sawada, and Mukai (2005) evaluated the
amount of the perceived musical noise in their sub-
ject tests. We should note that speech quality tests
are subjective in nature, influenced strongly by the
kind of questions posed to the listener. Hence compar-
isons across different studies are difficult to draw.

Li et al. (2006) conducted a study on monaural
speech separation with the aim of improving speech
quality. Their separation method is intended to optimize
an objective measure of speech quality. They also per-
formed a perceived speech quality test in the form of a
mean opinion score (MOS) in the range of 1 to 5 (5 is
the best). Their results with 10 listeners show that the
IBM yields an MOS of 3.18 whereas original mixtures
give 1.33. Their evaluation also shows a substantial
MOS improvement for their pitch-based separation
algorithm as well as that of Hu and Wang (2004), both
of which produce binary masks as output.

Speech Intelligibility

Several studies have directly tested speech intelligi-
bility of binary T-F masking algorithms. The first
such test is done by Roman et al. (2003) whose binau-
ral algorithm was described in an earlier section.
They tested the speech intelligibility of normal-
hearing (NH) listeners using a Bamford-Kowal-Bench
corpus of short English sentences (Bench &
Bamford, 1979). The segregation result from their
system in the form of a binary mask is used to syn-
thesize a sentence presented at a target location
diotically. They ran a two-source condition and a
three-source condition. In the two-source condition,
the interference is presented 5° apart from the target
direction. In low SNR conditions, they find large
intelligibility gains due to segregation: more than 20
and 60 percentage points for the input SNRs of −5 dB

and −10 dB, respectively. In the three-source condi-
tion, the two interfering sources—both are speech
utterances—are placed on the two sides of the target.
In this condition, the intelligibility is increased by
about 45 percentage points. Because their estimated
masks are very similar to the ideal masks, this per-
formance is indicative of that of the IBM.

Brungart, Chang, Simpson, and Wang (2006;
see also Chang, 2004) conducted an intelligibility
test on the IBM defined in Equation (1). They sys-
tematically vary LC in Equation (1), or the local
SNR threshold in the IBM definition, leading to dif-
ferent ideal masks. They use the coordinate
response measure English corpus (Bolia, Nelson,
Ericson, & Simpson, 2000) to produce mixtures of
one target talker and one to three competing talkers,
where all talkers are normalized to be equally loud.
Their results show that, within the local SNR range
from −12 dB to 0 dB, ideal masking produces nearly
perfect intelligibility scores, much higher than with
no masking. Intelligibility monotonically decreases
when LC increases in the positive range, due to the
removal of increasingly more target energy, or when
LC decreases in the negative range, saturating to the
level with no masking, due to increasing interference.

In addition, they found that the intelligibility gain
is significantly reduced when interference is speech-
shaped noise (SSN) or modulated SSN. For SSN 
the benefit of ideal masking amounts to a reduction
(improvement) of 5 dB in speech reception threshold
(SRT) as opposed to an SRT reduction in the range of
22 to 25 dB for same-talker maskers—SRT refers to
the input SNR level required to achieve the 50% 
intelligibility score. Their main explanation for the
improved intelligibility is that IBM segregation strongly
attenuates or eliminates informational masking, which
refers to the nonenergetic form of masking caused by
the inability to segregate target speech from similar-
sounding interfering signals.

Anzalone, Calandruccio, Doherty, and Carney
(2006) tested a different version of the ideal binary
mask, which is defined not in terms of the local SNR
within each T-F unit, but the energy distribution of the
target speech alone. The IBM is generated by compar-
ing energy values of individual T-F units against a fixed
threshold, which is adjusted in order to retain a certain
percentage (e.g., 90%) of the total target energy. The
ideal mask generated this way is then used to synthesize
from a cochleagram a separated target from the mixture
of speech and SSN. The test corpus is the commonly
used HINT (hearing-in-noise test) (Nilsson, Soli, &
Sullivan, 1994). The tests were conducted on 6 NH
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and 14 hearing-impaired (HI) listeners. They found
that ideal masking leads to substantial SRT reduc-
tions: more than 7-dB reduction for NH listeners, and
more than 9-dB improvement for HI listeners. In addi-
tion, for HI listeners, ideal masking in the low-fre-
quency range (up to 1.5 kHz) contributes much more
to reduced SRT than in the high-frequency range; for
the NH listeners, on the other hand, ideal masking in
the high-frequency range also contributes signifi-
cantly. To obtain the benefit of ideal masking, the
energy threshold for mask generation needs to be at
least 90%. Also the benefit occurs with a relatively low
frequency resolution but needs a relatively high tem-
poral resolution.

In addition to improving SNR, IBM processing
should decrease the spread of masking by interfer-
ence. Listeners with hearing loss are known to be
particularly susceptible to the upward spread of
masking (Gagne, 1988). This explanation is consis-
tent with their result that HI listeners show little
improvement if binary masking is applied to only
high-frequency bands, unlike NH listeners. Another
interesting observation from Anzalone et al. (2006)
is that HI listeners are less sensitive to binary mask-
ing artifacts than NH listeners.

A recent study by Li and Loizou (2008b) on NH
listeners extends the findings of Brungart et al.
(2006) to different types of speech and interference.
Specifically, the speech material in their study con-
sists of sentences from the IEEE database (IEEE,
1969) and the types of interference include speech
babble and two-talker utterances in addition to SSN
and modulated SSN. Their findings are consistent
with those of Brungart et al. In particular, for input
SNR levels of −5 and −10 dB, they find broad per-
formance plateaus (near 100% intelligibility) with
respect to LC values. For example, a plateau ranges
from LC = −20 dB to 5 dB for speech and babble
noise mixed at the SNR of −5 dB. In addition, this
study has assessed the impact of deviations from the
IBM on speech intelligibility. By systematically and
randomly flipping binary labels of the IBM, they
observed that the intelligibility score drops gradually
as the percentage of wrongly labeled T-F units
increases. Compared with unprocessed mixtures,
there is still performance improvement when the
mask error is 40% for babble noise and 20% for SSN
and two-talker speech masker. An important finding
in their error analysis is that miss errors (1 flipped to
0) and false-alarm errors (0 flipped to 1) have differ-
ent effects on intelligibility, and false-alarm errors
are substantially more harmful to intelligibility.

A subsequent study by Li and Loizou (2008a)
examines the effects of spectral resolution and band-
limited processing on IBM segregation. The stimuli
are processed using a sinewave-excited vocoder with
the number of frequency channels systematically var-
ied. Their results on NH listeners show significant
intelligibility improvements with as few as 12 chan-
nels for IBM-processed stimuli. The improvement is
particularly large (by 60 percentage points) with 24
and 36 channels, although the resulting intelligibility
is not as high as that reached with 128 channels used
in Brungart et al. (2006). Besides the differences in
the number of frequency channels, the use of
vocoded stimuli in Li and Loizou (2008a) could also
contribute to less-than-perfect intelligibility. In addi-
tion, Li and Loizou evaluated the intelligibility of
IBM processed stimuli in the low-frequency range
only (i.e., no ideal masking in the high-frequency
range). They observe a monotonic increase of intelli-
gibility as the range of ideal masking extends to higher
cutoff frequencies, until performance asymptotes
with cutoff frequencies of 1.5 to 2.5 kHz depending
on input SNR. This observation suggests that IBM
processing in the first and second formant regions is
sufficient for intelligibility. These results indicate the
potential of T-F masking for cochlear implants.

Wang, Kjems, Pedersen, Boldt, and Lunner
(2008) also evaluated the speech intelligibility
improvements of IBM processing for both NH and
HI listeners. Their study uses the IBM definition in
Equation (1) by fixing LC to −6 dB and measures
the SRT effects of ideal masking using both SSN
and a cafeteria noise. The speech material com-
prises Danish sentences from the Dantale II corpus
(Wagener, Josvassen, & Ardenkjær, 2003). With the
SSN background, they found a 7.4-dB SRT reduc-
tion for NH listeners and a 9.2-dB SRT reduction
for HI listeners. These levels of SRT improvements
are compatible with those reported by Anzalone 
et al. (2006) despite different IBM definitions. For
the cafeteria background, Wang et al. (2008)
observed a 10.5-dB SRT reduction for NH listeners
and a 15.6-dB SRT reduction for HI listeners. The
observed SRT improvements for the cafeteria noise
are significantly larger than for SSN, suggesting that
ideal masking is more effective for modulated noise
than for stationary noise (see also Brungart et al.,
2006). A striking conclusion from Wang et al.’s
study is that IBM processing makes the intelligibil-
ity performances for HI listeners and NH listeners
comparable. This study also shows that IBM segre-
gation in lower frequency (up to 1.35 kHz) brings
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more benefit than IBM processing in higher fre-
quency (>1.35 kHz), particularly for HI listeners,
confirming a similar finding by Anzalone et al.
(2006). Wang et al. point out that one reason is that
IBM segregation in low frequency removes more
background noise than IBM segregation in high fre-
quency because the distribution of noise energy is
heavily tilted towards low frequency.

In the above studies, either input SNR or LC is
fixed. What happens if input SNR and LC are co-var-
ied? Exploiting the fact that changing input SNR and
LC by the same amount does not alter the IBM,
Wang, Kjems, Pedersen, Boldt, and Lunner (in press)
tested an extreme version of IBM where both input
SNR and LC are set to −∞ dB. In this case, the stim-
ulus contains only noise with no speech at all. More
specifically, IBM plays the role of specifying when to
turn on or off the filtered noise. With SSN, they
observed that listeners can achieve nearly perfect
speech recognition from noise gated by the IBM. Only
16 frequency channels and binary gains varying at the
rate of 100 Hz are apparently sufficient for high intel-
ligibility scores. This finding is surprising as the infor-
mation encoded in binary gains is greatly reduced
compared with that contained in original speech—
both spectral and temporal aspects of the speech sig-
nal are severely degraded. It should be noted that,
within a frequency channel, vocoded noise in the well-
known study of Shannon, Zeng, Kamath, Wygonski,
and Ekelid (1995) uses the full speech envelope
whereas a binary envelope is used in ideally masked
noise (Wang et al., in press).

A few conclusions can be drawn from the above
studies. First, IBM processing provides large intelli-
gibility gains. Second, the intelligibility benefit is
even larger for HI listeners than for NH subjects,
and for modulated noise than for steady noise.
Third, binary masking in limited frequency regions
(particularly in the low-frequency range) or a small
number of frequency channels can still provide sub-
stantial intelligibility improvements.

Assessment from the
Hearing Aid Perspective

None of the studies on T-F masking have so far tar-
geted the hearing aid application directly. The core of
T-F masking is to apply different gains to different T-
F units, depending on estimation of local SNRs
within these units. So T-F masking is a form of T-F
gain control in the range between 0 and 1 (Anzalone
et al., 2006). Once T-F gains are computed, a T-F

masking strategy can be viewed as a multichannel
(multiband) dynamic compression scheme in a 
hearing aid (Dillon, 2001). In practice, T-F masking
would need to be implemented in addition to
dynamic compression whose main purpose is to
decrease input sound levels to match the dynamic
range of HI listeners.

The consideration of hearing aid implementa-
tion, however, places a number of constraints on the
complexity of an algorithm, including

• The requirement of real-time processing: This
constraint limits the processing delay to just a
few milliseconds (see, e.g., Kates & Arehart,
2005), which in turns limits the algorithmic
complexity and the availability of the data at a
particular time.

• Amount of required training: Machine learning
has been increasingly applied to speech separa-
tion. The amount of training is typically not a
concern for algorithmic development, but it is for
the hearing aid application. In particular, the
amount of training needed during operation, if
any, must be small.

• The number of frequency bands in a multichan-
nel hearing aid is relatively small.

With the above constraints in mind, I assess
monaural T-F masking algorithms in the next sub-
section and binaural algorithms in the subsequent
subsection. The subsection titled “Musical Noise”
discusses how to attenuate the musical noise caused
by T-F masking.

Monaural Algorithms

Current monaural separation systems give little con-
sideration to real-time implementation, and algo-
rithms generally involve complex operations for
feature extraction, segmentation, grouping, or sig-
nificant amounts of training. Even without the con-
straint of operating in real time, the performance of
such systems is still not stable or consistent enough
for implementation in a hearing aid. Although
aspects of this research could be exploited for the
hearing aid application in the short term, for exam-
ple, classification of acoustic environments for hear-
ing aid use (Buchler, Allegro, Launer, & Dillier,
2005), long-term research is required before mon-
aural T-F masking algorithms can be used for noise
reduction in hearing aids. Future effort is especially
needed in real-time processing, sequential organiza-
tion (grouping of the same source across time), and
robustness to room reverberation.
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On the other hand, research on monaural separa-
tion techniques holds a great deal of potential for the
hearing aid application, as it is based on principles of
auditory perception and not subject to fundamental
limitations of spatial filtering such as configuration
dependency (see next subsection) and the inability of
suppressing interfering sounds arriving from directions
that are the same as or close to the target direction. In
addition, monaural segregation is based on intrinsic
sound properties such as periodicity, and it is thus
expected to be more robust to room reverberation than
spatial filtering provided by beamforming, which is fun-
damentally susceptible to echoes coming from various
directions. Also, incorporating aspects of monaural sep-
aration, such as segmentation, likely enhances the
noise reduction performance of directional systems.

Binaural and Array-Based Algorithms

Algorithms based on classification or clustering. As
explained in the section “Binaural and Array-Based
Time-Frequency Masking Algorithms” the basic T-F
masking approach builds on the observation that a
data histogram of time and amplitude differences
from individual T-F units forms characteristic clus-
tering. From these data distributions, unsupervised
clustering or supervised classification algorithms are
then used to estimate the IBM. These algorithms are
simple to apply and their underlying principles are
well understood.

The cluster structure is, however, configuration
dependent. That is, when sound sources change their
locations, a different cluster structure is formed. To
perform effective T-F separation retraining is required
in order to model the new cluster structure. In other
words, effective T-F separation is configuration spe-
cific. This is a major drawback of such algorithms
from the standpoint of real-time processing. Although
techniques can be introduced to relax this limitation,
such as the use of approximate but fast update
(Rickard, Balan, & Rosca, 2001) or pretraining of
configurations to form some lookup table plus inter-
polation, resulting algorithms become more complex
and the performance degrades.

Another limitation of classification/clustering
arises when room reverberation is considered. The dif-
ficulty posed by reverberation (or convolutive mix-
tures) is twofold. First, the cluster structure becomes
much shallower and noisier with many spurious peaks.
Second, extracted time and amplitude differences are
less reliable. As a result, separation performance drops
significantly (Brown & Palomäki, 2006).

The limitations of configuration specificity and
room reverberation make it difficult to apply the
algorithms based on clustering or classification to
hearing aid design.

Algorithms Based on ICA. Many of the recent T-F
algorithms couple the use of ICA and T-F masking.
As already mentioned, ICA is based on the assumption
that source signals are statistically independent and
performs blind source separation by computing a
demixing matrix through statistical machine learn-
ing. To make ICA applicable requires a number of
assumptions, including that the mixing is deter-
mined (i.e., the number of microphones is no less
than the number of sources) and that the mixing
matrix is constant for a period of time to estimate
the demixing matrix. The latter assumption is essen-
tially the same as that of configuration specificity.
Indeed the limitation of a determined mixture is a
major reason for exploring T-F masking. Even for
determined mixtures, room reverberation compli-
cates the problem considerably. All of these factors
have diminished the early enthusiasm of ICA as an
audio separation approach (Hyvärinen et al., 2001).
The prospect of ICA-based masking algorithms for
the hearing aid application is similarly limited.

Algorithms based on beamforming. Considering the lim-
itations of configuration specificity and ICA, T-F mask-
ing algorithms based on beamforming hold promise for
the hearing aid application. Both fixed and adaptive
beamforming techniques are effective for improving
speech intelligibility, and have been implemented in
modern hearing aids. Two-microphone beamforming
either enhances the signal from a target direction
(forming a lobe) or suppresses the noise from a specific
direction (forming a null). Recent hearing aids make
use of first-order differential microphones with the tar-
get sound assumed to occur in the front (look) direc-
tion. In addition, subband adaptive beamformers have
been built into hearing aids for the purpose of attenu-
ating strong interfering sources originating from the
back (e.g. Oticon Syncro).

Two such approaches are of potential interest for
hearing aid implementation. The first approach was
proposed by Roman et al. (2006). This approach
derives a binary mask on the basis of adaptive beam-
forming, which can be viewed as comparing an
adaptively formed beampattern and an omnidirec-
tional pattern, and has been tested in reverberant
situations. The second approach is described by
Boldt et al. (2008). As mentioned in the section



Time–Frequency Masking for Speech Separation / Wang 347

“Binaural and Array-Based Time-Frequency
Masking Algorithms” this approach derives T-F
masks by comparing the responses from the front
cardioid and the back cardioid. The binary masking
algorithm is particularly simple, making it feasible
for implementation. Each of the two approaches is
described in more detail below.

The approach by Roman et al. (2006) was
designed to deal with room reverberation. As men-
tioned earlier, the system has two stages as shown in
Figure 5, where y1 and y2 denote two microphone sig-
nals. In the first stage, an adaptive beamformer is
trained to form a null in the front direction. The out-
put of the beamformer is denoted as z. At one of the
two microphones (the so-called “better ear”), say
microphone 1, STFT transforms the microphone sig-
nal and the beamformer output into a T-F representa-
tion. The second stage computes the energy ratio of
the corresponding T-F unit pairs of the two T-F repre-
sentations, called output-to-input energy ratio (OIR),

⏐Z (t, f)⏐2

OIR(t, f) = __________ (2)
⏐Y1 (t, f)⏐2

where Z and Y1 are the Fourier transforms of z and y1,
respectively.

After an analysis of the correlation between OIR
and the relative strength of target energy with
respect to mixture energy, Roman et al. (2006) set
the decision threshold for binary mask generation to
−6 dB; that is, u(t, f) = 1 if OIR(t, f) < −6 dB and 0
otherwise. The binary mask is then used to reconstruct
the separation result at the better ear (microphone 1).
Roman et al. evaluated their system on reverberant
mixtures using both SNR and ASR measures, which
are found to give similar performance profiles. Their
system produces substantial improvements compared
to no processing. With the exception of two-source
configurations, where an adaptive beamformer
designed for reverberant environments gives a better
output, the algorithm outperforms the adaptive beam-
former, which in turn gives better results than a delay-
and-sum beamformer.

It is worth noting that in the Roman et al. (2006)
system mixture signals are obtained from the KEMAR,
with microphones spaced according to the layout of
the human head. If their algorithm is to be imple-
mented on two closely spaced microphones, some
adapting work is needed although directional micro-
phones can be turned into an adaptive beamformer.
Also, the training for adaptive beamforming is specific

to a particular room configuration, and it remains to
be investigated to what extent the segregation per-
formance degrades with changing room configurations
and whether a simpler adaptive beamformer that is
less restrictive in terms of training can still outperform
a fixed null beamformer. Currently, a single mask is
computed for the better ear, and it would be interest-
ing to see whether improvements can be made by
computing two masks for the two microphones and
reconstructing a spatial pattern as output.

With two closely spaced microphones, two car-
dioid directivity patterns can be formed. Figure 6
illustrates the two cardioids, where the front car-
dioid response is denoted by CF and the back by CB.
Boldt et al. (2008) converted each cardioid response
into the T-F domain using a filterbank and then esti-
mated the IBM as follows:

IBM(t, f) = {1   if CF(t, f) − CB n(t, f) > LC′
0   otherwise (3)

where IBM denotes the estimated IBM, and CF(t, f) and
CB(t, f) denote the energy (in dB) of the front cardioid
within u(t, f) and that of the back cardioid, respectively.
The parameter LC′ is a threshold (also in dB).

̂

̂

Figure 5. Diagram of the Roman et al. (2006) system. An
adaptive filter is applied for target cancellation in the first stage.
The second stage computes a binary time–frequency mask by
comparing the mixture signal and the adaptive filter output
(DFT = discrete Fourier transform).
Source: Reprinted from Roman et al. (2006), with permission
from Journal of the Acoustical Society of America, American
Institute of Physics.
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For two sources in anechoic conditions, Boldt 
et al. (2008) found that, for a given LC′ in Equation
(1), LC′ in Equation (3) can be chosen accordingly,

a0
2LC + a1

2

LC′ = __________ (4)
b0

2LC + b 1
2

where a0 and a1 are the directional gains of the front car-
dioid to the target and the interference, respectively,
and b0 and b1 are the directional gains of the back
cardioid to the two sources.

The evaluation of the system by Boldt et al.
(2008) shows that IBM and IBM are nearly identi-
cal, indicating that the estimated IBM should per-
form nearly as well as the IBM in terms of speech
intelligibility for two sources in anechoic conditions
(see Li & Loizou, 2008b). Even without knowing the
directional gains, they suggest that a particularly
simple choice of LC′ = 0 dB is still expected to pro-
duce high levels of speech intelligibility as long as
the target signal is located in the front and the inter-
fering signal in the back.

The fixed choice of LC′ = 0 dB for generating a
binary mask in a directional system corresponds to
checking whether CF(t, f) > CB(t, f), which is simple
to implement. On the other hand, the effectiveness
of the method with respect to standard beamforming
remains to be evaluated in reverberant or diffuse-
noise conditions.

Musical Noise

Many recent T-F masking algorithms have been
designed with the musical noise problem in mind. In
addition, studies have been conducted to specifically
deal with the problem. A few conclusions may be
made:

• Temporal smoothing by using relatively smaller
frame shifts (Araki et al., 2005) or in selected fre-
quency regions in the cepstral domain (Madhu,
Breithaupt, & Martin, 2008) has been shown to
be effective in attenuating the musical noise.

• A sigmoidal mask with constant cutoffs at both
low and high ends helps to soften the output
sound (Araki, Sawada, Mukai, & Makino, 2006;
Li, McAllister, Black, & Perez, 2001).

• The output with attenuated musical noise tends
to accompanied by lower SNR gains. In other
words, there may be an SNR cost associated with
improved quality.

Algorithms that attempt to reduce musical noise
are typically tested on some quality measure or a
speech quality test with listeners, and the effect on
speech intelligibility is not known. One should keep
in mind that HI listeners might be less sensitive to
or bothered by binary-masking distortions than NH
listeners (Anzalone et al., 2006). This could result
from reduced spectral and temporal resolutions of
HI subjects. Hence, effects on HI listeners may not
be inferred from tests with NH listeners.

Given the current understanding on the musi-
cal noise associated with T-F masking, some com-
bination of smoothing and sigmoidal masking with
constant cutoffs guided by auditory masking data,
will likely lead to an acceptable level of speech
quality for HI listeners. A critical question is
whether a smoother sounding output will diminish
the potential intelligibility benefit brought about by
T-F masking.

Discussion

What Is the target?

In the presence of multiple sound sources, which
source should be treated as the target at a particular
time? This important question is closely related to
the complex issue of auditory attention: That is, what
controls the shift of attention from one moment to the
next? Current directional hearing aids get around
this issue by assuming that the target is in the look

Figure 6. Two back-to-back cardioid responses. The front
direction corresponds to θ = 0°.
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direction, which is a practical solution in many listen-
ing situations, although there are certainly situations
where such an assumption is incorrect. Assuming that
sound sources can be separated, a reasonable alterna-
tive would be to treat the loudest source (e.g., loudest
talker) as the target in light of the Lombard reflex that
speakers unconsciously raise their voice level with
increasing background noise. This alternative is also
unreasonable in certain environments. Perhaps a com-
bination of the two would give a better solution than
either one. To apply such a combination would of
course require the use of algorithms that achieve
reliable separation.

Binary Versus Soft Masks

Should a T-F mask as the output of a separation sys-
tem be binary or soft? Although it is binary T-F masks
that depart from more traditional ratio masks (e.g.,
a Wiener filter) and trigger much research in the
T-F masking paradigm, recent studies have also advo-
cated the use of soft masks, not only for speech sepa-
ration (Reddy & Raj, 2007; Sawada et al., 2006) but
also for ASR (Barker, Josifovski, Cooke, & Green, 2000;
Harding et al., 2006; Srinivasan, Roman, & Wang,
2006). As discussed in the section “Binaural and Array-
Based Time-Frequency Masking Algorithms,” a main
consideration behind the interest in using soft masks
is the attenuation of the musical noise although
improved quality is often accompanied by reduced
SNR gain.

Because a binary mask can be treated as a spe-
cial case of a soft mask, it should not come as a sur-
prise that soft masks can outperform binary masks.
Barker et al. (2000) showed performance benefits in
ASR by replacing binary masks with soft masks.
Palomäki, Brown, and Barker (2004), however, found
no performance gain for reverberant speech recogni-
tion. Srinivasan et al. (2006) reported that in a small-
vocabulary task, binary masks perform better than
ratio masks, whereas the reverse is true for a large-
vocabulary task. A subsequent study by Srinivasan and
Wang (2007) proposes a new approach to ASR in
conjunction of binary masks and shows good per-
formance in a large-vocabulary task. In a direct com-
parison between the IBM and an ideal ratio mask
using both speech and music mixtures, Li and Wang
(in press) found, surprisingly, that the SNR gain
from the ideal ratio mask is only slightly higher than
the IBM. It is therefore likely that no clear-cut con-
clusion can be drawn concerning whether soft
masks are better than binary masks. Which is better

probably depends on the task involved and the algo-
rithm used for mask generation.

One should be careful not to generalize SNR or
ASR results to speech intelligibility. As discussed in
the section “Perceptual Studies,” there is conclusive
evidence showing that IBM segregation clearly
improves human speech recognition in noise. Binary
T-F masking algorithms in some limited cases have
also been shown to improve speech intelligibility.
Whether soft masking can also improve speech
intelligibility remains to be seen, and the history in
speech enhancement proves the elusive nature of
improving speech intelligibility (Loizou, 2007).

Lastly, I want to remark that, unless soft mask-
ing is expected to have significant performance
gains, the use of binary masking should be pre-
ferred. The reason lies in estimation. Binary mask-
ing entails binary decision making, and methods
abound in pattern classification and clustering
(Duda et al., 2001) that can be employed to make
binary decisions. On the other hand, soft decision
making often requires approximating an underlying
function that tends to be more complex. In other
words, computing a binary mask may be consider-
ably simpler than computing a soft mask.

Quality Versus Intelligibility

As discussed in the sections “Binaural and Array-
Based Time-Frequency Masking Algorithms” and
“Assessment from the Hearing Aid Perspective,”
progress has been made in addressing the issue
of speech distortion or the musical noise accompa-
nying T-F masking. Techniques introduced to
improve speech quality typically “soften” basic oper-
ations in T-F masking and come at the expense of
reduced SNR gain. It is possible that processing that
enhances speech quality ends up hurting speech
intelligibility. A core appeal of T-F masking for
speech separation is its promise for improving
speech intelligibility. Hence, methods for attenuat-
ing the musical noise should be evaluated not only
on their effects on speech quality but also their
impact on speech intelligibility.

To conclude, a substantial amount of research
has been recently conducted on T-F masking for
speech separation. An appraisal from the hearing aid
perspective suggests that, although a majority of the
proposed techniques are unlikely useful for hearing
prosthesis immediately, T-F masking algorithms
based on beamforming may be valuable for noise
reduction in hearing aids in the near term.
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