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TIME-FREQUENCY REPRESENTATIONS OF WIGNER TYPE

AND PSEUDO-DIFFERENTIAL OPERATORS

P. BOGGIATTO, G. DE DONNO, AND A. OLIARO

Abstract. We introduce a τ -dependent Wigner representation, Wig
τ
, τ ∈

[0, 1], which permits us to define a general theory connecting time-frequency
representations on one side and pseudo-differential operators on the other.
The scheme includes various types of time-frequency representations, among
the others the classical Wigner and Rihaczek representations and the most
common classes of pseudo-differential operators. We show further that the
integral over τ of Wig

τ
yields a new representation Q possessing features

in signal analysis which considerably improve those of the Wigner represen-
tation, especially for what concerns the so-called “ghost frequencies”. The
relations of all these representations with respect to the generalized spectro-
gram and the Cohen class are then studied. Furthermore, a characterization
of the Lp-boundedness of both τ -pseudo-differential operators and τ -Wigner
representations are obtained.

1. Introduction

One basic drawback of the classical Fourier transform

Ff(ω) = f̂(ω) =

∫

Rd

e−2πitωf(t)dt, t, ω ∈ R
d,

in its applications to signal analysis is that information concerning the time at
which frequencies appear in a signal f(t) are hidden in its complex phase. As a
consequence one of the main aims of the time-frequency analysis over the last 50
years has been to define suitable “2-variable” modifications of the Fourier transform
in such a way that information about both time and frequency content of the signal
are made explicit. They are functions (or distributions) Ψ(f)(x, ω), both of the time
variables x ∈ R

d and the frequency variables ω ∈ R
d, depending in a quadratic

way on the signal f . Whereas a single point value Ψ(f)(x, ω) does not have a
physical interpretation, the amplitude of Ψ(f) around a point (x, ω) indicates,
roughly speaking, the magnitude of the frequencies ω present in the signal f around
the time x. Due to its physical interpretation as energy distribution of the signal in
the time-frequency space Rd

x×R
d
ω, we shall indifferently use in this context the term

“representation” or (quadratic) “form” for Ψ. This suggests furthermore that it is
desirable for a “suitable” Ψ(f) to satisfy some typical conditions of density functions
analogous to those in statistics and probability. It turns out, however, that, different
to what happens in statistics and probability theory, the situation in time-frequency
analysis is more similar to that of quantum mechanics where, as a consequence
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of the uncertainty principle, the natural requirements on the distribution density
of the energy are actually incompatible with one another and can therefore be
satisfied only with a certain degree of approximation. For this reason many different
representations have been defined in literature, which, according to the features they
possess, can be more suitable for one application than another. For details on this
subject see [6], [7], [8], [9], [12], [13].

In this paper we introduce new types of representations Wigτ , a modification of
the Wigner representation depending on a parameter τ ∈ [0, 1].

These representations turn out to play a crucial role both within the theory
of time-frequency representations and for what concerns its connections with the
theory of pseudo-differential operators.

We shall actually show that the Rihaczek, the Wigner and the “adjoint”-Rihaczek
representations are obtained as particular cases of the Wigτ representations in cor-
respondence to the values τ = 0, τ = 1/2, τ = 1, respectively. We then consider the
integral of the representation-valued function τ ∈ [0, 1] �−→ Wigτ over the interval
[0, 1] defining a new form Q =

∫

[0,1]
Wigτdτ . The aim of this definition is that the

form Q will turn out to be a considerably better representation than every single
Wigτ , in particular better than the Wigner distribution. More precisely, Q enjoys
all the “good” features of the Wigner distribution, but, in comparison with it, it
practically eliminates the presence of the so-called “ghost frequencies”. We shall
illustrate how this happens in section 3 and give a precise mathematical framework
in section 4.

We then proceed to give a detailed study of Wigτ representations and their
integral Q, namely we prove that they belong to the Cohen class but not to the
generalized spectrogram (with the exception of the extreme cases Wigτ , τ = 0,
τ = 1) and that they satisfy the marginal distribution conditions and enjoy the
support property, therefore being valuable candidates for a time-frequency analysis
of signals. Furthermore, the integral representation Q, as the Wigner representa-
tion, is real for every signal f .

The other topic where the Wigτ representations appear to be of considerable
interest are the connections between time-frequency distributions and pseudo-dif-
ferential operators.

Representations are deeply related to pseudo-differential operators. In particular,
under suitable conditions, a one-to-one correspondence can be established and it
can be proved that boundedness of representations is equivalent to that of the
corresponding operators; see [2], [3], [4].

We shall prove that a new remarkable couple “representation-operator” fits into
this scheme. Namely, the τ -Wigner representations exactly correspond to “pseudo-
differential operators with τ -symbol”, which are widely use in literature; see [16].
This gives rise to a somewhat complete scheme summarized in (2.11).

We shall then characterize Lp-boundedness both for τ - representations and τ -
pseudo-differential operators.

2. A general scheme of representations

and pseudo-differential operators

The classical “Wigner” representation is the form

(2.1) Wig(f)(x, ω) =

∫

Rd

e−2πitωf(x+ t/2)f(x− t/2) dt
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defined by E. Wigner in the context of quantum mechanics, where, in the search
for ideal position-momentum distributions, questions arise which are analogous to
those of time-frequency analysis (see [20]). It is not positive, but it enjoys the
support property and satisfies the marginals (see [6], [10], [12]).

With abuse of notation1 we shall use the same name for the corresponding po-
larized sesquilinear form

(2.2) Wig(f, g)(x, ω) =

∫

Rd

e−2πitωf(x+ t/2)g(x− t/2) dt.

Based on the Wigner representation is the so-called Cohen class, i.e. the set of
representations of the form

Q(f, g) = Wig(f, g) ∗ σ

with σ ∈ S ′(R2d). This very large and interesting class includes most of the more
commonly used representations of time-frequency analysis; see [5], [6], [10].

In [2], [3] a particular subset of the Cohen class named generalized spectrogram
was defined. They are representations Spφ,ψ depending on two windows φ, ψ which,
when suitably “moved”, can make the corresponding spectrograms define a link
between some well-known representations, namely classical spectrograms and Ri-
haczek and conjugate-Rihaczek representations. We now briefly summarize these
ideas (for details see [2] and [3]), as in this paper we shall propose a similar “path”
of representations also laying in the Cohen class but “outside” the generalized spec-
trogram class.

The generalized spectrogram is the sesquilinear form

(2.3) Spφ,ψ(f, g)(x, ω) = Vφf(x, ω)Vψg(x, ω),

where Vφf(x, ω) =
∫

Rd f(t)e
−2πitωφ(t− x) dt is the Gabor transform of f with win-

dow φ (also known as a Short-time Fourier transform or Windowed Fourier trans-
form).

The fact that the generalized spectrogram is a subclass of the Cohen class follows
from the convolution formula (see [2])

(2.4) VφfVψg = Wig(ψ̃, φ̃) ∗Wig(f, g)

with F̃ (x) = F (−x), which expresses the generalized spectrogram as a convolution
of Wigner transforms.

In [3] it is further proved that the Wigner representation is not a generalized
spectrogram, therefore showing that the latter is a proper subclass of the Cohen
class.

On the contrary the classical spectrogram with window φ is trivially obtained by
taking equal windows φ = ψ in (2.3) and is the only positive representation among
the generalized spectrograms.

The other very basic representation which is proved in [3] to be in the generalized
spectrogram is the Rihaczek form

(2.5) R(f, g)(x, ω) = e−2πixωf(x)ĝ(ω).

It is proved more precisely that the Rihaczek representation coincides with the
particular “limit” case of spectrogram corresponding to windows φ = δ, ψ = 1

1We shall adopt this notation for all representations.
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(where δ is the Dirac point distribution). Symmetrically if φ = 1, ψ = δ are taken
as windows, we obtain the “conjugate”-Rihaczek representation:

R∗(f, g)(x, ω) = R(g, f)(x, ω) = e2πixωg(x)f̂(ω).

More explicitly we have

R(f, g) = Spδ,1(f, g) = Wig(1, δ) ∗Wig(f, g) = e−4πixω ∗Wig(f, g)(x, ω),(2.6)

R∗(f, g) = Sp1,δ(f, g) = Wig(δ, 1) ∗Wig(f, g) = e4πixω ∗Wig(f, g)(x, ω).(2.7)

An explicit “path” of representations connecting spectrogram, Rihaczek and
conjugate Rihaczek representations is for example Spφλ,φ̂λ

, λ ∈ [0,∞], where the

L1-normalized gaussians φλ(x) = λd/2e−πλx2

and their Fourier transforms are used
as windows (with the convention φ∞ = δ).

We next show that a similar situation, i.e. a link between Rihaczek and conjugate
Rihaczek representations, can also be defined outside the generalized spectrogram
class and that it is actually constituted by a path of representations depending
on a parameter τ ∈ [0, 1], which we shall call Wigτ , having as a “middle point”
the Wigner representation; see Figure 1. The motivation of the definition of these
τ -dependent representations is not merely the fact that the path they describe
includes some very well-known representations; two other facts are even more re-
markable: their integral over the parameter τ will yield an “integral” representation
Q (see Definition 2.3), which, as we shall see in section 3, shows considerably better
behavior than the Wigner representation, especially with respect to the problem
of the so-called “ghost frequencies”. Furthermore the Wigτ forms exactly corre-
spond to the well-known τ -pseudo-differential calculus in a general form-operator
correspondence (see Propositions 2.4 and 2.6), therefore allowing a nice symmetric
picture of operators and forms in a considerably wide variety of significant cases.

More precisely we define the τ -Wigner representation as follows.

Definition 2.1. For τ ∈ [0, 1], f, g ∈ S(Rd) let

Wigτ (f, g)(x, ω) =

∫

Rd

e−2πitωf(x+ τt)g(x− (1− τ )t) dt.

Here we summarize the main features of the τ -Wigner representations that shall
be proved in section 5:

Proposition 2.2.

(2.8)
− Wigτ is in the Cohen class for every τ ∈ [0, 1],
− Wig0 = R (Rihaczek representation),
− Wig1/2 = Wig (Wigner representation),

− Wig1 = R∗ (conjugate Rihaczek representation),
− Wigτ satisfies the marginals and the support properties for every τ ∈ [0, 1],

− Wig1−τ (f, g) = Wigτ (g, f).

From the last formula we have

Wigτ (f) +Wig1−τ (f) = 2ℜ(Wigτ (f)),

Wigτ (f)−Wig1−τ (f) = 2iℑ(Wigτ (f)).

The first of these two formulas suggests that even if generally Wigτ (f) is not real,
integration with respect to τ on any interval with midpoint 1/2 yields a represen-
tation which is real for every signal f and in some sense represents a mean of the
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single τ -Wigner representations. We are then led in a somewhat natural way to the
following:

Definition 2.3. For Wigτ as in Definition 2.1 we define the new representation:

(2.9) Q(f, g)(x, ω) =

∫

[0,1]

Wigτ (f, g)(x, ω) dτ.

As mentioned above the form Q has considerable advantages with respect to
Wigτ , Wigner representation included. We shall show that Q is a real representa-
tion belonging to the Cohen class and satisfies marginals and support conditions.
Section 3 is dedicated to comparing its features with those of Wigτ , therefore mo-
tivating its introduction. In Section 3 the basic properties of Q and Wigτ are
studied.
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Cohen class: σ ∗Wig

generalized spectrograms: Spφ,ψ

•

Wig1/2 = Wig (Wigner)
•

Q =
∫

[0,1]
Wigτ dτ

•

Wigτ (τ -Wigner)
•

Spφ (classical spectrogram)

Wig0 = Spδ,1 = R

(Rihaczek)

•
Wig1 = Sp1,δ = R∗

(conjugate-Rihaczek)
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Figure 1. A graphical idea of different types of representations
within the Cohen class

So far we have dealt with sesquilinear forms. The existence of a one-to-one
association between bounded sesquilinear forms and operators is stated by the
following proposition, proved in [1], which permits us to develop a parallel theory
for forms and operators.

Proposition 2.4. Let E, E1 and E2 be Banach spaces, where E2 is supposed to
be reflexive.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(a) Let us assume that ϕ : E∗
2 × E1 −→ E∗ is a sesquilinear bounded map.

Then there exists a unique linear bounded map a ∈ E −→ Ta ∈ B(E1, E2)
such that for every v ∈ E∗

2 we have

(2.10) (v, Tau) = (ϕv,u, a).

(b) Conversely, let the application a ∈ E −→ Ta ∈ B(E1, E2) be linear and
continuous; then (2.10) defines a sesquilinear bounded map ϕ : E∗

2 × E1 →
E∗.

We recall that here duals are considered as spaces of conjugate-linear functionals
so that the pairing (.,.) extends the L2 inner product.

We remark incidentally that this is not the usual association form-operator, as
here we have vector-valued forms and we consider quantization instead of single
operators.

According to this general property and considering for example the L2 space set-
ting, it can be showed that the representations previously mentioned are associated
with well-known types of operators. The correspondence is the following:
(2.11)
i) Generalized spectrogram ←→ localization operators;
ii) Rihaczek form ←→ Kohn−Nirenberg operators;
iii) Conjugate−Rihaczek form ←→ operators “with right symbol”;
iv) τ −Wigner form ←→ τ −Weyl operators

(

in particular Wigner form ←→ Weyl operators
)

.

For completeness we recall the definitions of the classes of operators we have men-
tioned.

Definition 2.5. Let a ∈ S(R2d); then the following classes of operators are defined
as a continuous map from S(Rd) to itself:

i) Localization operator with symbol a and windows φ, ψ ∈ S(Rd):

(2.12) La
φ,ψ : f −→ La

φ,ψf(x) =

∫

R2d

a(z)(f, φz)L2ψz(x) dz,

where z = (y, w) ∈ R
2d, φz(t) = e2πitωφ(t − y) and analogously for ψz (see e.g.

[23], [14]).
ii) Kohn-Nirenberg pseudo-differential operators:

(2.13) Aa : f −→ Aaf(x) =

∫

R2d

e2πi(x−y)ωa(x, ω)f(y) dy dω

(see e.g. [22], [11]).
iii) Pseudo-differential operators with right symbol a:

(2.14) Ba : f −→ Baf(x) =

∫

R2d

e2πi(x−y)ωa(y, ω)f(y) dy dω

(see e.g. [16]).
iv) τ -Weyl pseudo-differential operators with τ -symbol a (with τ ∈ [0, 1]):

(2.15) W a
τ : f −→ W a

τ f(x) =

∫

R2d

e2πi(x−y)ωa ((1− τ )x+ τy, ω) f(y) dy dω

(see e.g. [16], [11]).
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Of course the latter include Kohn-Nirenberg operators for τ = 0, operators with
a “right” symbol for τ = 1, and Weyl operators:

f ∈ S(Rd) −→ W af(x) =

∫

R2d

e2πi(x−y)ωa

(

x+ y

2
, ω

)

f(y) dy dω ∈ S(Rd)

for τ = 1/2 (see e.g. [11], [17], [18], [21]).

We also recall the important formula

(2.16) La
φ,ψ = W b, with b = a ∗Wig(ψ, φ),

expressing a localization operator in terms of a Weyl operator, so that all operators
considered here are actually pseudo-differential.

Formula (2.10) specializes in each case of (2.11) to a formula connecting a
time-frequency representation and a particular class of pseudo-differential opera-
tor. More precisely we have the following proposition.

Proposition 2.6. For f, g ∈ S(Rd), a ∈ S(R2d) the following equalities hold (with
obvious extensions to more general spaces):

(2.17)

i) (g, La
φ,ψf)L2 = (Spψ,φ(g, f), a)L2 ,

ii) (g,Aaf)L2 = (R(g, f), a)L2 ,
iii) (g,Baf)L2 = (R∗(g, f), a)L2 ,
iv) (g,W a

τ f)L2 = (Wigτ (g, f), a)L2 .

The proof is just a matter of changes to the variables and interchanging order of
integrations.

The associations defined by (2.11) and (2.17) clearly constitute the core of the
connections between time-frequency analysis and pseudo-differential theory. As far
as we know, they were stated more or less implicitly in literature only for the single
couples representation-operator without remarking that they are particular cases of
a general fact. In section 6 we shall analyze some consequences of these connections,
in particular with respect to Lp boundedness.

3. Integral of τ -Wigner transforms

This section has a qualitative character and is devoted to the description of the
motivations coming from signal analysis which justify the introduction of the new
representation Q =

∫

[0,1]
Wigτ dτ . More precisely, we shall briefly describe the

problem of the so-called “ghost” frequencies, which is of paramount importance in
applications to signal analysis. Considering for simplicity the one dimensional case,
suppose f is a signal with support in the intervals [a, b] and [c, d] (a < b < c < d),
and consider a time x near the middle point of the interval [b, c], where therefore
no frequencies are present in the signal. A very qualitative but enlightening picture
of the way the Wigner representation works at the time x is the following (see [6]).

The term f(x+ t/2)f(x− t/2) in the Wigner distribution accounts to a “folding”
of the past of the signal onto its future; frequencies are then analyzed by taking
the Fourier transform.
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For x near the middle of the interval [b, c], as supposed above, the two inter-
vals [a, b] and [c, d] will then overlap and the Wigner transform will show some
frequencies at x, which in reality do not exist.

Due to the well-known formula

Wig(f̂ , ĝ)(x, ω) = Wig(f, g)(−ω, x),

the same phenomenon appears with respect to the frequencies so that, roughly
speaking, one can say that the Wigner representation shows a “false” frequency in
the middle of any two real frequencies.

These frequencies are called “ghost” or “interference frequencies” and clearly
represent a considerable problem in the physical interpretation of the Wigner dis-
tribution; see [6] and [7] for details.

Figure 2 shows this phenomenon for a signal of the type we have described (with
two frequencies ω = 2 and ω = 4 appearing in the intervals [−6,−4] and [3, 5],
respectively); of course, for more complicated signals the “ghost” frequencies will
also show much more complicated patterns.

Figure 2. Wig(f)(x, ω)

If we now consider the Wigτ representations, due to the presence of the param-
eter, the ghost frequencies are “split” and “shifted” with every τ , whereas, thanks
to the support property (Proposition 5.5), the real frequencies appear for all τ at
the “right” place. Figure 3 shows the situation for the Wigτ with τ = 0.8 applied
to the same signal as before.
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Figure 3. Wig0.8(f)(x, ω)

We profitably used this fact to construct the form

Q(f)(x, ω) =

∫

[0,1]

Wigτ (f)(x, ω)dτ,

which enjoys the same good properties of the Wigner distribution (support property,
marginal conditions, etc.) but shows a very reduced presence of “ghost frequencies”.

This is actually possible because, in taking the integral over τ , the ghost frequen-
cies of the Wigτ distributions “spread” on the time-frequency plane and therefore
do not “sum”, whereas the real frequencies sum one another with every τ . The ef-
fect is that the amplitudes of the ghost frequencies will result in being considerably
reduced in comparison to the amplitudes of the real frequencies, and therefore the
pictures furnished by the representation will be much nearer to physical reality.

Figure 4 shows the result obtained by applying the Q representation to the same
signal as in the pictures above: as we can see the ghost frequencies have practically
disappeared. (All pictures were obtained with the use of MATLAB using a grid of
800× 250 points and approximating the integrals by a step of 0.01.)

We also remark that even the real frequencies are better localized in their time
intervals, avoiding a certain “blurred margin effect” of the Wigner representation
(Figure 2) also due to a question of overlapping supports.
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Figure 4. Q(f)(x, ω) =
∫

[0,1]
Wigτ (f)(x, ω) dτ

4. Precise estimates of interference reduction

The drastic reduction of the ghost frequencies obtained with the Q representation
was shown in the previous section in a pure graphical way. Although the graphical
aspect is essential for most applications, it would be desirable to define the problem
in mathematical terms and obtain a quantification of this effect in a more precise
way.

As far as we know, in the literature this problem has not been put, up to now,
in a satisfying and well-defined mathematical form. We propose in this section a
possible mathematical formalization and then apply our framework to compare the
behavior of the Wigner and the Q representations however, postponing to a further
work a deeper study of the subject.

Once a precise concept of interference is defined, the most simple way to proceed
would be to fix a single “model” signal containing two frequencies and evaluate
their interference with respect to some fixed norm. However such a test would
turn out to be extremely dependent on the chosen signal and would have a limited
significance.

On the other hand a definition of interference applicable for all signals in L2(Rd)
would present some essential problems out of the aim of this section.

In the following we therefore consider a set of test signals large enough to give
general information and for which a simple notion of interference can be defined.

For simplicity we consider the one dimensional case d = 1. We define as test
signals the functions

(4.1) gn(x) = e2πinxe−πx2
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with x ∈ R, n ∈ Z (i.e. we take modulations µng0 of the standard gaussian

g0 = e−πx2

).
The following proposition guarantees that every signal in L2(R) can be arbitrarily

well approximated in the L2 norm (at least) on unitary intervals by our test signals,
a fact that is interpreted in the sense that the chosen set of test signals is not “too
small”; the proof is an easy exercise.

Proposition 4.1. For all a ∈ R, the set {gn = µng0 : n ∈ Z} is a base of
L2(a, a+ 1).

For the set of test signals we then define interference as follows.

Definition 4.2. Given a time-frequency representation Ψ : L2(R) × L2(R) →
L2(R2), belonging to the Cohen class, we define as ghost frequency or interference
every function of the type

Ψ(gn, gm)

for n 
= m and gn, gm as in (4.1). The terms Ψ(gn, gn) are considered, on the other
hand, as the representation of the “true” frequency n.

One can easily verify in “model cases”, such as e.g. the one in the previous
section, where true and ghost frequencies defined as above exactly correspond to
what is suggested by intuition.

We now need a way to compare the strength by which true frequencies and
interferences are represented by Ψ. The following lemma will justify our procedure.

Lemma 4.3. Every representation Ψ in the Cohen class satisfies:

(4.2)
i) Ψ(µαf, µαg)(x, ω) = Ψ(f, g)(x, ω − α),
ii) ‖Ψ(f, µαg)‖L2 = ‖Ψ(f, µ−αg)‖L2 ,

with f, g ∈ L2(R) and α ∈ R.

Proof. The following equality for the Wigner representation is easily verified:

(4.3) Wig(µβf, µαg)(x, ω) = e2πi(β−α)xWig(f, g)

(

x, ω −
β + α

2

)

.

From the fact that the convolution commutes with translations, we obtain part i)
of (4.3) for α = β and part ii) for β = 0. �

From i) of Lemma 4.3 we have

Ψ(gn, gm)(x, ω) = Ψ(µng0, µnµm−ng0)(x, ω) = Ψ(g0, µm−ng0)(x, ω − n)

and then, from ii) of the same lemma, we have that

‖Ψ(gn, gm)‖L2 = ‖Ψ(g0, µm−ng0)‖L2

only depends on the absolute value |m− n|.
A natural measure of the interference is then given by the sequence of the ratios

(4.4) αk(Ψ) =
‖Ψ(gn, gm)‖L2

‖Ψ(g0, g0)‖L2

with k = |m− n|.
For the Wigτ representations the (αk) sequence is easily calculated.
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Proposition 4.4. The following holds for the Wigτ transform:

i) The transform of modulated gaussians is a generalized modulated gaussian;
more precisely, for all n,m ∈ Z, setting c = 2τ2 − 2τ + 1, we have

Wigτ (gn, gm)(x, ω)

= c−d/2e2πi(n−m)xe2πi(ω−nτ+(τ−1)m)(2τ−1)x/ce−πx2/ce−π(ω−nτ+(τ−1)m)2/c,

ii) ‖Wigτ (gn, gm)‖L2 = 2−d/2 for every τ ∈ [0, 1],
iii) αk(Wigτ ) = 1 for all k ∈ N and τ ∈ [0, 1].

Proof. Using the technique of completion of squares, a straightforward computation
yields the expression of the τ -Wigner in i). The norm evaluation ii) is a direct
consequence of i), and αk = 1 then follows trivially. �

As we see, the bad behavior showed with respect to the ghost frequencies is
reflected by the fact that αk(Wigτ ) do not even show a decay as k gets larger. It is
interesting to remark that in this case only the typical irregular outline of the ghost
frequencies make them recognizable, but their energy (i.e. their L2 norm) equals
that of the true frequencies. A different situation is shown by the Q representation.

Proposition 4.5. For the Q representation we have:

i) ‖Q(gn, gm)‖L2 =
∥

∥

∥

sin(πηt)
πηt e−

π
2 (t2+(η−k)2)

∥

∥

∥

L2
, where k = |n−m|,

ii) αk(Q) < 1 and limk→∞ αk(Q) = 0.

Proof. i) We have

‖Q(gn, gm)‖L2 =

∥

∥

∥

∥

F

[

sin(πηt)

πηt

]

∗Wig(gn, gm)

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

sin(πηt)

πηt
F−1 [Wig(gn, gm)] (t, η)

∥

∥

∥

∥

L2

,

where, as can be directly calculated,

F−1 [Wig(gn, gm)] (t, η) = 2−d/2eπi(n+m)te−
π
2 (t2+(η+n−m)2).

ii) αk(Q) < 1 follows immediately from i), and limk→∞ αk(Q) = 0 is a conse-
quence of Lebesgue’s dominated convergence theorem. �

In Figure 5 the rapid decay of the coefficients αk(Q) is shown by a numerical
computation of the first 50 terms.
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Figure 5. αk(Q) for k ≤ 50

For a given representation Ψ, the information given by the sequence αk(Ψ),
although detailed, can be easier to handle if it is summarized in a single index. To
keep the necessary flexibility we introduce the following definition.

Definition 4.6. Let γ = (γk)k∈N, γk ≥ 0, such that
∑∞

k=1 γk = 1. For a represen-
tation Ψ in the Cohen class, we define as index ιγ(Ψ) of interference the value

ιγ(Ψ) =
∞
∑

k=1

γkαk(Ψ),

with αk(Ψ) as in (4.4).

Remark that ιγ(Ψ) = 1 if, for all k, αk(Ψ) = 1, and ιγ(Ψ) = 0 in the ideal case
where αk(Ψ) = 0 for all k.

We remark that the dependence of the index ιγ(Ψ) on the sequence γ makes it a
quite flexible tool. For example, for fixed N ∈ N, if γk = 1/N for k ≤ N and γk = 0
for k > N , then ιγ(Ψ) is the usual average of the interference ratios of the first N
differences of frequencies. In this case, whereas obviously ιγ(Wigτ ) = 1 for every
τ ∈ [0, 1], we have for the integrated representation that ιγ(Q) is decreasing and
infinitesimal when N goes to infinity; for example, in the case N = 50 described in
Figure 5, we get the value ιγ(Q) = 0.2563.

5. Basic properties of τ -Wigner and Q representations

We begin with a justification of Figure 1 by a calculation of the τ -Wigner form
in the end points and middle point of the interval [0, 1].

Proposition 5.1. For the Wigτ representation we have the following three remark-
able cases:

(5.1)

a) Wig0 = R = Spδ,1,
b) Wig1/2 = Wig,

c) Wig1 = R∗ = Sp1,δ.
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Proof. a) The equality Wig0(f, g) = R(f, g) is trivial by putting τ = 0 in the

expression of Wigτ . We now prove that R(f, g) = Vδf(x, ω)V1g(x, ω).
We recall that considering conjugate-linear functionals, the point measure δ is

defined by (δ, ϕ) = ϕ(0), with ϕ ∈ S(Rd). For χ ∈ S(R2d), setting TaF (t, x) =
F (t, t−x) and indicating with F2 the partial Fourier transform with respect to the
second argument, we have

(Vδf, χ) = (F2Ta(f ⊗ δ), χ) = (f ⊗ δ, Ta
−1F2

−1χ) = (f, (δ, Ta
−1F2

−1χ))

= (f,
∫

Rd e
2πixωχ(x− t, ω) dω |t=0) = (f,

∫

Rd e
2πixωχ(x, ω) dω)

=
∫

R2d e
−2πixωf(x)χ(x, ω) dxdω = (e−2πixωf(x), χ(x, ω))

for f ∈ L2(Rd). Therefore

(5.2) Vδf(x, ω) = e−2πixωf(x).

Now by relation (5.2) we obtain

V1g(x, ω) = e−2πixωV1̂ĝ(ω,−x) = e−2πixωVδ ĝ(ω,−x) = ĝ(ω).

We conclude that VδfV1g(x, ω) = e−2πixωf(x)ĝ(ω).
b) is obvious.
c) is analogous to a). �

Definition 5.2. A time-frequency representation Ψ(f)(x, ω) is said to satisfy the
Marginal distributions condition if

∫

Rd

Ψ(f)(x, ω)dx = |f̂(ω)|2 and

∫

Rd

Ψ(f)(x, ω)dω = |f(x)|2

for every f ∈ L2(Rd).

As |f(x)|2 and |f̂(ω)|2 represent the distributions of the energy of f with respect
to the time x and the frequencies ω, respectively, they should be the marginal
distributions of any ideal time-frequency representation, and therefore the previous
definition expresses a quite natural requirement.

Proposition 5.3. The marginal conditions are respected by:
a) the representations Wigτ (f) for every τ ∈ [0, 1],
b) the integrated representation Q(f)(x, ω) =

∫

[0,1]
Wigτ (f)(x, ω)dτ .

Proof. a) By simple changes of variables we get
∫

Rd

Wigτ (f)(x, ω) dx =

∫

R2d

e−2πitωf(x+ τt)f(x− (1− τ )t) dt dx

=

∫

R2d

e−2πitωf(y)f(y − t) dt dy

=

∫

R2d

e−2πiyωf(y)e−2πisωf(s) ds dy

= |f̂(ω)|2.

(5.3)

In order to prove the other Marginal distribution condition we observe that

(5.4) Wigτ (f)(x, ω) = Wig1−τ (f̂)(ω,−x);
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in fact, we have

Wig1−τ (f̂)(ω,−x) =

∫

Rd

e2πitxf̂(ω + (1− τ )t)f̂(ω − τt) dt

=

∫

Rd

e−2πiω(y−z)e2πit(x−y+τ(y−z))f(y)f(z) dt dy dz

=

∫

e−2πiωz̃e2πit(x+τz̃)e−2πityf(y)f(y − z̃) dy dt dz̃

=

∫

e−2πiωz̃f(x+ τ z̃)f(x− (1− τ )z̃) dz̃

= Wigτ (f)(x, ω).

Then, by (5.3) we get
∫

Rd

Wigτ (f)(x, ω) dω =

∫

Rd

Wig1−τ (f̂)(ω,−x) dω = |
ˆ̂
f(−x)|2 = |f(x)|2.

b) The marginal distributions condition for the integrated representation can
be immediately deduced from the corresponding properties of the Wigτ , just by
changing the order of integration. �

A good time-frequency distribution should not show frequencies where there are
none. This can be made precise under different aspects. As we have remarked the
“ghost frequencies” are one of these aspects. Another aspect is expressed by the
“support” property as follows.

Definition 5.4. Let H(supp f) be the convex hull of supp f and H(supp f̂) that

of supp f̂ . Let Πx and Πω be the orthogonal projections on the first and the second
factors in R

d
x × R

d
ω, respectively. A representation Ψ is said to enjoy the “support

property” if Πxsupp Ψ(f) ⊆ H(supp f) and Πωsupp Ψ(f) ⊆ H(supp f̂).

Proposition 5.5.

a) The representations Wigτ enjoy the support property for every τ ∈ [0, 1].
b) The representation Q enjoys the support property.

Proof. a) If Wigτ (f)(x, ω) is different from zero, we have by Definition 2.1 that
there exists some t ∈ R

d such that x + τt and x − (1 − τ )t belong to supp f .
Writing p = x + τt and q = x − (1 − τ )t we then have that x = τq + (1 − τ )p for
some p, q ∈ supp f , and then x ∈ H(supp f); this proves that Πx supp Wigτ (f) ⊂

H(supp f). In order to prove that Πω supp Wigτ (f) ⊂ H(supp f̂) we apply (5.4)
and the same arguments as before.

b) By Definition 2.3 if Q(f)(x, ω) is different from zero, then Wigτ (f)(x, ω) must
be different from zero for some τ , and then the result follows immediately from the
corresponding support properties of the τ -Wigner representations. �

We remark that the support property and the absence of “ghost frequencies” are
two independent ways of expressing good correspondence between the nature and
its representation. For example, all representations in the generalized spectrogram
class (with exception of the limit cases of windows δ and 1) do not have ghost
frequencies but do not enjoy the support property; see [2].

In the next part of this section we will complete the proof of the results concerning
Wigτ and Q contained in Figure 1. In particular we shall prove that Wigτ belongs
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to the Cohen class for every τ , and it is in the generalized spectrogram only for
τ = 0 and for τ = 1. Moreover, we shall show that the form Q belongs to the
Cohen class but not to the generalized spectrogram.

We start by considering Wigτ .

Proposition 5.6. The form Wigτ (f, g) belongs to the Cohen class for every τ ∈
[0, 1]. In particular,

(5.5) Wigτ (f, g)(x, ω) =
(

σ ∗Wig(f, g)
)

(x, ω)

for every f, g ∈ S(Rd), where

(5.6) σ =

{

2d

|2τ−1|d
e2πi

2
2τ−1xω for τ 
= 1

2 ,

δ for τ = 1
2

and δ is the Dirac distribution.

Proof. The case τ = 1
2 is trivial, since by definition Wig 1

2
(f, g) coincides with

Wig(f, g). Then we have to prove (5.5) for τ 
= 1
2 . In this case, applying the

inverse Fourier transform to (5.5) and taking into account the well-known relation
F−1(F ∗G) = (F−1F )(F−1G), we have to prove that

(5.7) F−1
(

Wigτ (f, g)
)

(ξ, t) = F−1σ(ξ, t) · F−1
(

Wig(f, g)
)

(ξ, t)

for every f, g ∈ S(Rd). Let us now compute F−1σ(ξ, t). Since τ 
= 1
2 , by (5.6) we

have

F−1σ(ξ, t) =
2d

|2τ − 1|d

∫

e2πixξe2πiωte2πi
2

2τ−1xω dx dω

=
2d

|2τ − 1|d

∫

e2πi(
2

2τ−1x+t)(ω+ 2τ−1
2 ξ)e−πi(2τ−1)tξ dx dω.

By the change of variables 2
2τ−1x+ t = y, ω + 2τ−1

2 ξ = ρ we then get

F−1σ(ξ, t) = e−πi(2τ−1)tξ

∫

e2πiyρ dy dρ,

and since
∫

e2πiyρ dy dρ = 1 we find

(5.8) F−1σ(ξ, t) = e−πi(2τ−1)tξ.

Let us consider the following operators:

Ts

(

F (x, t)
)

:= F
(

x+
t

2
, x−

t

2

)

and

τyG(s) := G(s− y);

we shall also write τ
[s]
y to make the shifted variable explicit. By Definition 2.1 we

then have

(5.9) Wigτ (f, g)(x, ω) = Ft→ω

(

τ
[x]

( 1
2−τ)t

(

Ts(f ⊗ g)
))

,

where f ⊗g = f(x)g(t) and the translation τ acts in the x-variable. We then define
the modulation operator by

µaG(η) := e2πiaηG(η),
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getting in particular that F−1
(

τaG(y)
)

= µa

(

F−1G
)

. As for the translation τ , we

shall also write µ
[η]
a when we need to make the modulated variable η explicit.

Now we want to compute the left-hand side of (5.7). Taking into account that
the inverse Fourier transform F−1 appearing there is performed with respect to
both variables (i.e. it is F−1

x→ξ F
−1
ω→t), we have by (5.9)

F−1
(

Wigτ (f, g)
)

(ξ, t) = F−1
x→ξ F

−1
ω→t Ft→ω

(

τ
[x]

( 1
2−τ)t

(

Ts(f ⊗ g)
))

(ξ, t)

= F−1
x→ξ

(

τ
[x]

( 1
2−τ)t

(

Ts(f ⊗ g)
))

(ξ, t)

= M
[ξ]

( 1
2−τ)t

(

F−1
x→ξ

(

Ts(f ⊗ g)
))

(ξ, t)

= e−πi(2τ−1)tξ
(

F−1
x→ξ F

−1
ω→t

(

Ft→ω Ts(f ⊗ g)
)

)

(ξ, t).

(5.10)

Since Ft→ω Ts(f ⊗ g) = Wig(f, g), by (5.8) the last computations actually show
(5.7), and then the proof is complete. �

Now we will analyze the relations between the τ -Wigner representation and the
generalized spectrogram Spφ,ψ(f, g); cf. (2.3). As it has already been recalled in
Section 2 the set of the sesquilinear forms that can be written as Spφ,ψ(f, g) for
some windows φ, ψ is a proper subclass of the Cohen class; cf. [2], [3]. We now want
to show that the τ -Wigner representation is not in the generalized spectrogram for
almost all τ . More precisely, we have the following result.

Proposition 5.7. The τ -Wigner representation Wigτ (·, ·) belongs to the general-
ized spectrogram if and only if τ = 0 or τ = 1.

Proof. The fact that Wig0 and Wig1 belong to the generalized spectrogram has
already been proved in Proposition 5.1. On the other hand, the case τ = 1

2 has
already been treated in [3], proving that Wig(f, g) cannot be written as Spφ,ψ(f, g)
for any windows φ, ψ ∈ S ′(Rd). It then remains to prove that Wigτ is not in the
generalized spectrogram for 0 < τ < 1, τ 
= 1

2 . We recall that Spφ,ψ(f, g) can be
expressed as in (2.4). Then, comparing (2.4) with (5.5), we just have to prove that

σ in (5.6) cannot be expressed as Wig(ψ̃, φ̃) for any φ̃, ψ̃ ∈ S ′(Rd). Replacing for

simplicity of notation ψ̃ and φ̃ by u and v, since we are considering the case τ 
= 1
2 ,

by (5.6) we are reduced to showing that

(5.11) Wig(u, v) 
= e2πi
2

2τ−1xω

for every u, v ∈ S ′(Rd) (we do not care about the constant 2d

|2τ−1|d
in (5.6)). Let us

suppose that there exist u, v ∈ S ′(Rd) such that

(5.12) Wig(u, v) = e2πi
2

2τ−1xω.

Then, since Wig(u, v) = Ft→ω Ts(u⊗ v), we have

u⊗ v = T−1
s F−1

ω→t

(

e2πi
2

2τ−1xω
)

.

Now, F−1
ω→t

(

e2πi
2

2τ−1xω
)

= F−1
ω→t

(

µ
[ω]

2
2τ−1x

1
)

= τ
[t]

− 2
2τ−1x

(

F−1
ω→t 1

)

= τ
[t]

− 2
2τ−1x

(δ(t)),

where we have explicitly written the variable in the Dirac distribution for clearness.
We then get

u⊗ v = T−1
s τ

[t]

− 2
2τ−1x

(δ(t)),
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and so, writing T := T−1
s ◦ τ

[t]

− 2
2τ−1x

, we have

(5.13) u⊗ v = T (δ(t)).

Observe that T : S ′(Rd) → S ′(R2d). Explicitly, T is the extension to distributions
of the transformation acting on test functions as T (ϕ(t)) = ϕ

(

2−2τ
2τ−1 t +

2τ
2τ−1x

)

so

that if w ∈ S ′(Rd), T (w) acts on χ ∈ S(R2d) as

(T (w), χ) =

(

1x ⊗ wt , cτχ

(

(2τ − 1)t− 2τx

2(1− τ )
, x

))

with cτ = 2τ−1
2−2τ .

By (5.13) we then have that for every φ, ψ ∈ S(Rd)

(u⊗ v, φ⊗ ψ) = (T (δ), φ⊗ ψ)

= cτ

(

1x ⊗ δt , ψ(x)φ

(

(2τ − 1)t− 2τx

2(1− τ )

))

= cτ

∫

ψ(x) φ
( 2τx

2τ − 2

)

dx.

Now, (u ⊗ v, φ ⊗ ψ) = (u, φ) (v, ψ); moreover, we must have u, v 
≡ 0, because
otherwise Wig(u, v) = 0, contradicting (5.12). Then there exists φ0 ∈ S(Rd) such
that (u, φ0) 
= 0. We then have that for every ψ ∈ S(Rd),

(v, ψ) = cτ

∫

φ0

(

2τx
2τ−2

)

(u, φ0)
ψ(x) dx,

and so the distribution v coincides with the function cτ (u, φ0)
−1

φ0

(

2τx
2τ−2

)

, in par-

ticular v ∈ S(Rd). Similarly, we also get u ∈ S(Rd). By the well-known mapping
property Wig : S(Rd) × S(Rd) → S(R2d) we then have Wig(u, v) ∈ S(R2d), con-
tradicting (5.12). The proof is then complete. �

Let us now pass to analyzing the form Q; cf. Definition 2.3.

Proposition 5.8. The form Q(f, g)(x, ω) =
∫

[0,1]
Wigτ (f, g)(x, ω) dτ belongs to

the Cohen class. In particular, for every f, g ∈ S(Rd) we have

(5.14) Q(f, g)(x, ω) =
(

σ ∗Wig(f, g)
)

(x, ω),

where

(5.15) σ = Fξ→x
t→ω

(

sin(πtξ)

πtξ

)

.

Proof. We already know from (5.10) that

F−1
(

Wigτ (f, g)
)

(ξ, t) = e−πi(2τ−1)tξF−1
(

Wig(f, g)
)

(ξ, t).

We then have

F−1
(

Q(f, g))(ξ, t) =
(

∫ 1

0

e−πi(2τ−1)tξ dτ
)

F−1
(

Wig(f, g)
)

(ξ, t)

=
sin(πtξ)

πtξ
F−1

(

Wig(f, g)
)

(ξ, t).
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The conclusion then follows from the well-known formula F(FG) = F(F ) ∗ F(G).

Observe that sin(πtξ)
πtξ ∈ L∞(R2d) ⊂ S ′(R2d) so that σ, cf. (5.15), belongs to S ′(R2d).

�

In order to complete the proof of the results contained in Figure 1 we only have
to prove that the form Q does not belong to the generalized spectrogram.

Proposition 5.9. The representation Q(f, g) does not belong to the generalized
spectrogram, in the sense that it does not coincide with Spφ,ψ(f, g) for any choice
of φ, ψ ∈ S ′(Rd).

Proof. Let us consider for simplicity the case d = 1. Reasoning as in the proof of
Proposition 5.7, comparing the expression of the generalized spectrogram given in
(2.4) with the one of Q in (5.14) we just have to prove that there do not exist u
and v belonging to S ′(R) satisfying

(5.16) Wig(u, v) = Fξ→x
t→ω

(

sin(πtξ)

πtξ

)

.

Let us suppose that such distributions exist. Since Wig(u, v) = Ft→ω Ts(u ⊗ v),
applying the inverse Fourier transform we get

Ts(u⊗ v) = Fξ→x

(

sin(πtξ)

πtξ

)

.

Now, sin(πtξ)
πtξ can be extended to a bounded continuous function on R

2. Then we

can perform its partial Fourier transform with respect to the ξ variable, obtaining

the fact that Fξ→x

( sin(πtξ)
πtξ

)

is a distribution that for t 
= 0 coincides with the

function
1

t
χ[− t

2 ,
t
2 ]
(x),

χ[− t
2 ,

t
2 ]

being the characteristic function of the interval
[

− t
2 ,

t
2

]

. Then by applying

T−1
s we get that for X 
= T the distribution u⊗ v is a function given by

(u⊗ v)(X,T ) =
1

X − T
· χ[−X−T

2 ,X−T
2 ]

(X + T

2

)

.

In particular, in the set A := {(X,T ) ∈ R
2 : X > 0, T < 0} the distribution

u⊗ v ∈ S ′(R2) coincides with the function 1
X−T .

Then, since u⊗ v 
≡ 0 in A, we can fix ψ0 ∈ C∞
0 (R) with support in R− in such

a way that (v, ψ0) 
= 0. We then get that, for every φ ∈ C∞
0 (R) with support in

R+,

(u, φ) =

∫
{

1

(v, ψ0)

∫

1

X − T
ψ0(T ) dT

}

φ(X) dX,

which means that the distribution u coincides with a C∞ function fu in the set
{X ∈ R : X > 0}. In the same way, we obtain that v coincides with a C∞ function
fv in the set {T ∈ R : T < 0}; we then have on the set A the factorization

fu(X) fv(T ) =
1

X − T
.
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We then have for example fu(X) v(−2) = 1
X+2 
= 0 for every X > 0, and as

fu(X) 
= 0

v(−1)

v(−2)
=

u(X) v(−1)

u(X) v(−2)
=

X + 2

X + 1

for every X > 0; that is absurd. The proof is then complete. �

6. Lp-Boundedness of forms and pseudo-differential operators

In this last section we study the behavior in the frame of Lebesgue spaces of
the τ -Wigner and Q forms, introduced in section 2, also obtaining, in view of
Proposition 2.6, results of boundedness for the corresponding τ -Weyl operators
W a

τ and their integrals TQ =
∫

[0,1]
W a

τ dτ . More precisely, we begin by observing

that we can apply Proposition 2.4, where the operators of Weyl type W a
τ and the

τ -Wigner transforms Wigτ play the role of Ta and ϕ, respectively. We then have
the following result:

Proposition 6.1. In the hypotheses of Proposition 2.4 the following are equivalent
for fixed τ ∈ [0, 1]:

a) a ∈ E → W a
τ ∈ B(E1, E2) is continuous,

b) Wigτ : E∗
2 × E1 → E∗ is continuous.

We have already introduced in section 2 the Gabor transform

(6.1) Vgf(x, ω) =

∫

Rd

f(t)g(t− x)e−2πitω dt.

In signal processing g is called the window function and f represents the signal. For
details and properties see e.g. [6], [10], [13]; a general exposition of this transform
in the context of square-integrable representations is presented in [23]. Here we
just need to recall the following well-known relation between Wigner and Gabor
transforms:

(6.2) Wig(f, g)(x, ω) = 2de4πixωVg̃f(2x, 2ω), g̃(x) = g(−x).

Later, we shall give a more general version of formula (6.2) involving the τ -Wigner
transforms.

For τ ∈ (0, 1) let us now consider the operator Aτ so defined:

Aτ : h(t) → h̃
(1− τ

τ
t
)

, with h̃(t) = h(−t).

Then, for τ ∈ (0, 1) and h ∈ Lp(Rd), p ∈ [1,+∞], we have

(6.3) ‖Aτh‖Lp(Rd) =
|τ |

d
p

|1− τ |
d
p

‖h‖Lp(Rd),

where we mean d
∞ = 0.

Lemma 6.2. For τ ∈ (0, 1),

Wigτ (g, f)(x, ω) =
1

|τ |d
e2πi

1
τ
xω

V Aτfg
( 1

1− τ
x,

1

τ
ω
)

.
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Proof. By the definition of τ -Wigner distribution and by the change of variables
x+ τt = q we obtain

Wigτ (g, f)(x,w) =
∫

Rd e
−2πitωg(x+ τt)f(x− (1− τ )t) dt

= 1
|τ |d

e2πi
1
τ
xω

∫

Rd e
−2πiq ω

τ g(q)f̃( 1−τ
τ q − 1

τ x) dq

= 1
|τ |d

e2πi
1
τ
xω

∫

Rd e
−2πiq ω

τ g(q)Aτf(q −
1

1−τ x) dq

= 1
|τ |d

e2πi
1
τ
xωV Aτfg(

1
1−τ x,

1
τ ω).

�

Let us define V τ
fg as the function

(6.4) V
τ
fg (x, ω) = V fg

( 1

1− τ
x,

1

τ
ω
)

, (x, ω) ∈ R
2d.

Then, by a change of variables, we have, for τ ∈ (0, 1),

(6.5) ‖V
τ
fg‖Lp(R2d) = |τ |

d
p |1− τ |

d
p ‖V fg‖Lp(R2d).

We recall the following result proved in [1].

Proposition 6.3. The Gabor transform

V : (g, f) ∈ Lp′

(Rd)× Lp(Rd) → V fg ∈ Lq(R2d)

is bounded if and only if q ≥ 2 and q′ ≤ p ≤ q, ( 1q +
1
q′ = 1). More precisely, in the

cases of boundeness we have

(6.6) ‖V fg‖Lq ≤ ‖g‖Lp′ ‖f‖Lp .

We can now prove that an analogous characterization on Lebesgue spaces holds
for the τ -Wigner transform:

Proposition 6.4. Let us fix q and p satisfying q ≥ 2 and q′ ≤ p ≤ q, ( 1q +
1
q′ = 1).

Then:

i) For τ ∈ (0, 1), Wigτ : Lp′

(Rd) × Lp(Rd) → Lq(R2d) is continuous; in
particular,

(6.7) ‖Wigτ (g, f)‖Lq ≤
1

|1− τ |d(
1
p
− 1

q
)

1

|τ |d(1−
1
p
− 1

q
)
‖g‖Lp′ ‖f‖Lp .

ii) For τ = 0, Wig0(g, f)(x, ω) = R(g, f)(x, ω) := e−2πixωg(x)f̂(ω) and Wig0 :

Lq(Rd)× Lq′(Rd) → Lq(R2d) is continuous; in particular,

(6.8) ‖Wig0(g, f)‖Lq ≤ ‖g‖Lq‖f‖Lq′ .

iii) For τ = 1, Wig1(g, f)(x, ω) = R(f, g)(x, ω) := e2πixωf(x)ĝ(ω) and Wig1 :

Lq′(Rd)× Lq(Rd) → Lq(R2d) is continuous; in particular,

(6.9) ‖Wig1(g, f)‖Lq ≤ ‖g‖Lq′ ‖f‖Lq .

Furthermore, for p, q in the remaining cases the τ -Wigner transform is not bounded.
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Proof. i) From Lemma 6.2, Proposition 6.3 and equations (6.5) and (6.3), we
have

‖Wigτ (g, f)‖
q
Lq = 1

|τ |dq
‖V τ

Aτf
g‖qLq = 1

|τ |dq
|1− τ |d|τ |d‖V Aτfg‖

q
Lq

≤ 1
|τ |dq

|1− τ |d|τ |d‖g‖q
Lp′

‖Aτf‖
q
Lp

= 1
|τ |dq

|1− τ |d|τ |d |τ |
dq
p

|1−τ |
dq
p

‖g‖q
Lp′

‖f‖qLp

= 1

|1−τ |
dq( 1

p
−

1
q
)

1

|τ |
dq(1− 1

p
−

1
q
)
‖g‖q

Lp′
‖f‖qLp .

ii) For τ = 0, we have

Wig0(g, f)(x, ω) =

∫

Rd

e−2πitωg(x)f(x− t) dt = e−2πixωg(x)f̂(ω) = R(g, f)(x, ω).

By the Hausdorff-Young inequality we then obtain

‖Wig0(g, f)‖
q
Lq = ‖R(g, f)‖q

Lq(R2d)
= ‖g‖q

Lq(Rd
x)
‖f̂‖q

Lq(Rd
ω)

≤ ‖g‖q
Lq(Rd

x)
‖f‖q

Lq′ (Rd
t )
,

which proves ii).
iii) For τ = 1 we have, similar to (ii),

‖Wig1(g, f)‖
q
Lq = ‖R(f, g)‖q

Lq(R2d)
= ‖f‖q

Lq(Rd
x)
‖ĝ‖q

Lq(Rd
ω)

≤ ‖f‖q
Lq(Rd

x)
‖g‖q

Lq′ (Rd
t )
,

which proves iii).
Finally, we show the non-boundedness in the remaining cases. Let us define

g(x) = e−πx2

, gλ(x) = e−πλx2

, λ > 0, x ∈ R
d.

Since

(6.10) ‖Wigτ (h, f)‖
q
Lq =

|1− τ |d

|τ |d(q−1)
‖V Aτfh‖

q
Lq ,

taking h = gλ and f = A1−τg, we obtain that

(6.11)
‖Wigτ (gλ, A1−τg)‖Lq

‖gλ‖Lp′ ‖A1−τg‖Lp

=
1

|1− τ |d(
1
p
− 1

q
)

1

|τ |d(1−
1
p
− 1

q
)

‖Vggλ‖Lq

‖g‖Lp‖gλ‖Lp′

,

since AτA1−τg = g.
A direct computation yields

(Vggλ)(x, ξ) = (λ+ 1)−
d
2 e−2πi 1

λ+1xξ g λ
λ+1

(x) g 1
λ+1

(ξ),

and therefore

‖Vggλ‖Lq =
1

(λ+ 1)d/2
‖g λ

λ+1
‖Lq

x
‖g 1

λ+1
‖Lq

ξ
=

1

(λ+ 1)d/2

( λq

λ+ 1

)− d
2q
( q

λ+ 1

)− d
2q

.

The result then follows from

(6.12) lim
λ→0+

‖Vggλ‖Lq

‖g‖Lp‖gλ‖Lp′

= +∞,

which holds for p < q′. �
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Remark 6.5. With regard to the cases τ = 0 and τ = 1, as Wig0(h, f) = R(h, f)
and Wig1 = R∗(h, f), we have that

Wig0 : Lp′

(Rd)× Lp(Rd) → Lp′

(R2d), p ≤ 2,

and

Wig1 : Lp′

(Rd)× Lp(Rd) → Lp(R2d), p ≥ 2,

are the only cases of continuity.

The previous remark then makes precise the non-continuity for τ = 0 and τ = 1
of Wig0 and Wig1. We now turn to operators, and we can prove the following:

Theorem 6.6. For τ ∈ [0, 1] let us consider the operators of Weyl type W a
τ with

symbol a ∈ Lq(R2d). Then:

i) If τ ∈ (0, 1), the quantization

(6.13) a ∈ Lq(R2d) → W a
τ ∈ B(Lp(Rd))

is continuous if and only if q ≤ 2 and q ≤ p ≤ q′, with corresponding norm
estimate

‖W a
τ ‖B(Lp) ≤ C‖a‖Lq , C > 0.

ii) If τ = 1, the quantization

(6.14) a ∈ Lq(R2d) → Ba = W a
1 ∈ B(Lp(Rd)),

cf. (2.14), is continuous if and only if p = q′ and q ≤ 2, with corresponding
norm estimate

‖W a
1 ‖B(Lq′ ) ≤ C‖a‖Lq , C > 0.

iii) If τ = 0, the quantization

(6.15) a ∈ Lq(R2d) → Aa = W a
0 ∈ B(Lp(Rd)),

cf. (2.13), is continuous if and only if p = q and q ≤ 2 with corresponding
norm estimate

‖W a
0 ‖B(Lq) ≤ C‖a‖Lq , C > 0.

Proof. i) Let us suppose at first that p 
= 1 and p 
= ∞; in this case the result
follows from Propositions 6.1 and 6.4 (with q and q′ interchanged). If p = 1
and p = ∞ we cannot apply Proposition 6.1, since it requires that E2 is
reflexive. We then analyze these cases separately, starting by proving the
continuity of (6.13). If p = 1 we must have q = 1, too. The continuity of
W a

τ : L1(Rd) → L1(Rd) for a ∈ L1(R2d) can be proved directly by a change
of variables in the integration; in particular, we have for τ ∈ (0, 1):

‖W a
τ u‖L1(Rd) ≤

∫
∣

∣

∣

∣

a
(

(1− τ )x+ τy, ω
)

u(y)

∣

∣

∣

∣

dy dω dx

=
1

|1− τ |d

∫

Rd

(
∫

R2d

∣

∣a(z, ω)
∣

∣ dz dω

)

|u(y)| dy

=
1

|1− τ |d
‖a‖L1(R2d)‖u‖L1(Rd).

(6.16)
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Regarding the case p = ∞, since we must again have q = 1, the continuity
follows immediately from

‖W a
τ u‖L∞(Rd) ≤

1

|τ |d
‖a‖L1(R2d)‖u‖L∞(Rd).(6.17)

In order to complete the proof of the results in i) we only have to prove the
non-continuity of (6.13) when p = 1 or p = ∞. For these values of p, let us
suppose that the map (6.13) is continuous for some q ∈ (1,∞]. Then, since
it is also continuous for p = 2 and q = 2, by interpolation we would also
deduce the continuity of (6.13) for some p ∈ (1,∞) and q > min{p, p′},
where we already know that we do not have boundedness.

ii) For τ = 1 and q 
= 1, the continuity result follows from Propositions 6.1 and
6.4 (with q and q′ interchanged), while the non-continuity is a consequence
of Proposition 6.1 and Remark 6.5 (with q and q′ interchanged). In the
cases q = 1 we cannot apply Proposition 6.1, since it requires that E2 is
reflexive while Lq′ = L∞ is not. The continuity ofW a

1 : L∞(Rd) → L∞(Rd)
for a ∈ L1(R2d) can be proved directly:

(6.18) ‖W a
1 u‖L∞(Rd) ≤ ‖a‖L1(R2d)‖u‖L∞(Rd).

The non-continuity in the cases when we cannot apply Proposition 6.1 can
be proved as in i).

iii) For τ = 0 and q 
= 1, the continuity result follows from Propositions 6.1 and
6.4 (with q and q′ interchanged), while the non-continuity is a consequence
of Proposition 6.1 and Remark 6.5 (with q and q′ interchanged). In the
case q = 1 we cannot apply Proposition 6.1, since it requires that E2 is
reflexive. The continuity of W a

0 : L1(Rd) → L1(Rd) for a ∈ L1(R2d) can be
proved directly:

‖W a
0 u‖L1(Rd) ≤

∫
∣

∣

∣

∣

a
(

x, ξ
)

u(y)

∣

∣

∣

∣

dy dξ dx

=

∫

Rd

(
∫

R2d

∣

∣a(x, ξ)
∣

∣dx dξ

)

|u(y)| dy

= ‖a‖L1(R2d)‖u‖L1(Rd).

(6.19)

Also in this case, when we cannot apply Proposition 6.1 we can prove the
non-continuity as in i). �

Let us remark that, in the previous theorem, the cases of non-continuity of the
maps (6.13), (6.14) and (6.15) mean that this map cannot be defined everywhere
on Lq(R2d); i.e. there exists a symbol a ∈ Lq(R2d) for which W a

τ is not bounded
on Lp(Rd). This is actually an immediate consequence of the following general
proposition.

Proposition 6.7. The correspondence of operators of Weyl type a ∈ Lq(R2d) →
W a

τ ∈ B(Lp(Rd)), τ ∈ [0, 1], is continuous if and only if it is everywhere defined.

Proof. Suppose that aj → a in Lq(R2d) and there exists A ∈ B(Lp(Rd)) such that
W

aj
τ → A in B(Lp(Rd)). Then aj → a in S ′(R2d) and, therefore, from (2.17),

A = W a
τ . The graph of the τ -Weyl correspondence is then closed, and the assertion

is an immediate consequence of the closed graph theorem. �
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Remark 6.8. Theorem 6.6 provides necessary and sufficient conditions for the bound-
edness of τ -Weyl quantizations, for every τ ∈ [0, 1]. We remark that in the case
τ = 0 the sufficiency was already proved in [15].

Finally, using the continuity of the map a → W a
τ proved in Theorem 6.6, we can

show that the bounded operators above are actually compact.

Theorem 6.9. In the same hypotheses as in Theorem 6.6 the operators of Weyl
type W a

τ is compact on Lp(Rd).

Proof. Let a ∈ Lq(Rd) and let us approximate a with a compactly supported func-
tion a0. Let φ ∈ C∞

c (Rd) and consider the associated approximate identity φj ,

j ∈ N. Then a0 ∗ φj ∈ C∞
c (Rd) so that the kernel of the operator W

a0∗φj
τ is in

S(Rd). It follows that W
a0∗φj
τ is a regularizing operator on S ′(Rd) and therefore a

compact operator on Lp(Rd). As a0 ∗ φj approximate a in Lp(Rd), from Theorem
6.6 we have that W a

τ is compact. �

Let us now consider the integral form of the type

Q = Q(g, f)(x, ω) =

∫

[0,1]

Wigτ (g, f)(x, ω) dτ,

and the corresponding associated operator T a
Q having symbol a defined in view of

relation (2.10) as usual:

(T a
Qu, v)L2(Rd) = (a,Q(v, u))L2(R2d).

We can then state the following result about sufficient conditions for the bounded-
ness of T a

Q. The interesting point in them is that, on the contrary to what happens
with other types of operators, the validity of the boundedness property is dependent
on the dimension d of Rd. We leave to a further paper the interesting investigation
of whether these conditions are a characterization of the boundedness property, and
therefore the restrictions in dependence on the dimension are essential or not.

Theorem 6.10. Let us fix q ≤ 2 and p satisfying

max
{ dp

d+ p
,

dp′

d+ p′

}

< q ≤ min{p, p′},

where p′ is the conjugate of p, i.e. 1
p + 1

p′
= 1, and d is the dimension of the space.

Then the quantization

(6.20) a ∈ Lq(R2d) → T a
Q ∈ B(Lp(Rd))

is continuous, with corresponding norm estimate

‖T a
Q‖B(Lp) ≤ C‖a‖Lq , C > 0.

Proof. According to Proposition 2.4 where the operator T a
Q and the integral form

Q(g, f) play the role of Ta and ϕ, respectively, it follows that the conditions

i) a ∈ E → T a
Q ∈ B(E1, E2) is continuous,

ii) Q : E∗
2 × E1 → E∗ is continuous

are equivalent. To obtain our statement it suffices to prove condition ii) when

E∗ = Lq′(R2d), q′ ≥ 2, E1 = Lp(Rd) and E∗
2 = Lp′

(Rd). Since for hypothesis
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q′ ≥ max{p, p′}, from Proposition 6.4 i) it follows that

‖
∫

[0,1]
Wigτ (g, f) dτ‖Lq′ ≤

∫

[0,1]
‖Wigτ (g, f)‖Lq′ dτ

≤ ‖g‖Lp′ ‖f‖Lp

∫ 1

0
1

|1−τ |
d( 1

p
−

1
q′

)

1

|τ |
d(1− 1

p
−

1
q′

)
dτ.

The last integral converges if and only if

(6.21)

{

1
p − 1

q′ < 1
d ,

1− 1
p − 1

q′ < 1
d ;

that means

max
{ dp

d+ p
,

dp′

d+ p′

}

< q .

�

Remark 6.11. In the case d = 1 we get max{ p
p+1 ,

p′

p′+1} < 1 for every p, and we

obtain that the integral operator with symbol in Lq belongs to B(Lp) for q ≤ p ≤ q′.

Remark 6.12. In the case d = +∞ (d tends to +∞), we have max{p, p′} ≤ q ≤
min{p, p′}, that means q = 2, so the integral operator with symbol in L2 belongs
to B(L2) for every d.
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