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Time-frequency super-resolution with superlets
Vasile V. Moca1,3, Harald Bârzan1,2,3, Adriana Nagy-Dăbâcan1 & Raul C. Mureșan 1✉

Due to the Heisenberg–Gabor uncertainty principle, finite oscillation transients are difficult to

localize simultaneously in both time and frequency. Classical estimators, like the short-time

Fourier transform or the continuous-wavelet transform optimize either temporal or frequency

resolution, or find a suboptimal tradeoff. Here, we introduce a spectral estimator enabling

time-frequency super-resolution, called superlet, that uses sets of wavelets with increasingly

constrained bandwidth. These are combined geometrically in order to maintain the good

temporal resolution of single wavelets and gain frequency resolution in upper bands. The

normalization of wavelets in the set facilitates exploration of data with scale-free, fractal

nature, containing oscillation packets that are self-similar across frequencies. Superlets

perform well on synthetic data and brain signals recorded in humans and rodents, resolving

high frequency bursts with excellent precision. Importantly, they can reveal fast transient

oscillation events in single trials that may be hidden in the averaged time-frequency spectrum

by other methods.
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T
ime-series describing natural phenomena, such as sounds,
earth movement, or brain activity, often express oscillation
bursts, or “packets,” at various frequencies and with finite

duration. In brain signals, these packets span a wide range of fre-
quencies (e.g., 0.1–600Hz) and temporal extents (10−2–102 s)1,2, and
these signals were proposed to have a fractal, scale-free nature3–7,
whereby their properties are self-similar across different timescales/
frequencies. Identifying the frequency, temporal location, duration,
and amplitude of finite oscillation packets with high precision is a
significant challenge.

Time-frequency (TF) analysis of digitized signals is tradition-
ally performed using the short-time Fourier transform (STFT)8,
which computes Fourier spectra on successive sliding windows.
Long windows provide good frequency resolution but poor
temporal resolution, whereas short windows increase temporal
resolution at the expense of frequency resolution. This is the
effect of the Heisenberg–Gabor uncertainty principle9 or the
Gabor limit10, i.e., one cannot simultaneously localize precisely a
signal in both time and frequency11. Frequency resolution is
proportional to window size, as defined by the Rayleigh
frequency12,13. Therefore, shortening the window to gain tem-
poral resolution leads to a degradation of frequency resolution
(Fig. 1a, left)14.

For a given window size, the STFT has fixed frequency reso-
lution but its temporal precision relative to period decreases with
increasing frequency (Fig. 1a, right), i.e., as frequency increases,
the size of an oscillation packet spanning a finite number of cycles
is decreasing relative to the fixed analysis window size. This is
especially problematic in the analysis of scale-free, fractal-like
signals that contain oscillation bursts which are self-similar across
frequencies. To overcome this limitation multiscale, also called
multiresolution15,16 techniques have been introduced, like the
continuous-wavelet transform (CWT). The CWT provides good
relative temporal localization by compression/dilation of a
mother wavelet as a function of frequency11,14. A popular wavelet
for TF analysis is the Morlet17,18, defined as a plane wave mul-
tiplied by a Gaussian envelope (see Supplementary Fig. 1). The
original Morlet wavelet contains two terms, the second being a
normalization constant to render the wavelet admissible (i.e., to
remove its mean)18. In practice, when the wavelet is wide enough,
this constant becomes negligible, and one can define the modified
Morlet (also called Gabor) wavelet, as:

ψf ; c tð Þ ¼ 1
Bc

ffiffiffiffi

2π
p e

� t2

2B2c ej2πft ð1Þ

Bc ¼ c
ksdf

ð2Þ

where, f is the central frequency, c is the number of cycles of the
wavelet, Bc is the time spread parameter (in Hz−1= s), control-
ling the time variance of the wavelet19. The time spread para-
meter is inversely proportional to the variance in frequency, i.e., a
smaller Bc spreads the energy in a wider frequency band, and vice
versa20. In Eq. (2), we set Bc such that the plane wave spans c full
cycles within ksd SDs of the Gaussian envelope. Throughout the
rest of the study, we set ksd= 5. In practice, ksd is a design choice
and is almost never changed.

The Morlet wavelet does not have compact support but it has
other advantages, such as optimal joint TF concentration19. In
practice, the Gaussian decays dramatically outside a range of ±3
SDs, such that in numerical implementation one considers a
Morlet window spanning 6 SDs (see Supplementary Fig. 1). A
Morlet wavelet with higher time spread parameter contains more
cycles, is wider in time, but has a narrower frequency response
(narrow frequency bandwidth). Here we will use Morlet wavelets
for TF analysis, but other choices are also possible.

The normalization of the wavelet is an important aspect to
consider because it determines the ability of the time-scale (TS)
representation to express different properties of the data21. When
the wavelet is normalized to unit energy, the representation spreads
the energy captured by the wavelet over its temporal extent and its
frequency bandwidth15. As the frequency bandwidth increases as
the wavelet compresses, it follows that the representation of an
oscillation burst which is progressively compressed in time (increase
in frequency) becomes progressively spread out in frequency, i.e., it
is diluted out. This is detrimental if one desires a scale-free repre-
sentation, whereby an oscillation burst with constant peak ampli-
tude is represented with the same peak magnitude, independent of
its frequency. Scale-free representations are especially useful for data
that have a fractal, scale-free nature, such as brain signals, where
oscillation bursts can be self-similar across frequencies.

Here we use a wavelet in Eq. (1) that is normalized to the unit
integral of the modulus rather than to unit energy. This nor-
malization enables the estimation of the instantaneous power at
scale (or power captured by wavelet)21 in a way that is inde-
pendent of frequency, being widely used in wavelet ridge
detection11,22,23. The main advantage of this normalization is
that, rather than focusing on conservation of energy, wavelets
become better suited to detecting events that are self-similar
across scales, i.e., such events receive the same “intensity” in the
representation if they have the same shape and same peak
amplitude but are simply scaled (compressed/dilated). For an in-
depth discussion, please refer to Supplementary Information—“II.
Fundaments of spectrograms and scalograms.”
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Fig. 1 Sketch of time-frequency uncertainty in Fourier (STFT), wavelet (CWT), and superlet (SL) analysis. a Time and frequency resolution of the STFT

for a short (top) and wide (bottom) window at three different frequencies. Temporal resolution is expressed in time (left) or in oscillation cycles at the

target frequency (right). b Same as in a but for wavelets (CWT). Here, the number of cycles is fixed across the spectrum but the spanned temporal window

decreases with frequency increase. c Superlets of order 2 (SLT). Time-frequency super-resolution is achieved by combining short, large-bandwidth

wavelets, with longer, narrow-bandwidth wavelets.
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In practice, the STFT and CWT are used to generate TF and TS
representations, respectively, by computing the spectrogram
(squared modulus STFT) and the scalogram (squared modulus
CWT). For simplicity of the notation, throughout the rest of the
paper we will use STFT-spectrogram and CWT-scalogram
interchangeably. Also, we will convert scale to frequency to
facilitate comparisons.

The CWT localizes well the oscillation packets in time, but
trades in frequency resolution as frequency increases24,25

(Fig. 1b). Neighboring high-frequency components cannot be
distinguished, i.e. the representation is redundant across wavelets
with close central frequencies in the high range. For this reason,
analyses are often performed using a dyadic representation, like
in the discrete wavelet transform (DWT), where frequencies are
represented as powers of 224,26. This representation however
resolves the high frequencies very poorly.

Both the STFT and CWT (or DWT) have significant limita-
tions. The STFT provides good frequency resolution but poor
relative temporal resolution at high frequencies, whereas the
CWT maintains a good relative temporal resolution throughout
the spectrum but degrades in frequency resolution and becomes
redundant with increasing frequency. This TF uncertainty ham-
pers analysis of neuronal signals, which have rich TF content27,28.

To overcome the limitations of the STFT, it has been proposed
to combine Fourier-based spectrograms obtained with a short
and a long window29, or with a set windows with varying sizes30.
This technique was termed super-resolution31,32, because it can
localize oscillation packets simultaneously in both time and fre-
quency better than it is possible with any single spectrogram. A
similar idea, using multiple measurements or estimates, is applied
in super-resolution methods used in imaging33,34.

To increase resolution, multiple spectrograms can be combined
by computing their geometric mean (GM)29, which is equivalent
to the minimum mean cross-entropy (MMCE)30,35. The latter is
optimal with respect to an entropic criterion30. While any such
combination of representations can be called MMCE, for his-
torical reasons we will use the term MMCE to refer to the geo-
metric combination of spectrograms throughout the rest of the
paper. Here we use the minimum mean cross-entropy technique
in combination with wavelets to introduce an approach that
reveals a sharper localization of oscillation packets than can be
achieved with STFT and CWT.

Other high-resolution techniques are based on directionally
smoothed Wigner–Ville distributions (WVD)15. The WVD pro-
vides the highest possible TF resolution, but in multi-component
signals it suffers from cross-terms (TF artifacts) that render it
unusable for some practical applications32. The WVD can be
smoothed with a variety of kernels and an infinite number of TF
representations can be obtained, including the spectrogram.
When the kernel is a unit modulus “directional” filter, the
smoothed WVDs are called Cohen class36, which has many
nice properties, including preservation of marginals. Among
the directionally smoothed WVDs, those based on the
Choi–Williams (CW)37 and Born–Jordan (BJ)38 kernels are
among the most popular.

Here we introduce a high-resolution technique based on
wavelet sets and compare its performance to that of the classical
STFT (spectrogram) and CWT (scalogram), and of other high-
resolution techniques, such as MMCE, CW, and BJ. The com-
parison will be mainly performed on brain signals and conclu-
sions should be interpreted within this context.

Results
Superlets. In structured illumination microscopy, one uses a set
of known illumination patterns34 to obtain multiple measure-

ments that are combined to achieve super-resolution. Similarly, in
signal analysis one can combine multiple estimates by computing
spectrograms with multiple windows29,30. The technique pro-
posed here employs multiple wavelets to detect localized TF
packets better than a single wavelet does.

The method can be formalized as follows. A base wavelet, e.g.,
Morlet with a fixed number of cycles, provides multiscale in the
standard sense, with constant relative temporal resolution but
degrading frequency resolution (increased redundancy) as the
central frequency of the wavelet increases. By increasing the time
spread parameter of the wavelet (more cycles), one increases
frequency resolution (Fig. 1b) but loses temporal resolution. To
increase resolution, we propose to combine short wavelets having
high temporal resolution (small number of cycles, low time
spread parameter) with longer wavelets, having high-frequency
resolution (larger number of cycles, lower temporal resolution)
(Fig. 1c), in the same manner this has been done with
spectrograms29,30.

A “superlet” (SL) is defined as a set of wavelets with a fixed
central frequency, f, and spanning a range of different cycles
(progressively constraining the bandwidth):

SLf ; o ¼ ψf ; cjc ¼ c1; c2; ¼ ; co

n o

ð3Þ

where, o is the “order” of the SL, and c1, c2,…, co are the number
of cycles for each wavelet in the set. A SL of order 1 is a single
(base) wavelet with c1 cycles. In other words, a SL is a finite set of
o wavelets spanning multiple bandwidths at the same central
frequency, f. The order of the SL represents the number of
wavelets in the set. The number of cycles defining the wavelets in
the SL set can be chosen multiplicatively or additively. In a
multiplicative SL, ci= i · c1, whereas in an additive SL ci= c1+ i
− 1, for i= 2,…, o. Unless specified otherwise, here we will always
operate with multiplicative SLs.

We define the response of a SL to a signal, x, as the GM of the
responses of individual wavelets in the set:

R SLf ; o

h i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q

o

i¼1

R ψf ; ci

h i

o

s

ð4Þ

where, R[ψf,ci] is the response of wavelet i to the signal, i.e., the
complex convolution (for complex wavelets, such as Morlet):

R ψf ;ci

h i

¼
ffiffiffi

2
p

� x � ψf ; ci
ð5Þ

where, * is the complex convolution operator and x the signal.
The SL is an estimator of the oscillation packets present in the
signal at the central frequency, f, of the SL. To estimate
magnitude, one computes the GM of response magnitudes on
individual wavelets. To compute a scalogram, the magnitude of

the SL is simply squared. The
ffiffiffi

2
p

term in Eq. (5) is used only for
analytic wavelets, e.g., the complex Morlet or Gabor. The reason
is that the analytic wavelet recovers only half the power of a real
signal. For a proof, see Supplementary Information—“II. Funda-
ments of spectrograms and scalograms”.

The SL transform (SLT) of a signal is computed analogously to
the CWT, except that one uses SLs instead of wavelets. A SLT
with SLs of order 1 is the CWT. As will be shown next, the SLT
with orders >1 is a less redundant, sharper representation of the
signal than the corresponding CWT. For a rigorous analytical
treatment of SLs, please refer to Supplementary Information
—“III. Superlets and redundancy suppression: towards
multiscale TFRs”.

Adaptive SLs. At low central frequencies, single wavelets (i.e., SLs
of order 1) may provide sufficient TF resolution. Indeed, the
CWT is less redundant at low than at high frequencies24.
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Adaptive SLs (ASLs) adjust their order to the central frequency to
compensate the increasing wavelet bandwidth with increasing
frequency. In an adaptive SLT (ASLT), one starts with a low order
for estimating low frequencies and increases the order as a
function of frequency to achieve an enhanced representation in
both time and frequency across the entire frequency domain, as
follows:

ASLf ¼ SLf ; o o ¼ a fð Þj ð6Þ

where, a(f) is a monotonically increasing function of the central
frequency, having integer values. A simple choice is to vary the
order linearly:

a fð Þ ¼ omin þ omax � ominð Þ � f � fmin

fmax � fmin

� �

ð7Þ

where, omin is the order corresponding to the smallest central
frequency, fmin, omax is the order corresponding to the largest
central frequency, fmax, in the TF representation, and [] is the
nearest integer (round) operator. We recommend using the ASLT
when a wide frequency range needs to be resolved and the SLT
for narrower bands. The parameters omin and omax can be com-
puted analytically, for certain design parameters. It can be shown
that the ASLT can achieve a constant absolute bandwidth. For
more information, see Supplementary Information—“III. Super-
lets and redundancy suppression: towards multiscale TFRs”). In a
constant absolute bandwidth configuration, the ASLT provides
TF representations that are more similar to the MMCE.

The ASLT may introduce “banding” in the representation due
to the discrete jumps of the order of the SL as the frequency
increases. To overcome this issue, a flavor of SLs may be used,
called fractional SLs, where one uses the weighted GM in the SL
formula, such that the order can be a fractional number39. This
enables the continuous and smooth variation of the order. The
fractional ASLT (FASLT) provides sharp representations across
the entire frequency domain39.

Operating principle of SLs. We will first illustrate the basic
principle behind SLs by considering a known set of packets
composed of seven sinusoidal cycles. A target oscillation packet,
T, is composed of a finite number of cycles at a target central
frequency. We define two additional oscillation packets: a tem-
poral neighbor NT, having the same frequency, but shifted in time
with a temporal offset Δt, and a frequency neighbor NF, at the
same location in time, but shifted with a frequency offset Δf
(Fig. 2a, top). For convenience, all packets have an amplitude of 1.

An example instantiation of this scenario is shown in Fig. 2a,
bottom, for a target frequency of 50 Hz in a signal sampled at 1
kHz. We next evaluated how the presence of NF or that of NT

influences the estimation at the location of T. In other words,
without T being present, we systematically moved NF in
frequency or NT in time and computed their contribution
(leakage) to the estimate at the TF location of T (Fig. 2b). As
estimators, we initially considered a wavelet with c= 3 cycles and
a multiplicative SL with c1= 3 and o= 5. The bandwidth of the
wavelet was large, with a broad frequency response around the
target frequency of T, indicating that T was hard to distinguish
from NF over a large frequency domain (Fig. 2b, top). By contrast,
the SL significantly sharpened the frequency response, reducing
frequency cross-talk between NF and T. Along the temporal
dimension, when NT was shifted in time away from the target’s
location (time offset 0), the response of both the wavelet and the
SL dropped sharply after half the size of the target packet (3.5
cycles) (Fig. 2b, bottom). This indicates that, while increasing
frequency resolution, the SL did not induce a significant loss of
temporal resolution.

To investigate how the SL achieves this, we evaluated the full
width at half maximum of the frequency and temporal
responses measured at T and induced by NF and NT,
respectively (Fig. 2c). We varied the order of the SL and
compared its response to the one of the longest wavelet in
its corresponding set [co, see Eq. (3)]. As the order was
increased, both the largest wavelet (with highest time spread
parameter) and the SL approached the frequency resolution
limit (Rayleigh frequency corresponding to the Gaussian-
windowed oscillation packet) (Fig. 2c, top). By contrast, while
the single wavelet’s temporal resolution decreased rapidly by
increasing its number of cycles, the temporal resolution of the
SL degraded considerably slower (Fig. 2c, bottom). These
results indicate that, as its order is increased, a SL nears the
theoretical frequency resolution possible for a limited duration
oscillation packet (Rayleigh frequency), while maintaining a
significantly better time resolution than a single, long wavelet.

The CWT provides a representation of the signal that is
increasingly redundant for higher frequencies24,25, because the
frequency response of wavelets becomes broader as the number of
samples per oscillation cycle decreases. The SLT (and ASLT)
decreases the redundancy of the representation with increasing
order of the SLs. Figure 2d depicts the average power measured
over a long signal composed of three frequency components (20,
50, and 100 Hz) with unitary amplitude. The average power in a
perfect energy-conserving transform should be 1.5 (Fig. 2d,
green). We used two types of SLs with base cycles c1= 3 and 5,
and progressively increased their order while computing the SLT
and collapsing it in time (Welch-like). Order 1 corresponded to
the CWT and, as the order was increased, the redundancy in the
representation of high frequencies was reduced (Fig. 2d, insets)
and the average power across the spectrum approached that of an
energy-conserving transform (e.g., Fourier). Importantly, SLs
with larger base cycles provide a less redundant representation
than those with smaller number of base cycles (compare Fig. 2d
red with Fig. 2d blue), albeit at the expense of decreased temporal
resolution (see below).

The SL acts as a sharp narrow-bandwidth bandpass filter,
concentrating frequency resolution as the order is increased and
suppressing the redundancy of the representation. We have
analytically derived the frequency response of the SL as a function
of its order (see Supplementary Information—“III. Superlets and
redundancy suppression: towards multiscale TFRs/Redundancy
suppression by superlets–analytical derivation”). Results indicate
that the frequency resolution of the SL is very close to that of the
largest wavelet in its set.

Comparison to classical techniques. In another test, we gener-
ated a signal as a sum of multiple TF packets (Fig. 3a), as follows.
Three target packets of 11 cycles were generated at target fre-
quencies of 20, 40, and 60 Hz. For each target, a neighbor in
frequency (+10 Hz) and a neighbor in time (+12 cycles) were
added to the signal. Due to constructive-destructive summation, a
clear modulation of magnitude is visible where the target was
summed with its frequency neighbor—this is equivalent to
amplitude modulation (AM), whereby two sideband frequencies
sum up to give rise to an amplitude modulated central frequency.
Locally, the correct TF representation of this phenomenon should
reveal corresponding bursts of magnitude (or power) at the two
summed frequencies (i.e., locally the signal looks like it is
modulated in amplitude and it is composed of two AM sideband
components; thus, locally, both interpretations are correct at the
same time). We computed the TF power representation of the
signal using Blackman-windowed Fourier (STFT), wavelets
(CWT), and adaptive additive SLs (o= 1 : 30, order varied
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linearly from 1@10 Hz to 30@80 Hz, at c1= 3 and 5 cycles; and
o= 5 : 40 at c1= 1 cycle) (see Fig. 3).

At the location of frequency neighbors, the STFT with various
window sizes revealed either the temporal modulation (Fig. 3b,
left) or the two frequencies (Fig. 3b, right), but it was unable to
fully segregate time and frequency, in spite of an “optimized”
intermediate window size (Fig. 3b, center). A similar conclusion
was reached with a CWT using increasing number of wavelet
cycles (increasing time spread parameter; Fig. 3c), with the

difference that the CWT provided better frequency resolution in
the low frequency range. By contrast, ASLs (ASLT) provided a
faithful local representation, with high resolution in both time
and frequency, across the entire spectrum (Fig. 3d). Increasing
the number of base cycles (c1) had the effect of further increasing
frequency precision, albeit at the cost of losing some temporal
resolution at the low frequencies. On the other hand, one could
decrease c1 to achieve higher time resolution and compensate the
larger overall frequency bandwidth with higher orders in the SLs
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Fig. 2 The principle behind superlets and redundancy of spectral representation. a Test setup where a target oscillation packet, T, is contaminated by

frequency and time neighbors (NF and NT). Top: using a wavelet with small number of cycles enables good time separation but has poor frequency

resolution (red), whereas wavelets with many cycles enable good frequency separation but suffer from temporal contamination (blue). Bottom: a particular

instantiation with packets of seven cycles having: target frequency 50 Hz, neighbor frequency 70 Hz, neighbor time offset ten cycles. b Target

contamination in frequency by NF (top) and in time by NT (bottom). Contamination is measured as the normalized response (magnitude) of a single

wavelet (c= 3) or a multiplicative superlet (c1= 3; o= 5) at the time-frequency location of the target (without the target being present) to NF with various

frequencies (top) or NT with various time offsets (bottom). c Frequency (top) and time (bottom) superlet resolution measured as the half-width of

the frequency and time peak in b, respectively, as a function of the order of a multiplicative superlet (line). The same is shown for the longest wavelet in the

superlet set (dotted line). The frequency resolution limit is the Rayleigh frequency of T with Gaussian windowing. The temporal resolution limit is half the

size of T (3.5 cycles). d A long signal composed of 3 summed unitary amplitude sine waves has an average power of 1.5 (green). Two superlet transforms

(SLT) using multiplicative superlets with c1= 3 (blue) and 5 (red) give an increasingly sharper representation of the higher frequencies, as their order is

increased. Sharper representations signify less redundancy. Insets show the time-collapsed power spectra computed using the CWT (SLT of order 1), SLT,

and Welch for the corresponding marked points on the average power traces.
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(Fig. 3d, right). This latter strategy led to a representation that
surpassed all the others.

We next used SLs to analyze brain signals (electroencephalo-
graphy, EEG) recorded from humans in response to visual stimuli
representing objects (deformable dot lattices)40 (see “Methods”).
As EEG signals are strongly affected by the filtering properties of
the skull and scalp, having a pronounced 1/f characteristic41,42

that masks power in the high-frequency range, we have baselined
(z-score) spectra to the pre-stimulus period43. The TF power
spectrum of the occipital signal over the Oz electrode was
estimated using STFT, CWT, and ASLT (Fig. 4a). The STFT
window was chosen to optimize the representation in the γ-range
(>30 Hz), whereas the number of cycles for the CWT was chosen
to maximize temporal resolution. The STFT provided a poor
resolution in the low frequency range (Fig. 4a, top), whereas the
CWT showed good temporal resolution but poor frequency
resolution for higher frequencies (Fig. 4a, middle). On the same
data, the ASLT provided the sharpest TF resolution across the
whole frequency range (Fig. 4a, bottom).

We next zoomed in on the γ-frequency range, which poses
particular challenges for TF analysis44–47. The Fourier window
(Fig. 4b, top row) and the number of wavelet cycles (Fig. 4b,
middle row) were varied to optimize the temporal (left) or
frequency (right) precision, or a tradeoff between the two
(middle). SLs (Fig. 4b, bottom) shared the major features with
the other representations but provided TF details that could not
be simultaneously resolved by any of the latter.

In vivo electrophysiology signals are recorded at much higher
sampling rates than EEG (32 kHz compared to 1 kHz), offering

the opportunity to observe oscillation bursts with higher temporal
precision in local field potentials (LFPs) than in EEG. We next
focused on LFPs recorded from mouse visual cortex during
presentation of drifting sinusoidal gratings (see “Methods”). LFPs
suffer from the 1/f issue significantly less than EEG and therefore
baselining is typically not necessary for their analysis. We
computed the TF representation of an LFP signal using the
STFT (Fig. 4c, top), CWT (Fig. 4c, bottom), and ASLT (Fig. 4c,
middle) around the presentation of the visual stimulus (drifting
grating at 45°) and averaged it across ten presentations (trials). As
was the case for EEG data, ASLs provided a sharp TF
representation across the entire analyzed spectrum. They revealed
45 Hz γ-bursts induced by the passage of the grating through the
receptive fields of cortical neurons48 and resolved many details in
both the low and high frequency range.

The capability of SLs was, however, revealed when we zoomed
in on a compact γ-burst induced by the passage of the grating (see
Fig. 4d). SLs were computed with a base cycle c1= 2, to increase
temporal resolution, and we used a fixed multiplicative order of 7
(SLT). The SLT provided fine temporal and frequency details,
whose presence in the signal was validated by computing the local
CWT optimized for time (c= 2), frequency (c= 11), or a tradeoff
between time and frequency (c= 6). The components seen in the
SL representation could be inferred from these multiple wavelet
representations but none of the latter was able to simultaneously
reveal all the TF details (Fig. 4d).

We further explored a TF detail revealed by SLs (Fig. 4d left
bottom and Fig. 4e), composed of a lower ongoing rhythm (LOR)
at ~17.5 Hz, two time neighboring packets at 24.5 Hz (NP1 and
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NP2), and one higher frequency packet at ~31 Hz (HP) (Fig. 4e,
top left). To determine whether these features were actually
present in the signal over the ten trials, we narrow-band filtered
the signal (bidirectional IIR, order 3, bandpass 10–40 Hz) to
remove frequency contamination plaguing the wavelet estimates
in the γ-range. This enabled us to validate the presence of the TF

packets using narrow (c= 3) and wider (c= 11) wavelets (Fig. 4e
bottom left and top right). However, although the frequency of
HP could be identified, its clear temporal location could not be
established with the CWT, irrespective of the parameters of
the wavelet (Fig. 4e top right). We suspected that this may
originate from averaging over ten trials such that time/frequency
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smearing of the long/short CWT could hide this detail. Indeed,
we found that HP was expressed clearly in at least one of the trials
in the set (Fig. 4e bottom right). Thus, the packets in the TF detail
revealed by SLs were actual features in the signal and, in addition,
the TF concentration provided by SLs was able to reveal bursts
expressed at single-trial level. The latter could not be identified by
other methods because they were averaged out due to the time/
frequency smearing in the wavelet or Fourier representations (see
also Supplementary Fig. 2).

One of the hardest problems in the TF analysis of brain signals is
to resolve weaker neighboring rhythms when strong, dominating
oscillation bursts are present in a certain frequency band. For
example, oscillations may occur simultaneously in the β- and γ-
bands, and these are often hard to distinguish45. Figure 5 shows an
example analysis on the same data from Fig. 4c–e but in response to
an orthogonal grating direction (135°) and focused on the post-
stimulus onset part of the response. All methods were able to reveal
the strong γ-bursts occurring in response to the drifting grating

(Fig. 5a). The STFT displayed strong leaked-in power from the lower
frequencies (Fig. 5a top), whereas the CWT had markedly poor
frequency resolution (Fig. 5a middle). As before, the SLT provided
good TF resolution (Fig. 5a bottom). Importantly, the latter also
suggested the presence of TF structure in the β-band (12–30Hz).

When we zoomed in on the β-band, the SLT revealed a rich TF
structure with multiple packets located at various frequencies and
temporal offsets (Fig. 5b bottom). By contrast, the STFT (Fig. 5b
top) and CWT (Fig. 5b middle) were unable to properly resolve
this frequency band, suffering from power leakage from below
and above the band. When the signal was narrow-band filtered in
the 15–35 Hz range, the representation in the STFT (Fig. 5c top)
and the CWT (Fig. 5c middle) changed significantly, and became
more similar to the SLT, roughly revealing the same TF structure.
By contrast, the SLT maintained a similar representation after
filtering, implying that it correctly captured the TF structure of
the β-band, with minimal interference from bursts in the
frequency bands below and above it.

Fig. 4 Time-frequency analysis of EEG and acute electrophysiology signals. Data was recorded over occipital electrode Oz for EEG (a, b) and in mouse

visual cortex for acute electrophysiology (c–e). a Global time-frequency EEG power spectrum around stimulus onset computed using Fourier analysis

(STFT; top), wavelets (CWT; middle), and adaptive additive superlets (ASLT; bottom). b Zoom-in analysis over the γ-frequency band (30–150 Hz) of data

from a using STFT with various windows (top), CWT with different number of Morlet cycles (middle), and adaptive multiplicative superlets (bottom).

Representations in a were first logarithmized (base 10) and both those in a and b were baselined (z-score) to 500ms pre-stimulus period. Representations

are averages across 61 trials. c Fourier (STFT; top), adaptive multiplicative superlets (ASLT; middle), and wavelet power spectra (CWT; bottom) around

stimulus onset on mouse electrophysiology data. Representations were first logarithmized (base 10) and then baselined (z-score) to pre-stimulus period.

d Zoom-in on a γ-burst from data in c, induced by the passage of the grating through the receptive field of cortical neurons. The SLT used multiplicative

superlets of order 7 and c1= 2, optimized to provide high temporal and frequency resolution (bottom left). By comparison, individual wavelets optimized

for time (top left), frequency (bottom right) or a compromise between the two (top right) cannot reveal all the details evidenced by the superlet. e Further

zoom-in on a detail from data in d provided by the superlet (top left) reveals two time neighboring packets (NP1 and NP2), a higher frequency packet (HP),

and a lower ongoing rhythm (LOR). Tuned wavelets on 10–40 Hz band-passed data indicate roughly the presence of the temporal (left bottom) and

frequency (top right) components. The location of HP cannot be determined by wavelet analysis in the average time-frequency spectrum, but is recovered

by single-trial analysis, indicating that superlets can correctly reveal very fine time-frequency details, which are smeared out in the average spectra by

the other methods. Absolute power shown (linear scale, no baselining) in d and e. Representations in c and d are averages across ten trials.
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Comparison to MMCE. An established TF super-resolution
method is the Fourier-based MMCE35. The latter employs a set of
windows with increasing size and combines the resulting spec-
trograms geometrically. We next compared how SLs faired with
respect to the MMCE method. Figure 6a, b depicts a comparison
of the two methods when applied to EEG data (same experiment
as in Fig. 4a, b, different subject). Signals were aligned to either to
the presentation of the visual stimulus (onset) or the response of
the subject (button press) and analyses were grouped across three
conditions, as a function of the response of the subject (object
seen, uncertain, nothing seen)40. Unlike in the case of SLs, the
choice of parameters for MMCE is not obvious. If the MMCE
windows were matched with the extent of the shortest and longest
wavelets in the ASLT, the MMCE representation would suffer
from excessive time smearing (see Supplementary Fig. 3). We
therefore experimented with various parameters that yielded a
reasonably sharp MMCE representation: a set of seven windows,
spanning from 30 to 700 ms. On the data aligned to stimulus
onset, the MMCE (Fig. 6a) provided a less sharp representation
compared to the ASLT (Fig. 6b). Although frequency resolution
remained constant, relative time resolution degraded with
increasing frequency. Also, a marked effect was the masking/
“dilution” of high frequency packets when powerful low-
frequency components were present. SLs did not suffer from
these problems and revealed a rich TF structure, independently of
how the data were aligned (Fig. 6b). All analyses revealed inter-
esting associations between α-, β-, and γ-activity, and the
experimental condition, but SLs provided the sharpest picture.
The increase in γ-bursts expression and in their frequency was
associated with the perceptual process, whereas increased ongoing
β was more sustained in association to response certainty in this
particular subject. α was in general suppressed during stimulus
processing.

We next compared the two methods on electrophysiology data.
Figure 6c–e shows results on the same data as in Fig. 5, but for a
larger time and frequency range. As was the case for EEG data,
the MMCE displayed a progressive “dilution” of oscillation
packets with increasing frequency (Fig. 6c). By contrast, ASLs
displayed a milder “dilution” effect and provided robust details
across the explored frequency range (Fig. 6d).

Depending on the slope of the order increase function in the
ASLT, one can obtain representations that provide less, the same,
or more dilution compared to MMCE. By contrast, the SLT does
not display any dilution. To investigate the “dilution” effect, we
optimized both the MMCE and SLT to estimate limited γ-bursts
induced by the drifting grating (Fig. 6c–e, inset 1). In this limited
range, both methods provided rather identical results, thus
validating the fact that SLs provide locally consistent results with
established methods. However, when the analysis window was
expanded to incorporate a progressively larger frequency range
(Fig. 6c–e, insets 2 and 3), the MMCE displayed a marked
dilution of the higher frequencies while the SLT did not. The
dilution effect is discussed in detail in Supplementary Informa-
tion—“III. Superlets and redundancy suppression: towards
multiscale TFRs/Interpretation of superlets and relation
to MMCE.”

Detection of oscillation bursts expressed in single trials. During
cognitive processes, it is expected that γ-bursts are scattered in
time and frequency in a single-trial-dependent manner. There-
fore, we evaluated the ability of SLs to discover γ-bursts expressed
in single trials. Three 11-cycle packets of 40, 80, and 120 Hz were
inserted into only one of the 84 trials (Fig. 7a) recorded over the
Pz electrode in condition “Nothing” of the dataset shown in
Fig. 6a, b. We computed the averaged TF spectrum over the 84

trials using STFT (Fig. 7b), CWT (Fig. 7c), MMCE (Fig. 7d), and
multiplicative SLT (Fig. 7e). SLs were able to robustly detect the
presence of all three packets. The latter also revealed a rich TF
structure in the upper frequencies (>50 Hz), which the other
methods mostly missed.

Comparison to other high-resolution methods. We next eval-
uated how the high-resolution methods, based on the WVD or
the directionally smoothed WVD, fared on EEG and electro-
physiology data. As their representations can also contain nega-
tive values, applying the log was not an option. Therefore, all
results were computed with linear scales. As before, representa-
tions for EEG data were baselined, to compensate for its pro-
nounced 1/f property. Figure 8 shows the results, on the same
data from Fig. 4a, c, computed with the WVD-based methods. In
the WVD, cross-terms contaminated the entire TF landscape
(Fig. 8a, d). The CW (Fig. 8b, e) and BJ (Fig. 8c, f) methods
performed better, mostly revealing structure in the low fre-
quencies. However, all these methods performed poorly overall,
on both EEG (Fig. 8a–c) and electrophysiology (Fig. 8d–f) data.
Well-known phenomena, such as entrainment of γ-bursts by
passage of drifting gratings, are difficult to identify.

Detecting packets embedded in noise and measuring resolu-
tion. Previous results, especially those in Fig. 7, suggest that the
SLT and ASLT are useful as detection tools when the data are
noisy. It would therefore be important to have an objective
measurement of how well different methods perform in detecting
various types of target signals. We created a setup where a unit
amplitude packet (a brief sine wave or a Gaussian atom—each
spanning ten cycles) was progressively buried in white noise of
increasing amplitude. To mimic realistic conditions, we generated
datasets consisting of 50 trials with noise, and inserted the packet
in only ten of these. We then considered a TF mask around the
target signal and defined a “detection score” as the fraction of
values within the mask which fell above the 95th percentile of the
distribution of all values in the representation (Fig. 9a top). The
logic was that the signal is detectable as long as its corresponding
representation falls within the upper range of the global dis-
tribution. The detection score is always bounded to 1 and
decreases as the detectability of the signal becomes increasingly
impaired. We computed the detection score for all methods and
for noise levels from 0.25 to 5 (5× larger than the amplitude of the
signal), for both the sine packet (Fig. 9b) and the Gaussian atom
(Fig. 9c). For each noise level, we analyzed 25 independently
generated datasets. While the isolated atom was best detected by
CW and BJ in low noise levels, both the sine and the atom were
better detected by the ASLT as soon a significant amount of noise
was added. The ASLT was also very close to CW and BJ on the
atom in low noise conditions (Fig. 9c).

The quality of TF representations is sometimes evaluated using
the “uncertainty product” (UCP), which localizes the representa-
tion in time and frequency, by computing the first and second
moments on the marginals (for details, see Supplementary
Information—“IV. Resolution of TFR/TSR representations”). It
can be argued49 that the UCP is not a proper measure of a
method’s resolution because resolution is related to the ability to
distinguish among multiple, close components in a representa-
tion50. The UCP is not applicable on multi-component
representations if the first and second moments become
statistically flawed51.

Approaches to measure resolution are usually based on the
shape of the TF landscape when multiple, known signal
components are added50,51. Here we took a similar approach
and considered two fixed frequency signal components (sine
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packet and Gaussian atom) that were brought progressively closer
in time. Time resolution was measured as the fraction of “empty
space” in the cross-section of the representation at the known
frequency of the components (Fig. 9d, g top, horizontal line and
Fig. 9d, g bottom, red profile line). Frequency resolution was

measured by considering the inverse of the SD of frequency
spread at the location of the known components (Fig. 9d, g top,
vertical line). TF resolution was then defined as the product of the
two measures. A high value of this resolution measure
corresponds to a superior method, with the ability to better
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distinguish neighboring oscillation packets. We computed the
resolution of various representations, based on STFT, CWT,
MMCE, SLT, WVD, CW, and BJ. The window for STFT and the
number of cycles for CWT were matched to the extent of each
packet / atom. In addition, the parameters of MMCE and SLT
were matched at the frequency of the packets/atoms. For two sine
packets, the time resolution of SLT and MMCE was unsurpassed
(Fig. 9e), whereas the TF resolution was even more prominently
above that of the other methods (Fig. 9f). By contrast, due to
strong cross-terms, the resolution of the WVD was zero. The
other members of this family, CW and BJ, performed rather
poorly, due to their directional smoothing, which decreased
temporal resolution. In the case of the two Gaussian atoms, which
were already maximally concentrated, the SLT, MMCE, CW, and
BJ exhibited the best time (Fig. 9h) and TF (Fig. 9i) resolution for

the difficult case, when the atoms were very close. The CW and BJ
quickly lost this advantage as soon as the packets were pulled
apart, whereas the STFT and CWT gained a slight advantage over
MMCE and SLT for larger separation between atoms. These
results indicate that, for sinusoidal packets, where the SLT and
MMCE can gain precision over single wavelet/window trans-
forms, these methods are unsurpassed. For Gaussian atoms, the
SLT and MMCE behave optimally at small separation, and very
well at large separations.

When a single frequency or a limited range of frequencies is
present in the data, the windows of the MMCE can be matched
such that the shortest and longest window match the extent of the
shortest and longest SL wavelets at that frequency, as shown in
Fig. 9d–i. In such cases, the TF resolution of the two methods is
very similar (Fig. 9f, i). It should be noted however that this

Fig. 6 Comparison between minimum mean cross-entropy (MMCE) and superlets. a MMCE using 7 windows that span 30–700ms on EEG data

recorded by 15 occipital electrodes. b Adaptive multiplicative superlets on data from a, with orders spanning 1–15 and c1= 3 cycles. For each analysis,

signals were aligned to stimulus onset (left) or subject response (right). Representations were first logarithmized (base 10) and then baselined (z-score) to

the pre-stimulus period. Color scales were maintained identical across conditions (along columns) to facilitate comparisons. Number of analyzed trials per

condition were: 84 for “seen,” 20 for “uncertain,” 100 for “nothing.” cMMCE using 7 windows that span 50–700ms on in vivo electrophysiology data (LFP,

10 trials). d Adaptive multiplicative superlets on the data from c, with orders spanning 1–15 and c1= 3 cycles. e Analyses on restricted windows with various

locations and sizes (see insets in c and d) using MMCE (top) and superlets (bottom). The power scale is logarithmic in c and d, to facilitate exploration of a

large spectral range, while it is linear in e, to enable precise quantitative comparison.

Fig. 7 Detection of single-trial γ-bursts (packets). a Three target packets extending 11 cycles and with frequency 40 (P1), 80 (P2), and 120 Hz (P3) were

inserted into a single trial of a set of 84 trials of EEG recordings (Pz electrode). Real data shown. Averaged time-frequency spectrum over the 84 trials

using: STFT (b), CWT (c), MMCE (d), multiplicative SLT (e). Arrows show the time-frequency location of detected target packets.
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window matching is not usually helpful on real data, especially
when the signal contains a wide range of frequencies that are
explored.

Validation using optogenetics. Although different methods can
reveal a rich TF landscape in brain signals, it is difficult to know
the ground truth and therefore hard to distinguish which method
performs better. To overcome this limitation, we used LFP data
recorded in the visual cortex of transgenic animals where we
applied periodic optogenetic stimulation using blue light. Fig-
ure 10 shows results obtained on data recorded in a Thy1-ChR2-
YFP mouse, where blue light drives mainly principal, excitatory
neurons52–55. Optogenetic stimulation was delivered by rectan-
gular light pulses with a duty cycle of 50% by using a mechanical
shutter and a blue laser (see “Methods”). Stimulation frequency
covered the 5–105 Hz range, with a step of 10 Hz. We quantified
the dominant power and frequency of the response in the LFP by
computing baselined (Z-scored)43 Welch spectra across all
channels that had responses to light (23 out of 32) and evaluating
the peak power and its corresponding frequency (Fig. 10a, “Peak
pow. increase” and “Frequency @ peak”). In addition, we isolated
multi-unit activity (MUA) across signals recorded by all these
electrodes and computed the average firing rates (Fig. 10a, “MUA
firing rate”). Periodic optogenetic stimulation entrained the cor-
tical circuit into oscillations whose power increase peaked in the
γ-range (30–80 Hz), matching previous reports56,57. Interestingly,
at low stimulation frequency the cortex engages into induced γ-
oscillations at significantly higher frequency than that of the

stimulating signal. At 5 Hz drive, we observed ~53–55 Hz and
vigorous spiking (Fig. 10a, “Frequency” and “Firing rate”), as
shown before by Tiesinga58. As stimulation frequency was
increased, the cortex tended to engage into oscillations with a
frequency closer and closer to that of the stimulus, switching from
an induced regime to an evoked (locked) regime, where the
responses followed the stimulation pulses. We evaluated the
performance of the high-resolution methods on both these
regimes.

To investigate the induced regime, we considered LFP signal
from the deepest electrode (furthest away from photo-stimula-
tion) during 5 Hz stimulation. Figure 10b shows the TF spectra
computed with the SLT (top), the window-matched MMCE
(second row), CW (third row), and BJ (bottom). The SLT
displayed a rich structure in the γ-band and showed clear
bursting at ~55 Hz. We focused on a clear, strong γ-burst
(packet), located during the second cycle of stimulation (200–400
ms) and which could not be properly resolved by the MMCE,
CW, or BJ (Fig. 10b, red arrow). To determine the veracity of this
burst, we computed the autocorrelation of the signal using scaled
correlation analysis (SCA), a time-domain method able to isolate
correlations on fast timescales59. SCA revealed a clear oscillatory
modulation at the target location (Fig. 10c top), whose period
matched the period of the burst (Fig. 10c bottom). To further
obtain an independent confirmation that the observed γ-burst is a
genuine phenomenon, rooted in cortical dynamics, we extracted
the MUA from the same channel. The peri-stimulus time
histogram indeed revealed robust spiking following the
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optogenetic stimulation (Fig. 10d top). Using the binary version
of SCA59, we computed the autocorrelation structure of the spike
train and found that it displayed oscillatory modulation with the
period matching the frequency of the burst observed by the SLT
(Fig. 10d bottom). Given the tonic optogenetic drive of the
excitatory population during the target period, it is likely that the
observed γ-oscillations reflect a push-pull Pyramidal-INterneuron

Gamma interaction48,60,61 between excitatory and inhibitory cells,
whereby inhibition balances out excitation62 (see Tiesinga and
Sejnowski63). Thus, the SLT was able to identify a genuine γ-
burst, originating from circuit dynamics, which the other
methods largely missed.

To investigate the evoked (locked) regime, we considered the
LFP recorded by a more superficial channel at 65 Hz rhythmic
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optogenetic stimulation. At this stimulation frequency, the cortex
locked more reliably to the stimulus (Fig. 10a) but in some cases
this locking was transient. Such an example is shown in Fig. 10e–i.
All methods were able to reveal the transient locking to the
stimulus at 65 Hz (Fig. 10e), revealed also by bandpass filtering
the signal (Fig. 10f top) in the narrow 60–70 Hz band (Fig. 10f
middle). In addition, the SLT revealed an interesting phenom-
enon that could not be resolved by the other methods: fine
modulation at 130 Hz (double of stimulation frequency), with
marked bursting, especially at the beginning and in the middle of
the trial (Fig. 10e top, red arrows). Bandpass filtering (110–140
Hz; Fig. 10f bottom) and SCA (Fig. 10g) confirmed the existence
of these high-frequency bursts.

To confirm the locking of the LFP to the light stimulus, we
computed the event-related potentials (ERPs) aligned to the rising
front of the light pulse and during periods with high (Fig. 10e,
periods 1 and 3) and low (Fig. 10e, period 2) power in the SLT.
Indeed, high power was correlated to high ERP amplitude and
low power to low ERP amplitude (Fig. 10h), showing that the
phenomenon of transient coupling revealed by the SLT was
genuine. Moreover, we aligned the signal during the early high-
frequency burst in Fig. 10e (first red arrow), with the light
stimulation and found that, indeed, the LFP was locked to double
the stimulation frequency (Fig. 10i). The ability of SLs to identify
such high-frequency transients while simultaneously resolving the
lower frequencies was unmatched by the other methods on
these data.

Finally, we investigated the ability of high-resolution methods
to detect very high-frequency bursts under a variety of
optogenetic stimulation conditions. A gallery of examples is
shown in Supplementary Figs. 13–15. Results indicate that SLs
reliably detect high-frequency bursts, sometimes exceeding 200
Hz. Such bursts can occur under different stimulation conditions,
even when the optogenetic drive is slow (Supplementary Fig. 14).
Furthermore, an example of coupling at double of the stimulation
frequency is shown in Supplementary Fig. 15. The other high-
resolution methods performed poorly by comparison.

Discussion
Increasing the resolution of joint TF estimation, especially for the
case of non-stationary signals, has been a very active field of
research in the past decades11,15,32,64. Notable techniques include
the Cohen class methods36,37 or the Fourier-based MMCE30 and
its Probabilistic Latent Component Analysis derivative31. SLs
extend these efforts by using a simple wavelet-based approach.
They take advantage of multiple estimates at a range of temporal
resolutions and frequency bandwidths, which are combined
geometrically (optimal entropic criterion) to evaluate the tem-
poral and frequency location of finite oscillation packets.

In optics, the term super-resolution refers to the ability to
resolve details beyond the diffraction (Rayleigh) limit33 by taking
advantage of multiple measurements34. Here we refer to super-

resolution as the ability to resolve the joint TF density better than
it is possible with a single estimate32. SLs provide super-
resolution in the TF sense, even if their frequency resolution
approaches (but does not exceed) the theoretical Rayleigh fre-
quency. For frequency super-resolution, when time is irrelevant,
other techniques are applicable, e.g., based on model fitting65,
polyphase analysis filter banks66, Pisarenko harmonic decom-
position67, or multiple signal classification (MUSIC)68. These
frequency super-resolution techniques ignore the temporal
component and focus on the frequency dimension only.

SLs use the GM across a set of wavelet responses to sharpen TF
localization. Intuitively, the GM multiplicatively combines
responses with high temporal precision with those with high-
frequency precision29. For example, if a narrow-bandwidth
wavelet (many cycles) detects a narrow frequency component,
this will be vetoed out in time if the short wavelet at a certain
location has a low response, and vice versa. Quantitatively, it has
been shown that using the GM to combine individual measure-
ments improves the estimate of the joint TF density and is
optimal in a cross-entropy sense30,35. This property is not shared
by the arithmetic mean (see Supplementary Fig. 4), which cor-
responds to the minimum mean-squared solution30.

The frequency resolution limit for a finite oscillation packet
depends on the packet’s duration but temporal resolution can be
increased by increasing sampling rate. Typically, LFPs are
obtained by low-pass filtering (@300 Hz) the electrophysiology
signal sampled at much higher rates (32–50 kHz) and then
downsampling the signal. When using SLs, one should keep a
high sampling rate after downsampling (e.g., 2–4 kHz) to enable
the method to resolve fine TF details (see Figs. 4d, 5, and 6e).

Cortical responses exhibit a significant trial-to-trial varia-
bility69. Therefore, results are typically averaged across multiple
trials. For TF analysis this can pose significant problems44,70,71,
for several reasons. First, perceptual processes may be supported
by high-frequency γ-bursts whose expression is not necessarily
locked to the external events available for aligning the analysis
(stimulus onset, button press etc.). As a result, γ-packets may be
scattered throughout the TF spectrum and will not sum up
coherently in the average. Second, due to the TF uncertainty,
isolated packets can be masked out by strong neighboring packets
whose estimate leaks over the target’s representation. Because
they concentrate the joint TF estimate in each individual trial and
in a frequency-specific manner, SLs provide a sharp image of the
TF landscape, revealing oscillation packets that may remain
hidden with other estimation methods.

Our results indicate that, for averaged TF spectra, traditional
methods (STFT and CWT) may fail to reveal the true TF struc-
ture within a certain band if strong spectral neighbors exist, as the
representation of the latter leaks into the band of interest, com-
promising its estimation. Powerful oscillation packets can in
principle be detected by many methods. However, estimating the
surrounding, weaker packets, turns out to be difficult for classical

Fig. 9 Detection of isolated signal components under noisy conditions and resolution of various representations on sine packets and Gaussian atoms.

a Procedure for computing the detection score based on the fraction of values in the target window that reside above the 95th percentile of the distribution

of values of the entire representation. The natural logarithm (Ln) was applied to the distributions for visualization purposes only. b Detection score for a

unit amplitude sine packet of 8 cycles @ 40 Hz, as a function of the amplitude of added white noise. c Same as in b but for a unit amplitude Gaussian atom

of 10 cycles @ 40Hz. Results in b and c were computed across 25 datasets for each noise level. Each dataset consisted of 50 trials with independent noise

instantiations and the target packet was inserted in only ten trials. Error bands are SEM. d Extraction of time and frequency profiles from the representation

(top) and measurement of time resolution (bottom) for two sine packets. e Temporal resolution for different representations of the signal from d. f Time-

frequency resolution for the signal from d. g, h, i The same as in d, e, f, respectively, but for two Gaussian atoms. Time resolution was measured as the

fraction of “empty space” in the cross-section of the representation, i.e., area of the shaded region divided by the area of the green box. The green box is

defined as the rectangle that spans the space between the edges of the sine packets or between the peaks of the Gaussians, while its height is given by the

value of the cross-section of the representation at the sine ending points or the peaks of the Gaussians, respectively.
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methods, including those based on the directionally filtered
WVD, potentially impairing important discoveries about the
simultaneous coordination of rhythms across neighboring bands.
SLs provide a robust and elegant solution to this problem because
the TF concentration of spectral power they provide minimizes
the cross-band contamination during spectral estimation.

On the neuroscience data used to test the methods investi-
gated here, SLs provided the best results. Neural data have a
rich TF structure2 and are often contaminated by noise (e.g.,
EEG). The reason why SLs outperform other methods on such
data may have to do with the scale-free, fractal nature of brain
signals5–7. Indeed, for such signals, oscillation bursts are scaled

(compressed or dilated), covering a wide range of frequencies,
and wavelet analysis is the natural approach. When normalized
such that temporally-scaled oscillation busts, with the same
amplitude, yield the same peak response21, wavelets become
useful tools that reveal the scale-free nature of these bursts. SLs
inherit these advantages and use a wavelet normalization that
facilitates the detection of oscillation bursts as they compress
with increasing frequency. When a fixed order is used (SLT),
the resulting representation is “non-diluting”, i.e., bursts with
the same peak amplitude will receive the same peak “intensity”
in the SL representation. By contrast, methods based on the
Fourier transform, such as the spectrogram or the MMCE, use
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Fig. 10 Optogenetic validation of high-frequency burst detection on in vivo electrophysiology data. a Peak power increase, frequency at peak, and firing
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recording site is shown on the left. Error bands represent SEM. b Time-frequency representations of LFP data, recorded with the deepest electrode, during

optical stimulation with 5 Hz (50% duty cycle rectangular blue light pulses—top; ten trials). The range of MMCE window sizes was matched with the range

spanned by the SLT wavelets. c Scaled correlation analysis (SCA) on the data from b. Top: time-resolved. Bottom: time-collapsed around the temporal location

of the burst in b. d Analysis of multi-unit activity (MUA) recorded on the same electrode as the LFP in b. Top: Peri-Stimulus Time Histogram (PSTH); bottom:

binary SCA on the MUA spikes. e Time-frequency representations of LFP data recorded during stimulation with 65Hz, on a more superficial electrode (single

trial). Green numbers denote periods with peak power at 65 Hz (1 and 3) and with reduced power between these peaks (2). Red arrows indicate two high

frequency (130Hz) transients. f The single trial trace from e (top), followed by its band-passed versions (Butterworth IIR, order 3, bidirectional) at 60–70Hz

(middle) and 110–140Hz (bottom). g SCA on the LFP signal from e and f, with time-collapsed versions at the locations of the two bursts indicated by red arrows

in e. h Event-related potentials (ERP) aligned to light onset computed on the LFP signal during periods 1, 2, and 3, indicated in e. i The LFP signal between 30–80

ms, at the location of the high-frequency burst (first red arrow in e), in relation to the light stimulation profile.
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one or multiple fixed analysis windows, respectively. As win-
dow size is not dependent on the continuous change of the
timescale across the frequency domain, these methods pro-
gressively “dilute” finite oscillation packets that compress with
the increase in frequency. Finally, techniques based on the
directionally smoothed WVD, seem to significantly underper-
form on brain signals, most likely because the rich TF structure
of these signals induce cross-terms that are difficult to suppress,
even with advanced kernels.

SLs generalize the CWT to provide super-resolution in the TF
sense. One of the major advantages of SLs is their simplicity
and straightforward implementation, facilitating an intuitive
understanding of what they do. Indeed, the base wavelet controls
the time resolution, whereas the order determines how well
the representation is sharpened in frequency. Unlike in the
STFT or MMCE, choosing the parameters for SLs (c1, o) is
relatively easy, because one operates with oscillation cycles
rather than absolute time windows. The SLs’ base wavelet cycles
can be chosen independently of the frequency range of the
representation.

On neuroscience data SLs provide interesting results and it is
expected that the method will be instrumental in identifying high-
frequency oscillation bursts whose expression in brain signals is
difficult to quantify. Indeed, the examples shown here, especially
those in Fig. 10 and Supplementary Figs. 13–15 compellingly
speak for the ability of this method to reveal transient oscillation
frequencies that go well beyond the traditional frequency band
usually explored (e.g., 0–100 Hz). Furthermore, SLs may find
applications in the analysis of other types of signals whose TF
landscape is complex.

Methods
High-density EEG (Biosemi ActiveTwo 128 electrodes; recording software Acti-
View for Windows version 6.05) data were recorded @1024 samples/s from healthy
human volunteers freely exploring visual stimuli consisting of deformed lattices of
dots that represented objects and were presented on a 22” monitor (1680 ×
1050@120 fps; distance 1.12 m).

We generated a set of 210 stimuli, consisting of dot lattices corresponding to
30 objects and deformed progressively to yield 7 levels of visibility40. For each of
the 7 visibility levels (parameter range g= 0–0.3, in steps of 0.05), we generated
30 dots images corresponding to the 30 objects, grouping stimuli into 7
experimental blocks. Blocks were presented to subjects in ascending order of
visibility (from nothing visible to easily visible). For each dot image presented on
the screen, subjects were free to visually explore the stimulus for as long as they
needed (free visual exploration paradigm), until they reached a perceptual
decision, which they had to signal by pressing one of three buttons congruent
with perception (“nothing,” “uncertain,” “seen”). Data were recorded from
11 subjects. Here we used data from two subjects. All subjects gave their written
informed consent before the experiment. The protocol was approved by the
Local Ethics Committee (approval 1/CE/08.01.2018). Data were collected in
accordance with relevant legislation: Directive (EU) 2016/680 and Romanian
Law 190/2018.

In vivo electrophysiology data were recorded with A32-tet probes (Neuro-
Nexus Technologies, Inc.) at 32 kSamples/s (Multi Channel Systems MCS
GmbH; recording software MC_Rack version 4.6.2) from primary visual cortex
of anesthetized C57/Bl6 mice receiving monocular visual stimulation (1440 ×
900@60fps; distance 10 cm) with full-field drifting gratings (0.11 cycles/deg;
1.75 cycles/s; contrast 25–100%; 8 directions in steps of 45°, each shown 10
times). Anesthesia was induced and maintained with a mixture of O2 and iso-
flurane (1.2%), and was constantly monitored based on heart and respiration
rates and testing the pedal reflex. Within a stereotaxic device (Stoelting) a
craniotomy (1 × 1 mm) was performed over visual cortex. To minimize animal
use, multiple datasets were recorded over 6–8 h from each animal. Local field
potentials were obtained by low-pass filtering the signals @300 Hz and down-
sampling to 4 kHz.

For optogenetics experiments, we used genetically modified mice expressing
light-activatable ion channels (ChR-2) in neuronal subsets of pyramidal neurons
within the cortex, via the Thy-1 promoter54. Optical stimulation was delivered via a
blue laser (Sanctity 473 nm DPSS Laser) to the primary visual cortex using ste-
reotactic coordinates, in close vicinity to the recording site. Stimulation was
delivered in repetitive pulses at variable frequencies (from 5 to 105 Hz) with a duty
cycle of 50%, via a custom-built mechanical shutter. Laser power was adjusted in
order to activate neuronal population, but not exceed 50 mW/mm2. The artifact of

light pulses on the electrical contacts was minimized by placing the optical fiber at
an angle, ensuring that the light did not reach the probe contacts, but did elicit a
neural response in both LFP and MUA. We observed no effect of light pulses post-
mortem or in animals that did not express ChR-2.

Mice were housed in a controlled environment, with temperature in the range of
21–23 °C and 50–60% humidity, with a dark/light cycle of 12/12 h. In vivo
experiments were approved by the Local Ethics Committee (3/CE/02.11.2018) and
the National Veterinary Authority (ANSVSA; 147/04.12.2018).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
EEG and electrophysiology datasets analyzed for the present study are available from the

corresponding author on reasonable request. EEG dataset codes are: Dots_30_001

(Figs. 4a, b and 8a–c) and Dots_30_002 (Figs. 6a, b and 7). In vivo electrophysiology

codes are: M017_002 (Figs. 4c–e, 5, 6c–e, and 8d–f) and M022_004 (Fig. 10).

Code availability
Data were analyzed using custom software. A freely available version, written in C++

version 11 with an interface for Matlab 2018b and including code for producing

artificially generated data can be found at: https://github.com/

TransylvanianInstituteOfNeuroscience/Superlets.
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