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Abstract. A major trust of modal parameters identification (MPI) research in recent years has 
been based on using artificial and natural vibrations sources because vibration measurements can 
reflect the true dynamic behavior of a structure while analytical prediction methods, such as finite 
element models, are less accurate due to the numerous structural idealizations and uncertainties 
involved in the simulations. This paper presents a state-of-the-art review of the time-frequency 
techniques for modal parameters identification of civil structures from acquired dynamic signals 
as well as the factors that affect the estimation accuracy. Further, the latest signal processing 
techniques proposed since 2012 are also reviewed. These algorithms are worth being researched 
for MPI of large real-life structures because they provide good time-frequency resolution and 
noise-immunity. 
Keywords: modal parameters identification, time-frequency algorithms, wavelet transform, 
synchrosqueezing transform, civil structures, dynamic excitation sources. 

1. Introduction 

In the past two decades, modal parameters identification (MPI) has become a significant and 
growing research discipline in several areas such as aeronautics, mechanical engineering, and civil 
engineering because it can be used to assess the health of the structure and control its vibrations 
during dynamic events such as an earthquake. For civil structures, it can also be used to satisfy 
the seismic demands during ground motions in the form of response spectrum analysis. In general, 
MPI consists of three main steps: excitation and acquisition, signal processing, and modal 
parameters estimation, such as natural frequencies, damping ratios, and mode shapes (As seen in 
Fig. 1). 

A major trust of MPI research in recent years has been based on using artificial and natural 
vibrations sources because vibration measurements can reflect the true dynamic behavior of a 
structure while analytical prediction methods, such as finite element models, are less accurate due 
to the numerous structural idealizations and uncertainties involved in the simulations. MPI based 
on vibration data represents a challenge because measured data is non-stationary and is embedded 
in high-level noise. Furthermore, closely-spaced modal parameters found in a structure due to 
symmetric geometries or similar physical properties in different directions represent an additional 
challenge to MPI schemes [1]. For these reasons, it is of paramount importance to have an accurate 
signal processing algorithm capable of estimating the modal parameters of a civil structure using 
signals that are non-stationary with a high-level of noise and possibly closely-spaced modes. 
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Fig. 1. Main steps in MPI 

Sirca Jr. and Adeli [2] present a review of the strategies used to perform structural system 
identification. Amezquita-Sanchez and Adeli [1] present an extensive review of signal processing 
techniques to extract features from the acquired vibrations signals for the purpose of structural 
health monitoring. This paper presents a state-of-the-art review of journal articles on 
time-frequency techniques for vibration-based MPI. The focus is on civil structures including 
high-rise buildings and bridges. The rest of the paper is organized as follows. First, the excitation 
source and the effect of temperature on MPI accuracy is discussed. Next, vibration-based 
time-frequency techniques used for MPI as well as their advantages and disadvantages are 
presented. Then, novel signal processing techniques that are potential candidates to be utilized in 
MPI schemes are presented. The article ends with some final remarks. 

2. Influence of the excitation source and the temperature effect on the MPI accuracy 

The excitation source and environmental temperature influence the MPI accuracy  
significantly. For instance, if a small excitation force is applied to the structure, the measured 
response might not reflect the full behavior of the structure. Furthermore, the acquired dynamic 
signals could contain mostly noise or the useful information might be embedded in a high-level 
of noise. In contrast, a large excitation force can produce damage in the structure. On the other 
hand, the environmental temperature can modify the mechanical properties of the materials used 
in the structure thus producing changes in the identified modal parameters.  

Different kinds of excitation sources have been used in vibration-based MPI research. The 
most common ones are reviewed and their advantages and disadvantages are pointed out in this 
section. Further, the main effects produced by environmental temperature on the MPI accuracy as 
well as possible solutions to overcome them are addressed. 

2.1. Excitation source 

The excitation source is an important step in the MPI of a civil structure as it induces energy 
into the structure in form of vibrations to be monitored to observe its dynamic behavior. To 
perform this task, artificial and natural or ambient forces have been used to excite civil structures. 
Artificial excitations are generated by using a man-made mechanical equipment such as drop 
weights, hammers, and shakers, among others; however, an easy access to the structure and its 
temporary closing during the test are required [3] which may not be possible for certain structures 
such as a residential condominium building. Consequently, a significant part of MPI research has 
focused on natural excitations or ambient vibrations such as wind, micro-earthquakes, and traffic 
loadings since this type of excitation requires neither excitation equipment nor the interruption of 
the structure’s normal operation. 

In general, the use of artificial or natural excitations depends on the nature of the structure 
under study and the available budget for testing. For example, if the structure has a relatively small 
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size, the cost and complexity of mechanical equipments to generate the artificial vibrations are 
lower than those required for large structures. In the latter case ambient vibrations are preferred 
since they are capable of exciting a large structure without requiring sophisticated mechanical 
equipments. In addition, they allow the monitoring of the structure under real operating conditions. 
Moreover, they are useful in providing information in the low-frequency band (below 1 Hz) 
because mechanical and electrical components used in the artificial exciters cannot reproduce 
them easily [4]. On the other hand, if high-frequency information is required, artificial exciters are 
recommended since the frequency range can be adjusted by controlling some features of the 
exciter [4]. In both cases, it is worth noting that if the energy injected in the structure is small, the 
structure will not be excited correctly and the measured dynamic signals will only contain noise; 
on the contrary, if the excitation is too high, the structure can suffer damage [5]. Table 1 presents 
a comparison of artificial and natural sources for exciting civil structures. 

Table 1. Comparison of artificial and natural sources for exciting civil structures  
Excitation 

source Cost Frequency 
Content Availability Ease of use Real-time 

assessment 

Artificial Depends on the 
structure size Broadband Depends on the 

mechanical equipment
Depends on the 

mechanical equipment No 

Natural Free Low 
Frequency Always Easy Yes 

2.2. Environmental temperature effects on the MPI accuracy 

Temperature can produce changes in the physical properties of the materials used in the 
structure. For instance, an increase in the temperature results in an increase in the material length 
thus producing a decrease in the structure stiffness. Furthermore, temperature variations may 
cause changes in the boundary conditions thus affecting the modal parameters values [6].  

In recent years, researchers have proposed various schemes to quantify and compensate for the 
effects of temperature in the modal parameter values. Xia et al. [7] show that modal frequencies, 
in particular the first modal frequency, are affected greatly by the change of temperature, but not 
the damping ratios and modal shapes. They examine and compare three methods: linear regression 
(RM) models, blind source separation (BSS) models [8], and autoregressive (AR) models to 
compensate the temperature effects in a steel truss girder suspension bridge and a reinforced 
concrete (RC) high-rise building and conclude that the RM algorithm allows compensating for the 
temperature effects on the modal frequencies when the structure behaves linearly, but when the 
relationship is slightly non-linear, the AR and BSS algorithms have an edge for compensating the 
temperature effects on the modal frequencies. The AR, however, cannot model complex problems 
such as complicated nonlinear behavior of civil structures and noise-contaminated measured 
structural response which is usually the case [1].  

To model the nonlinear relation between the temperature and modal parameters, Nandan and 
Singh [9] propose a subspace system identification-based approach, combined with input data 
filtering to model the temperature–frequency relationship of two realistic bridge configurations: a 
simply-supported concrete box-girder and a T-beam girder superstructure, located in North 
Carolina, USA. They use the acquired data from these real-life bridges and note that the data must 
be filtered before utilization because of the seasonal variation in the data. Laory et al. [10] examine 
and compare multiple linear regression (MLR), artificial neural networks (ANN) [11, 12], support 
vector regression (SVR) [13, 14], regression trees (RT) [15], and random forest (RF) [16] 
algorithms to estimate the natural frequencies of a steel truss bridge under different environmental 
conditions and conclude that SVR and RF algorithms can be used to model the nonlinear 
relationship between the environmental conditions and modal parameters. Despite some 
promising results to compensate for the effects of the environmental conditions in the MPI, the 
problem has not been completely resolved because of high nonlinearities in the acquired signal. 



2113. TIME-FREQUENCY TECHNIQUES FOR MODAL PARAMETERS IDENTIFICATION OF CIVIL STRUCTURES FROM ACQUIRED DYNAMIC SIGNALS.  
CARLOS ANDRES PEREZ-RAMIREZ, JUAN PABLO AMEZQUITA-SANCHEZ, HOJJAT ADELI, MARTIN VALTIERRA-RODRIGUEZ, ET AL. 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2016, VOL. 18, ISSUE 5. ISSN 1392-8716 3167 

For this reason, it is desirable to investigate new algorithms to model the environmental 
conditions-modal parameters relationship more appropriately.  

In recent years, Adeli and associates have proposed new hybrid approaches for modeling or 
predicting highly nonlinear systems. Adeli and Jiang [17] present a nonlinear autoregressive 
moving average with exogenous inputs-based time-delay fuzzy wavelet neural network (WNN) 
algorithm for system identification of multistory building structures. They use concepts from the 
chaos theory, wavelets [18], and soft computing techniques, neural networks and fuzzy logic 
[19, 20], to model the highly nonlinear earthquake-structure system and to incorporate the inherent 
imprecision of the acquired data. Wang and Adeli [21] present a novel self-constructing WNN for 
vibration control of nonlinear structures. They integrate a self-constructing WNN with an adaptive 
fuzzy sliding mode control approach to construct a model that does not need a-priori knowledge 
of the structure’s dynamics. They test the methodology using a benchmark problem, the finite 
element model (FEM) model of a continuous cast-in-place pre-stressed concrete box-girder bridge 
[22]. To the best of the authors’ knowledge, these new approaches have not been reported in the 
literature to model the environmental conditions-modal parameters relationship. The authors 
believe that these advanced models have great potentials and their application should be explored 
for compensating the environmental effects in the modal parameters, especially the modal 
frequencies. 

3. Signal processing techniques for MPI 

In real-life structures, the acquired dynamic signals are embedded in different levels of noise. 
The noise in signals generated using artificial excitations is in general lower than the noise in 
signals acquired for civil structures excited with ambient sources. This difference requires the 
utilization of more robust algorithms. Several signal processing techniques have been proposed 
and used to deal with this type of signals. In this section, the most common ones are reviewed in 
a chronological order and their advantages and shortcomings are pointed out. 

3.1. Time-domain methods 

Time-domain methods belong to a class of algorithms that do not require a space 
transformation (e.g. the frequency domain) to estimate the modal parameters of civil structures. 

3.1.1. Statistical time series 

Statistical time series models (STSM) use the measured response to establish an approximate 
mathematical model to represent the acquired dynamic behavior. They are known to be efficient 
for modeling time-invariant linear systems [1]. They include autoregressive (AR), 
moving-average (MA), autoregressive with exogenous inputs (ARX), autoregressive-moving-
average (ARMA), autoregressive-moving-average with exogenous inputs (ARMAX), and 
Box-Jenkins (BJ) models. 

Takewaki and Nakamura [23] present an experimental analysis to estimate the natural 
frequencies and damping ratios of a base-isolated three-storey reinforced concrete (RC) building 
subjected to the 2004 Tokaido-oki, Japan, earthquake using a batch processing least-squares 
estimation method combined with an ARX model. They show that using the poles (the roots of 
the denominator) of the estimated ARX model, the modal parameters as well as their variations 
during the earthquake can be estimated. Gomez et al. [24] use an ARX model to identify the 
natural frequencies of a three-span curved RC bridge located in California subjected to 
traffic-induced vibrations and report that higher modes are not detected because the earthquakes 
excite only the first four modes.  

Civil structures are known for having nonlinear and time-variant behavior [25] which makes 
the linear STSM ineffective for modeling their dynamical behavior because they can model only 
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time-invariant systems thus limiting an accurate estimation of the modal parameters. To lessen 
this drawback, Maosheng et al. [26] combine a recursive adaptive forgetting factor with an ARX 
model for MPI of the scaled model of 12-story RC frame structure subjected to the 1940 El Centro 
earthquake. The model detects the response of the structure when the response is time-invariant 
where the modal parameters are estimated from the entire acquired response using the poles of the 
ARX model. In contrast, when the response is time-varying, the model identifies the instance 
when the signal changes abruptly in amplitude. Once the change is detected, the previous samples 
are used to estimate the modal parameters using the poles of the ARX model. Su et al. [27] present 
a time-varying ARX (TVARX) model to estimate the instantaneous modal parameters through 
integration with wavelets and apply it to two 2D structures, a five-story and an eight-story steel 
frame subjected to the 1999 Chi-Chi, Taiwan earthquake. They report an identification error of 
about 2 % and 20 % for the natural frequencies and damping ratios, respectively. Other 
applications of statistical time series have been reported by Saito and Beck [28] and Niu et al. [29]. 

In statistical time series method, in general, the model order selection is a key to the accurate 
estimation of modal parameters. This selection is made either by a trial-and-error or an adaptive 
approach. The trial-and-error approach is time-consuming and impractical. Consequently, other 
alternatives should be explored. For instance, Saito and Beck [28] use a Bayesian approach for 
identifying the best order for the ARX model used for estimating the MPI of a high-rise building. 

3.1.2. Free decay-based methods 

When a civil structure is excited by a hammer or a drop-weight, the free-decay response of the 
structure is measured. The term free is used because the excitation forces used can be treated as 
impulses. However, in real-life, the impulse excitation is seldom utilized because it cannot excite 
large civil structures adequately. Therefore, techniques such as the random decrement technique 
(RDT) [30] or the natural excitation technique (NExT) [31] are proposed to transform the response 
acquired by another type of excitation such as ambient or man-induced vibrations into a free-decay 
response.  

RDT aims to convert the acquired signal into a free-decay response by averaging segments of 
the acquired response with a common initial condition using a given threshold [32]. A graphical 
illustration of the method is shown in Fig. 2. A threshold value ( ) is used for obtaining the 
samples that fulfill the aforementioned condition (Fig. 2(a)). This value is obtained using the level 
crossing condition [33]:  = √2 , (1)

where  is the signal standard deviation. Then, a segment of equal sample length (the curves 
labeled as s1, s2, s3, and s4) is extracted for every sample that satisfies the aforementioned 
condition (Fig. 2b). The resulting signal ( ) is obtained as [34]: 

= 1 + , (2)

where  is the number of obtained segments, and can be treated as the structure’s free-decay 
response. He et al. [35] use the RDT algorithm to calculate the MPI of a three-span continuous 
steel truss bridge subjected to ambient vibrations produced by a moving train. The modal 
parameters are obtained iteratively solving a set of non-linear equations formed using the 
free-response equation. The results obtained are compared with the peak-picking (PP) method. 
They conclude that RDT estimates the first four modes whereas PP identifies only the first three. 
Other applications of RDT for MPI are presented by Cury et al. [36] and Wang and Chen [37]. 

Despite good results reported in the aforementioned works, some unresolved difficulties 
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remain using the RDT technique. RDT should be used with stationary or quasi-stationary signals 
as any slight variation can cause a change of the free-decay signal amplitude, leading to 
miscalculation of the damping ratio since a higher damped signal is estimated by the algorithm 
[38]; but, the measured signals obtained for real-life structures from dynamic excitations exhibit 
nonlinear and non-stationary properties. In order to overcome this limitation, Lin and Chiang [39] 
present a modified RDT technique combined with the Ibrahim time domain (ITD) method [40] to 
estimate the modal parameters of a 2D 3-bay 17-member cantilever space truss subjected to 
band-limited noise as excitation. They report identification error of less than about 1 % and 20 % 
for the natural frequencies and damping ratios, respectively. Lin and Tseng [41] use RDT with a 
time-varying threshold value on a 6-degree-of-freedom model with viscous damping and an added 
10 % noise. They report maximum errors in the natural frequencies and damping ratios of 1 % 
and 18 %, respectively. 

 
Fig. 2. RDT estimation 

Unlike RDT technique, the NExT technique obtains the free-decay response of a signal either 
by applying directly the cross correlation function to the signal or using the FFT (FFT is used only 
to obtain the cross-correlation function) and its inverse to calculate the cross-spectral density 
function [42]. Several applications of the NExT technique combined with the eigensystem 
realization algorithm (ERA) [43] have been reported for finding the MPI of a 1/40 scale 
cable-stayed bridge [44], suspension bridges [45], a two-span continuous steel frame footbridge 
[46], a 16-bay truss structure [47], Masonry Monuments [48, 49], and a Langer-type arch steel 
bridge [50]. 

A major drawback of the NExT method is its increased computational burden in comparison 
with RDT. In order to lessen this problem, Chang and Pakzad [51] propose an enhanced NExT 
algorithm to estimate the modal parameters of the Golden Gate Bridge located at San Francisco, 
California, USA. A wireless sensor network is used to measure its response when it is subjected 
to ambient vibrations. They report maximum errors of about 1 % and 23 %, for the estimation of 
the natural frequency and damping ratio, respectively.  

3.1.3. Subspace methods 

Stochastic subspace identification (SSI) algorithms are another class of time-domain methods 
for estimating the modal parameters of civil structures subjected to ambient dynamic vibrations 
[52]. Different types of SSI methods have been proposed such as covariance-driven SSI  
(SSI-COV) [53], covariance-variate SSI (SSI-CV) [54], and data-driven SSI (SSI-DATA) [55]. 
Van Overschee and De Moor [52] show that all SSI methods can be generalized into a unified 
theory depending on the weighting matrix selection before the numerical decomposition. A review 
of the aforementioned methods is presented by Peeters and De Roeck [56]. 

SSI has been used to estimate the modal parameters of steel footbridges [57, 58], cable-stayed 
footbridges [59], a stone arch bridge [60], a stress-ribbon footbridge [61], suspension bridge [62], 
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a highway RC bridge [63], RC buildings [64], a super high-rise tower [65], and masonry  
buildings [66]. 

SSI algorithms in general present high immunity to noise in the signals [65], but are 
computationally intensive, requiring significant computational resources especially for large 
structures [67, 68]. Furthermore, they cannot estimate closely-spaced modes accurately because 
they require setting the order or number of modes which can produce an underdetermined or 
overdetermined system. If the former model is set, some modes would not be detected, whereas 
the latter could produce spurious modes [57, 68, 69]. In order to lessen some of the problems 
found in the SSI methods, Reynders et al. [70] propose a modification to the SSI algorithm based 
on using both the measured responses from the ambient vibrations and the ones obtained with an 
artificial exciter to perform the MPI of a steel footbridge subjected to ambiental vibrations and 
artificial excitations. They show an improvement in the quality of the estimation of the modal 
parameters. Zhang et al. [68] introduce a modification to the SSI-DATA algorithm in order to 
reduce its computational burden and apply it to a suspension bridge subjected to ambient 
excitations. The original SSI-DATA method uses QR-factorization, the singular value 
decomposition (SVD), and least squares to determine the modal parameters which is 
computational intensive. In contrast, the modified method avoids the use of the QR-factorization 
by employing an eigenvalue decomposition. Further, they propose a similarity index to eliminate 
the fictitious modes. Li and Chang [67] introduce an optimization scheme for the online operation 
of the SSI-COV method and test it using the ASCE benchmark frame structure. In this algorithm, 
QR-factorization is substituted with the Householder bi-iteration subspace tracker, which along 
the utilization of a state-space constructed subspace, minimizes the required time to compute the 
modal parameters since only part of the measured signal needs to be used. Their approach can 
deal with colored noise (noise whose frequency content is not uniform). Hong et al. [69] present 
an enhanced version of the canonical correlation analysis (CCA) to allow a better detection of the 
closely-spaced modes and test it using the actual measurements obtained from a suspension bridge 
subjected to wind excitation.  

Another type of subspace method is the proper orthogonal decomposition (POD) (or 
Karhunen-Loève decomposition). POD allows analyzing multidimensional data. A detailed 
explanation of this algorithm can be found in [71]. Kallinikidou et al. [72] use POD for MPI of a 
cable-suspended bridge subjected to traffic-induced vibrations as excitation. POD calculates the 
modal parameters using the covariance matrices of the bridge measurements at selected locations. 
The authors conclude that the POD method can deal with a huge amount of data, as only the most 
relevant sensors are used, allowing its utilization in real-time structural health monitoring (SHM) 
schemes. Wang and Cheng [73] propose a modification for calculating non-proportional damping 
ratios using POD. They test the methodology employing a steel cantilever beam subjected to a 
band-limited excitation. They identify the natural frequencies with high accuracy, as a maximum 
deviation of 2 % is achieved; but, the error for the estimation of the damping ratio is over 50 % 
compared with the theoretical values. 

3.2. Frequency-domain methods 

Unlike time-domain methods, frequency-domain approaches must use a space transform in 
order to identify the existent components of the measured signal and estimate the modal 
parameters. This class of algorithms is known for their ease-of-use. In some cases, the required 
computational burden is lower than that of the time-domain methods. The most widely-used 
algorithms are discussed in this subsection. 

3.2.1. Fourier Transform-based methods 

Fourier Transform (FT) is one of the well-known and most popular algorithms used to identify 
relevant information in the frequency domain. In MPI applications, the optimized discrete version, 
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known as the Fast Fourier Transform (FFT) is the one chosen for implementation on personal 
computers (PC) and portable platforms such as digital signal processors (DSP), microcontrollers, 
and field programmable gate arrays (FPGA). FFT has been used to estimate the natural frequencies 
of 12-, 19-, and 23-story RC building structures [74], and a prestressed RC bridge [75]. Valla et al. 
[76] calculate the natural frequencies of two 30-storey RC buildings subjected to ambiental 
vibrations employing the FFT.  

In the last two decades, different algorithms based on the FFT such as peak-picking (PP) 
method, frequency domain decomposition (FDD) [77], and frequency response function (FRF) 
have been proposed to estimate the modal parameters of civil structures subjected to dynamic 
vibrations. Proposed by Bendat and Piersol [78], the PP method uses FFT to obtain the signal 
amplitude spectrum where the natural frequencies are the highest peaks of the spectrum, and the 
damping ratios are calculated using either the half-power bandwidth or the logarithmic decrement 
methods while the mode shapes are estimated using SVD. The FDD method is based on the 
decomposition of the power spectral density matrix using the SVD method to estimate the modal 
parameters of the structure [77], whereas the FRF method uses the Fourier transform of the input 
excitation and the measured response to estimate a transfer function which is used for calculating 
the modal parameters of a civil structure [32]. 

Several examples of PP, FDD, and FRF methods for MPI of civil structures have been  
reported. Li et al. [35] compare the PP, FDD and RDT methods to estimate the modal parameters 
of a 101-storey office highrise building with five basement levels subjected to the 2008 Shichuan, 
China earthquake. They use FDD and PP to estimate the natural frequencies, whereas RDT and 
FDD are employed to compute the damping ratios. García-Palencia and Santini-Bell [79] use the 
FRF method to estimate stiffness, mass, and viscous damping matrices of a linear elastic damped 
structure. They conclude that the FRF method does not work well under severe ambient  
conditions. Erdogan and Gülal [80] apply the PP method to calculate the modal parameters of a 
suspension bridge subjected to ambient dynamic vibrations and conclude that only lower modes 
can be identified. 

Although FDD improves the resolution of PP by using the SVD method, the selection of the 
frequencies still remains as a manual task which can be a time-consuming procedure [81]. In order 
to lessen this problem, Gade et al. [82] propose a modified version of FDD method known as 
enhanced FDD (EFDD) method which automates the process of identifying the natural 
frequencies by using a zero-crossing criteria. Furthermore, the inverse discrete Fourier transform 
is used to extract the individual mode and to estimate the modal parameters. Altunisik et al. [83] 
compare the SSI and EFDD methods for estimating the modal parameters (natural frequencies and 
damping ratios) of a box girder bridge subjected to traffic as excitation source. They report both 
algorithms estimate similar values. Other similar works have been presented by Magalhães et al. 
[84], Soyoz et al. [85], and Cismaşiu et al. [86], among others. Another modification of the original 
FDD method is the frequency spatial domain decomposition (FSDD) [87] which uses spatial 
filtering to improve the estimation of modal frequencies and damping ratios.  

FFT and its derived algorithms present significant limitations. They cannot be used for 
estimating the modal parameters of structures subjected to ambient dynamic excitations because 
the monitored signals in a structure exhibit nonlinear and non-stationary properties which cannot 
be modelled by FFT adequately [1]. In order to lessen the limitation of FFT, Agneni et al. [88] 
propose a Hilbert transform (HT)-based algorithm for obtaining the FRFs. 

3.2.2. High-resolution methods 

High-resolution (HR) methods are known for detecting frequencies, especially closely-spaced 
ones, in signals with a low signal-to-noise ratio (high-level noise) [89]. Among the HR methods, 
the multiple signal classification (MUSIC) [90] has been used to estimate the natural frequencies 
of civil structures. Jiang and Adeli [89] present a MUSIC method to estimate the pseudospectrum 
of high-rise buildings subjected to artificial vibrations created by a shake table. The estimated 
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frequencies are used to construct a damage indicator. The authors were the first to use the MUSIC 
approach in the field of structural engineering. Osornio-Rios et al. [91] employ MUSIC for 
calculating the natural frequencies of a five-bay truss-type structure subjected to artificial 
vibrations. The natural frequencies are used as inputs to a classifier to detect and quantify the 
damage severity. Amezquita-Sanchez et al. [92] compute the natural frequencies of a five-bay 
truss structure with 70 members using the MUSIC method. They show that closely-spaced modes 
can be estimated. The pseudospectrum calculated by MUSIC cannot be used for estimating the 
damping ratio because its amplitudes have no physical significance, which is the opposite to the 
FFT spectrum. For this reason, other methods must be explored to obtain the damping ratio  
values [93]. 

None of the techniques discussed so far can determine the instantaneous changes or the 
evolution over time of the modal parameters. If those features are required, time-frequency 
methods must be used. 

3.3. Time-frequency methods 

These methods combine the properties of both time and frequency methods to provide an 
enhanced detectability of frequencies, especially closely-spaced ones. This subsection presents 
the main algorithms used in MPI schemes. 

3.3.1. Wavelet transform 

During the last two decades, wavelet transform (WT) has become the most widely-used 
time-frequency algorithm for signal processing in different engineering applications such as 
seismic engineering [94], filtering approaches [95], structural control [96-98], structural reliability 
analysis [99, 100], pavement structural evaluation [101], damage detection [102], and biomedical 
signal processing [103, 104] because it provides a multi-resolution time-frequency analysis, 
allowing the detection of sudden frequency changes, transients, and other features that are 
invisible in time domain [105]. The continuous wavelet transform (CWT), discrete wavelet 
transform (DWT), and wavelet packet transform (WPT) have been the most widely-used methods. 
The main difference between CWT and DWT is how the shifting and scaling is performed. DWT 
estimates the WT using dyadic blocks, whereas CWT does not, that is, the rates used in the 
aforementioned processes are chosen by the final user. Fig. 3 shows the decomposition tree for 
DWT and WPT where it seen that WPT decomposes both detail coefficients (dC) and 
approximation coefficients (aC) (Fig. 3(a)), whereas DWT decomposes only the aC (Fig. 3(b)). In 
this regard, it is seen that WPT is an improvement to DWT to allow the extraction of individual 
frequencies. 

 
a) 

 
b) 

Fig. 3. Tree decompositions for a) WPT and b) DWT 

In recent years, WT has risen as an important signal processing tool for MPI of different civil 
structures. Ülker-Kaustell and Karoumi [106] examine the Morlet CWT for MPI of a 
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concrete-steel composite railway bridge subjected to ambient dynamic vibrations caused by 
moving trains. The amplitude and phase of extracted signals are used to calculate the natural 
frequencies and damping ratios. They conclude that the values of the identified natural frequencies 
decrease and the damping ratio increases when the train increases its speed and vice versa. Le and 
Paultrec [107] apply CWT and the Cauchy wavelet to estimate the natural frequencies and 
damping ratios of a full scale two-storey RC building subjected to band-limited noise as excitation. 
The authors report that the method can identify closely-spaced modes. Kim and Chen [108] 
examine WPT to estimate natural frequencies and damping ratios of a linear  
three-degrees-of-freedom vibration system and report that the modal parameters of the simple 
system can be estimated with accuracy. 

WT-based approaches have some drawbacks. For example, DWT method lacks 
translation-invariance which can affect the estimation of the modal parameters. In order to lessen 
this problem, Holschneider et al. [109] propose the stationary WT (SWT) which achieves 
translation-invariance by removing the down-samplers and up-samplers in the DWT and 
up-sampling the filter coefficients by a factor of 2  in the -th level of the algorithm [110]. 
Sadhu et al. [111] examine SWT algorithm for computing the modal parameters of a 15-story 
steel-frame building subjected to ambient dynamic vibrations. SWT is used to decompose the time 
signal into several frequency bands, where the modes are calculated by using the parallel factor 
tool. Su et al. [112] apply the SWT algorithm to compute the modal parameters of an 8-story steel 
frame and a steel box girder cable-stayed bridge subjected to band-limited noise and ambient 
dynamic vibrations, respectively. They report maximum accuracies of 2 % and 20 % for the 
natural frequencies and damping ratios, respectively.  

The aforementioned WT algorithms have a fixed resolution which might require the utilization 
of other signal processing techniques such as EMD-based methods to fully extract the individual 
modes. In order to overcome these limitations, Daubechies et al. [113] proposed the 
Synchrosqueezed Wavelet Transform (SQWT) as a new adaptive WT capable of working with 
signals with high-level of noise. To test the effectiveness of the SQWT, Perez-Ramirez et al. [93] 
apply the SQWT and the Gaussian wavelet to estimate the natural frequencies and damping ratios 
of a scaled 3D four-story two-bay by two-bay steel-braced frame subjected to ambient dynamic 
vibrations. The results indicate the modal parameters of both structures are estimated with high 
accuracy, especially the closely-spaced modes. 

3.3.2. Hilbert-Huang transform 

Huang et al. [114] introduced the empirical mode decomposition (EMD) combined with 
Hilbert transform (HT) known as Hilbert-Huang transform or HHT as an adaptive signal 
processing method capable of analyzing stationary, nonlinear, non-stationary, and transient  
signals. The EMD method decomposes any time series data into a set of band-limited 
quasi-stationary functions, called intrinsic mode functions (IMF). Next, the HT is applied to each 
IMF to obtain its amplitude and phase angle, which are used to estimate the natural frequencies 
( ) and damping ratios ( ) of a civil structure using the following equations: 

= , (3)= − 1 , (4)

where  and  are the phase and amplitude of each IMF, respectively. Fig. 4 illustrates the 
application of HHT to calculate the natural frequencies and damping ratios of a synthetic signal 
generated using the following equation [115]: 
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= cos 2 1 − + + , (5)

where the signal is composed of two modes whose frequencies ( ) are 20 and 50 Hz, respectively, 
the damping ratios ( ) are 1 % and 0.5 %, respectively, and the amplitudes ( ) are 1.0 for every 
mode (Fig. 4(a)). The test signal is not corrupted with noise [ = 0] and the phase ( ) for every 
mode is 0. The sampling frequency used is 1000 Hz, during 2 s, to obtain 2000 samples. Fig. 4(b) 
illustrates the individual components extracted using EMD, whereas Fig. 4(c) depicts the modal 
parameters estimated using HT showing their evolution over time. HHT method has been applied 
in different fields such as biomedical engineering [116], mechanical engineering [117], and 
earthquake engineering [118]. 

a) b) 
 

c) 
Fig. 4. MPI estimation using HHT: a) a sample test signal, b) individual modes,  

and c) the estimated natural frequencies and damping ratios. 

Shi et al. [119] compare the HHT and PP methods for estimating the modal frequencies and 
damping ratios of the 101-story Shanghai World Financial Center subjected to ambient dynamic 
vibrations. The results show both methods estimate similar values for the natural frequencies but 
HHT is more accurate than PP for estimation of the damping ratios. Ditommaso et al. [120] 
compare the HHT, STFT, and the S-Transform (ST) for identifying the natural frequencies of a 
brick-masonry bearing wall structure subjected to the vibrations created from the explosion of a 
World War II bomb. They conclude that ST allows following the time evolution of the natural 
frequencies detected, especially for the higher ones. On the other hand, they report that HHT does 
not have the expected performance. They point out that some of the high-frequency modes 
extracted using EMD contain low-frequency information, known as mode-mixing effect, this 
impeding its application to MPI.  

A major problem of the HHT method is the mode-mixing effect encountered in the EMD 
process which means that waves with the same value of frequency are assigned to different IMFs 
in the sifting process [121]. Different strategies have been proposed in recent years in order to 
lessen this undesirable effect. Pai et al. [122] modify the EMD process by coupling it with the 
conjugate-pair decomposition (CPD) method in order to detect if the IMF has two different 
frequencies or not. If they have, the CPD method is used to further decompose the IMF. They use 
the method to estimate the modal parameters of three damped modes of a horizontally cantilevered 
steel beam subjected to an initial tip displacement and report better performance than the EMD 
method when dealing with transient and noisy signals.  

3.3.3. Blind source separation 

Blind Source Separation (BSS) is a non-parametric algorithm capable of recovering the 
original sources from a mixture of signals [8, 123]. An explanation of the algorithm is presented 
in a recent article by Amezquita-Sanchez and Adeli [1]. The most known BSS algorithms are the 
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independent component analysis (ICA) [124], and the second-order blind identification (SOBI) 
[125]. The former assumes that the measured data is a linear combination of statistically 
independent sources. On the other hand, the latter uses the sources temporal structure [126].  

Poncelet et al. [126] evaluate the performance of ICA and SOBI methods to estimate the modal 
parameters of a 3-DOF model and report that ICA can process signals from weakly excited 
systems, whereas SOBI can also handle signals obtained from moderately damped systems. A 
shortcoming of SOBI is its inability to identify closely-spaced modes [127]. Hazra et al. [127] 
propose a hybrid time-frequency approach based on SWT and EMD to alleviate the limitation of 
SOBI. The method also solves the under-determined case (the number of acquired sensors is fewer 
than the number of modes to be identified). They carry out the MPI of a 10-story steel tower with 
a composite steel deck subjected to ambiental vibrations. Yang et al. [128] modify the ICA 
algorithm to detect moderate damping modes and apply it to a cantilever beam excited with an 
impact hammer. They show the method can estimate modes whose damping ratio does not exceed 
1 %.  

3.4. Probabilistic methods 

In recent years, probabilistic methods (PM) have become an important signal processing tool 
to estimate the modal parameters of civil structures using incomplete data. Cara et al. [129] use 
the Expectation-Maximization (EM) fused with the maximum likelihood estimation (MLE) 
methods and SSI-DATA to compute the natural frequencies and damping ratios of a four-story 
two-bay by two-bay braced steel frame subjected to ambient dynamic vibrations. Although the 
method can estimate the natural frequencies accurately, the damping ratio values show large 
variances to their theoretical counterparts.  

Bayesian probability has been explored the most to identify the modal parameters of civil 
structures because it can deal with the unavoidable uncertainties of the measured data. Cheung 
and Beck [130] propose a Bayesian-based methodology to estimate the modal parameters using 
the numerical response of a ten-story shear frame with non-classical damping. They point out that 
the computational burden required for Bayesian-based estimators is high. To overcome this 
limitation, Au [131] proposes a fast Bayesian FFT-based algorithm to estimate the modal 
parameters and apply it to the measurements of a 15-story steel-frame subjected to ambient 
vibrations. The method focuses on detecting well-spaced modes. Yan and Katafygiotis [132] 
presents a Bayesian approach for estimating the MPI using the statistical properties of the 
auto-spectral density sum and the statistical information of the spectral density matrix and apply 
it to a 3-story building structure made of aluminum subjected to horizontal and torsional vibrations 
generated by a shake table. 

3.5. Advantages and disadvantages of the signal processing techniques used in MPI. 

The knowledge about the features (e.g. frequency resolution or noise immunity) of the 
different MPI schemes allows the selection of the appropriate algorithm. An incorrect selection of 
the algorithm may lead to unreliable results. Table 2 presents a summary of the main advantages 
and drawbacks of the signal processing techniques used for MPI. 

4. Novel signal processing techniques 

Recent advances in mathematics and signal processing fields have led to the development of 
novel algorithms for performing time, frequency, or time-frequency analyses. In this section, some 
of these algorithms are reviewed. To the best of the authors’ knowledge, these algorithms have 
not been used for MPI. They have features that make them potential candidates to be employed 
for the MPI. 
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Table 2. Advantages and disadvantages of the signal processing techniques used in MPI of civil structures 
Method Advantages Disadvantages 

STSM 

Straightforward use. 
Modal parameters can be directly 
obtained from the model. 
Can deal with small noise-level signals. 

Linear and stationary model. 
Accuracy depends on the level of noise. 
Model order selection can be a time-
consuming procedure. 

Free-decay 
methods 

Filtering properties. 
Can process raw ambiental responses. 
Simplicity. 
Easy implementation. 

Multi-stage schemes. 
Increased computational burden. 
Sensitive to noise. 
Used mainly to process stationary 
responses. 

SSI methods 

Noise immunity. 
Closely-spaced modes detection. 
Modal parameters are directly obtained. 
Can process slightly non-stationary 
signals. 

Heavy computational burden. 
Require calibration.  
Generation of spurious modes. 

FT-based  
methods 

Straightforward use. 
Modal parameters are directly obtained. 
Simplicity (PP). 
Non a-priori knowledge of the number 
of modes is required. 
Filtering properties (FRF). 

Fixed resolution. 
Can deal with only stationary signals. 
Sensitive to noise. 
Closely-spaced modes are not detected. 
The input excitation should be available 
for FRF estimation. 
If the excitation source is a harmonic 
signal, the estimated natural frequency  
can be biased (FDD). 

High-resolution 
methods 

Noise immunity. 
Closely-spaced modes can be detected. 

Computational burden. 
Require calibration. 

HHT and its 
variants 

Adaptive method. 
Straightforward use. 
The individual modes are extracted. 
No user interaction is required. 

Mode-mixing. 
EMD variants require calibration. 
Its computational burden and accuracy 
depends on selected algorithm: EMD 
(lower), ensemble EMD (higher).  

BSS 
Good accuracy to separate frequency 
components. 
Can identify modes with low energy. 

A pre-filtered stage is required for signal 
embedded in high-level noise. 
High damping ratios cannot be accurately 
estimated. 

Probabilistic 
methods 

Closely-spaced mode detection. 
A-priori knowledge can be incorporated.
Can process noise-corrupted and 
incomplete data. 

High computational burden. 
Requires calibration. 

4.1. Local characteristic-scale decomposition 

As mentioned earlier, the EMD algorithm suffers from the so-called mode-mixing effect which 
impedes the accurate identification and extraction of closely-spaced modes [1]. In order to lessen 
this limitation, recently Zheng et al. [133] proposes a new method called Local 
Characteristic-scale Decomposition (LCD). It uses the concept of mono-component intrinsic scale 
component (ISC), the equivalent of the IMF in EMD. The main difference between an ISC mode 
and an IMF mode is that the latter also uses a criterion in order to ensure the smoothness and 
symmetry of the potential mode. In addition, LCD uses a threshold-based criterion to mitigate the 
end effect and the mode-mixing issues. The authors used LCD to detect faults in rolling bearings 
[133] where the mode-mixing and end effect issues have been reportedly alleviated. 

4.2. Compact empirical mode decomposition 

Proposed by Chu et al. [134], compact empirical mode decomposition (CEMD) is another 
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time-frequency algorithm proposed to overcome the EMD limitation. It uses a criterion to identify 
false extrema points and a set of algebraic equations to set the upper and lower envelopes using 
Hermitian polynomials. These features reduce the mode-mixing effect and improve the IMF 
extraction quality, as the end effect (distortions in the beginning and the end of the component) is 
corrected. 

4.3. MUSIC-Empirical Wavelet Transform 

Empirical Wavelet Transform (EWT) is an adaptive wavelet transform that uses FT to detect 
the frequency bands to contain the modes in order to construct an effective wavelet filter bank so 
that the modes can be retrieved accurately. Unfortunately, FT accuracy is compromised under 
noisy environments, affecting the EWT results. Recently, Amezquita-Sanchez and Adeli [135] 
combined MUSIC algorithm with EWT to improve the accuracy of the original EWT. The 
proposal uses the MUSIC algorithm to estimate the contained frequencies in the signal and build 
the appropriate boundaries to create the wavelet filter bank. The authors demonstrate the new 
methodology is efficient for analyzing nonlinear and nonstationary signals embedded in high-level 
noise thus allowing the detection of closely-spaced modes accurately. 

4.4. Novel blind source separation algorithm 

The performance/accuracy of BSS-based algorithms degrades in noisy environments. A 
solution is to use pre-filtering stages in order to denoise the acquired dynamic signal. This solution, 
however, increases the computational burden of the proposal thus limiting its application for 
real-time strategies. In order to mitigate this shortcoming, Chui and Mhaskar [136] propose an 
adaptive harmonic model for performing the BSS of a multicomponent signal. The proposal 
removes any existent trend that might affect the component’s detection adversely. Then, signal’s 
components are extracted using signal separators based on a threshold value. The results show 
that the method can detect closely-spaced modes. Further, the performance in noisy environments 
is not degraded. These features make the algorithm a potential candidate for its utilization for  
the MPI. 

This article is the result of a collaborative research project initiated during 2013-2014 when 
Juan Pablo Amezquita-Sanchez was a PostDoctoral Visiting Scholar under the supervision of 
Hojjat Adeli at The Ohio State University. Carlos Andres Perez-Ramirez and Juan Pablo 
Amezquita-Sanchez prepared the first draft of the manuscript and investigated the main 
time-frequency algorithms employed in MPI, as well as their advantages and disadvantages. 
Martin Valtierra-Rodriguez investigated the techniques employed for exciting a civil structure and 
their strengths and weaknesses. Aurelio Dominguez-Gonzalez examined the algorithms used for 
compensating the temperature effect in the MPI and their advantages and disadvantages. Rene de 
Jesus Romero-Troncoso and Roque Alfredo Osornio-Rios revised and investigated new 
algorithms with potential to be employed in the MPI. Hojjat Adeli guided the research, provided 
the knowledge of MPI, and revised the article critically for important intellectual content. 

5. Final remarks 

MPI has become a very active area of research in structural engineering because of the 
evolution and recent advances in new sensors, signal processing algorithms, as well as the 
enhanced processing capabilities of the new computers. This paper presented an overview of the 
main signal processing techniques used in MPI. 

The signal processing algorithms commonly used in MPI are time, frequency and 
time-frequency domain. Time-frequency techniques are the most preferred to estimate the modal 
parameters of civil structures because they allow observing the evolution of the modal parameters 
over time. 
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The newest signal processing techniques, LCD, CEMD and MUSIC-EWT, proposed since 
2012 have not been used in MPI. These algorithms are worth being researched for MPI of large 
real-life structures because they provide good time-frequency resolution and noise-immunity, 
among others. 

In spite of the large amount of work presented on MPI, most deal with small and academic 
problems. New methodologies that use enhanced signal processing techniques capable of handling 
noisy data and nonlinear signals effectively, accurately, and reliably with computational efficiency 
for real-time applications should be explored for monitoring the modal parameters of large 
real-life structures for use in real-time SHM applications.  
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